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Abstract: The analysis of controlled drugs in forensic matrices, i.e., urine, blood, plasma, saliva, and
hair, is one of the current hot topics in the clinical and toxicological context. The use of microextraction-
based approaches has gained considerable notoriety, mainly due to the great simplicity, cost-benefit,
and environmental sustainability. For this reason, the application of these innovative techniques
has become more relevant than ever in programs for monitoring priority substances such as the
main illicit drugs, e.g., opioids, stimulants, cannabinoids, hallucinogens, dissociative drugs, and
related compounds. The present contribution aims to make a comprehensive review on the state-
of-the art advantages and future trends on the application of microextraction-based techniques for
screening-controlled drugs in the forensic context.

Keywords: microextraction-based techniques; screening methods; controlled drugs; opioids; cannabis;
amphetamines; hallucinogens; dissociative drugs; new psychoactive substances; forensic matrices

1. Introduction

Abuse and drug addiction, as well as their consequences, are one of the major issues
in modern societies. The European Monitoring Center for Drugs and Drug Addiction
(EMCDDA) classifies drugs as all substances that people take to achieve a change of mental,
physical, or emotional state (i.e., psychoactive substances). This definition also includes
tobacco, alcohol, medicinal drugs, and volatile substances (“inhalants”). On the other hand,
controlled drugs are only those that are listed in the United Nations Single Convention
on Narcotic Drugs (New York, 1961; amended 1972), the Convention on Psychotropic
Substances (Vienna, 1971), and the Convention against Illicit Traffic in Narcotic Drugs
and Psychotropic Substances (Vienna, 1988). These listings, which include more than
250 compounds and precursors, were created to facilitate their control and to limit their use.
These compounds include, but are not limited to, cannabis, cocaine, heroin, amphetamines,
LSD, ketamine, etc. [1–4]. Over one million seizures of illicit drugs are reported annually
in Europe, where cannabis is the most commonly seized drug, accounting for over 70% of
cases. Cocaine ranks second overall (9%), followed by amphetamines (5%), heroin (5%)
and ecstasy (2%). It is estimated that about 7500 overdose deaths, involving at least one
illicit or controlled drug, occurred in 2015 in the European Union (EU) [2].

For these reasons, the analysis of controlled drugs in forensic matrices, such as urine,
blood, plasma, saliva, and even hair, is of paramount importance [5–7]; this includes the
initial diagnosis of drug addiction, mandatory screening in some treatment programs
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and in the workplace, doping control, screening as a method of tracking drug effects
over time, identification of the substance in case of an overdose, and determination of
treatment compliance.

Drug analysis in forensic fluids usually involves four main steps, i.e., enrichment of
the target substances from the biological matrices, separation from potential interferences,
detection, and data handling. Nevertheless, analyses of biological samples are always
challenging due to the very high complexity of these matrices. The presence of endogenous
interferences, such as proteins in plasma, serum, and breast milk, as well as inorganic
salts in urine, demands for sample treatment prior to instrumental analysis. Additionally,
the target compounds are usually present in very low concentrations and, for this reason,
sample preparation becomes crucial [8]. As a general rule, most sample preparation stages
include an extraction step aiming to transfer the target analytes to a phase more compatible
with the instrumental systems, concentrate the solutes if we are dealing with trace analysis,
and elimination of undesirable interferences. Modern approaches to sample enrichment
run towards the great simplification, miniaturization, easy manipulation of the analytical
devices, high-throughput performance, automation, online coupling with instrumental
systems, low sample-volume requirements, and the strong reduction or absence of toxic
organic solvents in agreement with the green analytical chemistry principles [9–12].

In this regard, liquid- or sorbent-phase microextraction techniques have become promi-
nent both in passive and active modes. The former includes methodologies such as liquid-
phase microextraction (LPME), single-drop microextraction (SDME), hollow-fiber microex-
traction (HF-LPME), solvent bar microextraction (SBME), electromembrane microextraction
(EME), parallel artificial liquid membrane extraction (PALME), and dispersive liquid–liquid
microextraction (DLLME). On the other hand, the latter includes analytical technologies
such as solid-phase microextraction (SPME), stir-bar sorptive extraction (SBSE), bar ad-
sorptive microextraction (BAµE), thin film microextraction (TFME), solid-phase extraction
(SPE) and micro-solid-phase extraction (µSPE), magnetic-solid-phase extraction (mSPE),
molecularly imprinted solid-phase extraction (MISPE), immunoaffinity solid-phase extrac-
tion (IASPE), microextraction by packed sorbent (MEPS), and disposable pipette extraction
(DPX). For more details on sample preparation for drug analysis, it is recommended to
consult several reference books [13–17] and research review articles [5–12,18–30]. These
miniaturized analytical approaches have been proposed for more than two decades to
monitor controlled drugs in biological matrices, such as opioids and related compounds, co-
caine and metabolites, amphetamine-type substances (ATS), cannabinoids, hallucinogens,
dissociative drugs, and new psychoactive substances (NPS). However, limited manuscripts
cover the broad range of applications of miniaturized techniques for sample preparation
in the forensic context. Most review papers are dedicated to specific technique(s), the
sorbent/liquid phase, a particular class of controlled drugs, or are in a target sample
type [8,10,11,18].The present contribution focuses on an overview regarding the applica-
tion of all microextraction-based techniques for screening-controlled drugs in the forensic
context, including the important analytical characteristics and parameters of several appli-
cations. It also discusses the advantages and limitations of miniaturized sample preparation
techniques in this context. We believe that the present contribution can facilitate researchers
in choosing a particular analytical approach for their application goal.

2. Screening-Controlled Drugs by Microextraction-Based Techniques
2.1. Opioids and Related Substances

The classes of drugs known as opiates or opioids include a wide and diverse range of
natural and synthetic chemical compounds derived from opium. These drugs have been
used for centuries for the purpose of reducing pain; however, in some cases their effects may
lead to overdose [31–38]. In England and Wales alone, heroin or morphine was connected
to 1200 deaths registered in 2015 [2]. When administrated, most opioids undergo extensive
varying degrees of phase 1 and 2 metabolism. Phase 1 metabolism usually precedes
phase 2 metabolism, but this is not always the case. Phase 1 metabolism typically subjects
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the drug to oxidation or hydrolysis, whereas phase 2 metabolism conjugates the drug
to hydrophilic substances, such as glucuronic acid, sulfate, glycine, or glutathione. The
process of metabolism ends when the molecules are sufficiently hydrophilic to be excreted
from the body. For more details regarding opioid metabolism it is advisable to consult the
work published by Smith [39]. This information is relevant, especially considering that
some precautions may be needed when trying to analyze these compounds. Depending
on the target compounds and matrices, the hydrolysis of the glucurinated compounds, as
well as protein precipitation, may be needed to increase the signal of the target compounds.
For this reason, the determination of these compounds in biological matrices requires the
development of reliable analytical methods in clinical, forensics, and research contexts.

Several applications have been developed for the analysis of opioids and related
substances in forensic matrices using miniaturized sample preparation approaches. Most
were based on headspace (HS) or direct immersion SPME and DLLME. Nevertheless,
alternative techniques have been also proposed, including EME, HP-LPME, miniatur-
ized SPE, MEPS, and SDME, among others. For example, Vlčková et al. [40] used a fast
MEPS coupled directly to the mass spectrometry (MS) method for the determination of
methadone in human urine. This approach achieved convenient detection limits (1.5 µg/L)
and remarkable recoveries (~100%) using only 0.1 mL of sample. Another relevant work
was published by Gonçalves et al. [41], using a very cost-effective technique (BAµE coated
with activated carbons (ACs)) for the enrichment of morphine and codeine from human
urine matrices. This sample preparation technique was combined with high-performance
liquid chromatography–diode array detection (HPLC-DAD), which allowed the researchers
to attain suitable detection limits (0.06–0.90 µg/L) and inter-day repeatability (≤8.0%).
Ranjbari et al. [42] reported a work which combines DLLME with HPLC-UV/vis detection
for the analysis of methadone in several human biological matrices, using only 0.5 mL of
plasma and urine and 0.1 mL of saliva and sweat. This methodology presented very good
inter-day repeatability (<6.4%) and accuracy levels (~100%). Habibi-Khorasani et al. [43]
developed a molecularly imprinted polymer for SPME fibers for the selective enrichment
of tramadol from brain tissues. The data achieved was very good, as well as the extraction
yields (76.2–91.2%) and inter-day repeatability (≤8.2%), using just 2 g of sample. Table 1
summarizes with more detail the miniaturized applications discussed herein for the en-
richment of opioids and related substances in forensic matrices, with emphasis on the
key characteristics on the developed methodologies. Table S1 (Supplementary Materials)
contains information regarding other techniques for the determination of these classes of
compounds in the forensic context [44–105].
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Table 1. Microextraction-based approaches for the analysis of opioids and related substances in the forensic matrix.

Drugs Matrix Sample
Amount

Sample
Pretreatment

Microextraction
Technique

Optimized Experimental
Conditions

Instrumental
System

LOD
(µg/L)

Absolute
Recovery (%) Precision (%) Ref.

MTD Urine 0.1 mL - MEPS

• Sorbent: C8
• Activation: 100 µL MeOH × 3
• Conditioning: 100 µL H2O × 3
• Samples aspirated and discarded × 5
• Washing: 100 µL H2O × 2 + 100 µL of 5

% MeOH × 1
• Elution: 50 µL of 0.1% COOH in MeOH

MS/MS 1.5 91.7–106.7 ≤11.1 [40]

TMD Rabbit brain
tissue 2 g

• Solid–liquid
extraction

•
Centrifugation

• Evaporation
• Dilution

DI-SPME
• Washing: 1 mL acetone:ACN (3:1, v/v)
• Eluting step: 0.2 mL HCl (1

mol/L):MeOH (1:1, v/v)
HPLC-UV 1 76.2–91.2 ≤8.2 [43]

CODMOR Urine 2 mL
• Filtration
• Sonication
• Dilution

BAµE

• Coating: ACs
• Extraction: 2.5 h, 1000 rpm (pH 7)
• LD: MeOH/ACN (1:1, 1.5 mL), 30 min
• Evaporation to dryness and

redissolution

HPLC-DAD 0.06–
0.90 38.4–41.3 ≤8.0 [41]

MTD

Urine
Plasma
Saliva
Sweat

Urine and
plasma:
0.5 mL

Saliva and
sweat: 0.1 mL

Urine and plasma:
•

Centrifugation
• Filtration
• Dilution

Saliva and sweat:

• Dilution

DLLME

• Sample at pH 10
• DS: MeOH (2.5 mL)
• ES: CHCl3 (200 µL)
• Centrifugation
• Sediment dried and redissolved

HPLC-UV

4.9
7.3

25.12
24.85

98.6–100.3 ≤6.4 [42]

ACN: acetonitrile; AP: acceptor phase; BAµE: bar adsorptive microextraction; C8: octyl silica; CHCl3: chloroform; COD: codeine; COOH: formic acid; DI-SPME: direct immersion solid-phase microextraction; DS:
disperser solvent; ES: extraction solvent; H2O: ultra-pure, distilled, or double-distilled water; HPLC: high-performance liquid chromatography; LD: liquid desorption; LDC: lidocaine; LOQ: limit of quantification;
MeOH: methanol; MEPS: microextraction by packed sorbent; MS/MS: tandem mass spectrometry; MTD: methadone; NaCl: sodium chloride; TD: thermal desorption; TMD: tramadol; UV: ultraviolet.
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2.2. Stimulants and Related Substances

One of the most common controlled stimulant drugs is cocaine. It is a naturally
occurring substance found in leaves of Erythroxylon coca (containing between 0.6% and
1.8% alkaloidal cocaine), a plant endogenous in South America, Mexico, Indonesia, and the
West Indies [31,32,35,106]. By the turn of the 20th century, cocaine’s addictive properties
became well-known, and nowadays, it is classified as a Schedule II drug in the United
States of America (USA), owing to its high potential for abuse [107,108]. In 2016, an
estimated 18.2 million people were described as cocaine users, of which there were more
than 10,000 related deaths in the USA [109] and 100 in Turkey [110].

Several applications have been developed for the analysis of cocaine and related
substances in forensic matrices using miniaturized sample preparation approaches. Most
were based on µSPE, HS, or direct immersion SPME and HP-LPME approaches. Nev-
ertheless, other techniques were also proposed, including EME, DLLME, and DPX. A
fairly recent work developed by Rosado et al. for the rapid analysis (15 min) of cocaine
and metabolites in urine matrices using MEPS and microwave derivatization followed
by gas chromatography coupled to mass spectrometry (GC-MS) [111]. The methodology
was fully validated and allowed for the quantification of the target compounds in real
matrices. Another work employed HP-LPME for the enrichment of cocaine and metabolites
from breast milk followed by derivatization and GC-MS analysis [112]. This methodology
employed only 30 min of equilibrium time, allowing researchers to extract up to 67% of the
target compounds. Sánches-Gonzáles et al. [113] developed a magnetic imprinted polymer
using µSPE to selectively and quickly (~4 min) retain cocaine and its main metabolites from
plasma samples. The optimized methodology was combined with liquid chromatography
tandem mass spectrometry (LC-MS/MS) analysis, resulting in very low detection limits
(0.013–0.36 pg/mL). Table 2 resumes with detail these miniaturized applications for the
enrichment of cocaine and related substances in forensic matrices, with emphasis on the
key characteristics on the developed methodologies. Table S2 (Supplementary Material)
contains information regarding other techniques for the determination of these classes of
compounds in the forensic context [52,84,99,100,104,114–133].
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Table 2. Microextraction-based approaches for the analysis of cocaine and related substances in the forensic matrix.

Drugs Matrix Sample
Amount

Sample
Pretreatment

Microextraction
Technique

Optimized experimental
Conditions

Instrumental
System

LOD
(µg/L)

Absolute
Recovery (%) Precision (%) Ref.

CCE
COC
NC

Breast milk 0.5 mL • pH adjustment
• Salt addition

HF-LPME

• Extraction: 30 min (2400 rpm,
pH 9.0, 25% NaCl)

• SLM: 1-octanol
• AP: 0.4 mol/L HCl
• Evaporation
• Derivatization

GC-MS 5–7 32.0–67.4 ≤15.9 [112]

BE
COC

ECGME
Urine 0.2 mL

• Centrifugation
• Dilution
• pH adjustment

MEPS

• Sorbent: 80% C8 + 20% SCX
• Conditioning: 250 µL MeOH ×

1 + 250 µL 0.1% COOH × 1
• Samples aspirated and

discarded × 6
• Washing: 50 µL 0.1% COOH ×

4 + drying
• Elution: 100 µL of 1% NH4OH

in MeOH × 4
• Evaporation to dryness and

derivatization

GC-MS 25
(LLOQ) 14.5–83.3 ≤14.38 [111]

BE
CCE
COC

ECGME

Plasma 0.1–1.0 mL • pH adjustment
• Dilution

µSPE

• Sorbent: MMIP
• Extraction: 4 min (20 ◦C, 100

rpm, 0.2 mL n-C6)
• Elution: 2 mL

DCM/IPA/NH4OH (75:20:5,
v:v:v), ultrasound irradiation
(5 min)

• Evaporation to dryness
• Redissolved with 0.04 mL of

2 mM C2H7NO2 in MeOH

LC-MS/MS 0.000013–
0.00036 91–102 ≤10 [113]

µSPE: micro-solid-phase extraction; ACN: acetonitrile; AP: acceptor phase; BE: benzoylecgonine; BN: benzoylnorecgonine; CCE: cocaethylene; CHCl3: chloroform; CME: capillary microextraction; COC: cocaine;
COOH: formic acid; ECG: ecgonine; ECGME: ecgonine methyl ester; GC: gas chromatography; HF-LPME: hollow-fiber liquid-phase microextraction; IPA: isopropanol/2-propanol; LC: liquid chromatography;
MeOH: methanol; MEPS: microextraction by packed sorbents; MMIP: magnetic molecularly imprinted polymer; MS/MS: tandem mass spectrometry; MS: mass spectrometry; NaCl: sodium chloride; NC:
norcocaine; n-C6: n-hexane; NCE: norcocaethylene; PDMS: polydimethylsiloxane; SCX: silica-based cationic exchange polymer; SLM: supported liquid membrane.
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Another important class of stimulant drugs are amphetamine (AMP) and amphetamine-
type substances (ATS), which include methamphetamine (MAMP), 3,4-methylenedioxymeth-
amphetamine (MDMA, ecstasy), N-ethyl-3,4-methylenedioxyamphetamine (MDEA), and
methylenedioxyamphetamine (MDA). These compounds are derived from ephedra (Ephedra
sinica), a native plant from China and Mongolia [134,135]. Stimulants such as cocaine, am-
phetamines, MDMA, and cathinones are implicated in several overdose deaths in Europe.
For instance, stimulant-related deaths in Turkey totaled 206 cases related to amphetamines
and 166 cases related to MDMA in 2015 [2].

Several applications have been developed for the analysis of amphetamine and related
substances in forensic matrices using miniaturized sample preparation approaches. Most
were based on HS or direct immersion SPME, DLLME, and HP-LPME. Nonetheless, other
techniques were also proposed, including EME, SDME, DPX, and dSPE, among others.
Recently, Song and Yang [136] employed an electric field to accelerate the mass transfer
of AMP and MAMP from urine to a single-drop extraction phase, resulting in recovery
yields of up to 96%. Taghvimi et al. [137] introduced a metal organic framework-based
carbon porous as an efficient dSPE for the enrichment of MAMP from urine samples.
Maddadi et al. [138] developed a floating HP-LPME-based methodology for the extraction,
preconcentration, and determination of methylphenidate in urine matrices. The results
showed good inter-day repeatability levels (≤3.9%), using only 25 min of microextraction
time. Abbasian et al. [139] developed a new SPME fiber based on multiwalled carbon
nanotubes and ionic liquids for the separation and determination of methamphetamine and
MDMA in human urine using a sol-gel preparation. The results showed high sensitivity
(0.097–0.390 ng/mL) and suitable inter-day repeatability (≤7.0%). Table 3 summarizes
in detail these miniaturized applications for the enrichment of amphetamine and related
substances in forensic matrices, with emphasis on the key characteristics on the devel-
oped methodologies. Table S3 (Supplementary Material) contains information regarding
other techniques for the determination of these classes of compounds in the forensic
context [40,89–98,100,104,105,129–131,140–200].
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Table 3. Microextraction-based approaches for the analysis of amphetamine and related substances in the forensic matrix.

Drugs Matrix Sample
Amount Sample Pretreatment Microextraction

Technique
Optimized Experimental

Conditions
Instrumental

System
LOD

(µg/L)
Absolute

Recovery (%)
Precision

(%) Ref.

AMP
4-MAMP Urine 1 mL

• Filtration
• Dilution
• pH adjustment
• Derivatization

EE-SDME • Solvent: DCM (2 µL)
• Extraction: 4 min (−4 V, pH 7)

GC-FID

0.14–0.27 82.7–96.2 ≤12.8

[136]

HS-SPME

• Coating: PDMS-DVB
• Extraction: pH 7, 40 min

(600 rpm, 60 ◦C)
• TD: 5 min, 250 ◦C

0.05–0.09 90.7-112.5 ≤8.5

MET Urine 5 mL • pH adjustment
• Centrifugation

dSPE

• Sorbent: ZIFs (40 mg)
• Extraction: 5 min (2000 rpm)
• Centrifugation
• Desorption: 400 µL MeOH

(sonication for 10 min)
• Centrifugation

HPLC-UV 10 99.83 ≤5.1 [137]

MPH Urine 2.5 mL

• Dilution
• Centrifugation
• pH adjustment
• NaCl addition

SBME

• Extraction: 25 min (650 rpm, pH
11.6, 25 ◦C, 30% NaCl (w/v))

• SLM: 1-octanol
• AP: pH 4.0, 30 µL

HPLC-UV 15 n.a. ≤3.9 [138]

MDMA
MET Urine 2 mL • NaCl addition

• pH adjustment
HS-SPME

• Coating: MWCNTs/ILs
• Extraction: pH 11, 20 min, 20%

NaCl (w/v) (500 rpm, 80 ◦C)
• TD: 4 min, 250 ◦C

GC-FID 0.097–0.39 n.a. ≤7.0 [139]

4-MAMP: 4-methylamphetamine; AMP: amphetamine; AP: acceptor phase; DCM: dichloromethane; dSPE: dispersive solid-phase extraction; DVB: divinylbenzene; EE-SDME: enhanced single-drop
microextraction; FID: flame ionization detector; GC: gas chromatography; HPLC: high-performance liquid chromatography; HS-SPME: headspace solid-phase microextraction; IL: ion liquid; MDMA:
3,4-methylenedioxymethamphetamine; MeOH: methanol; MET: methamphetamine; MPH: methylphenidate; MWCNT: multiwalled carbon nanotube; NaCl: sodium chloride; PDMS: polydimethylsiloxane;
SBME: solvent bar microextraction; SDME: single-drop microextraction; SLM: supported liquid membrane; TD: thermal desorption; UV: ultraviolet; ZIFs: zeolitic imidazolate frameworks.
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2.3. Cannabinoids and Related Substances

Cannabis sativa, more commonly known as “marijuana”, is a hemp plant that grows
freely throughout the world [31]. It is estimated that the global number of users of cannabis
is around 182.5 million. The total number of cannabis seizures (including herd and resin)
in 2014 was more than 7000 tons [1]. In the EU alone, herbal and resin cannabis accounted
for around 69% of total seizures (568 tons) in 2016 [48].

The first chemical analysis of cannabis apparently was performed in 1821. Since
then, studies have shown cannabis to be a complex plant, in which more than 400 indi-
vidual chemical compounds have been identified. The most potent cannabinoid is ∆-9-
tetrahydrocannabinol (THC) and other relevant ones include, ∆-8-tetrahydro-cannabinol
(8-THC), cannabidiol (CBD), and cannabinol (CBN).

Several applications have been developed for the analysis of cannabinoids and related
substances in biological matrices using miniaturized sample preparation approaches. Most
were based on HS or direct immersion SPME and DPX. Nevertheless, other techniques were
also employed, including MEPS, HF-LPME, and µSPE, among others. Anderson et al. [201]
developed DPX containing a weak anionic exchange polymer to selectively extract 11
cannabinoids and metabolites from human urine samples. This methodology was followed
by LC-MS/MS, resulting in suitable extraction efficiencies (up to 81%) and convenient
detection limits (0.5–5.0 ng/mL). Sánchez-González et al. [202] developed a molecularly
imprinted polymer (MIP) for µSPE to selectively retain THC, THC-COOH, and THC-OH
from plasma and urine, followed by LC-MS/MS. To produce the MIP, the authors used
THC-COOH as a template molecule, whereas ethylene glycol dimethacrylate was used as a
functional monomer, divinylbenzene as a cross-linker, and 2,2′-azobisisobutyronitrile as an
initiator. The optimized methodology allowed the researchers to attain high recovery yields
(up to 94%) using only 12 min of equilibrium time. Using a conventional HS-SPME-based
methodology, Silveira et al. [203] were able to selectively extract three cannabinoids from
human breast milk. The microextraction step was followed by thermal desorption (TD)
and GC-MS analysis, resulting in suitable sensitivity (10 ng/mL) using only 0.05 mL of
sample. On the other hand, Emídio et al. [204] applied a HF-LPME-based methodology
for the enrichment of the same cannabinoids from hair samples using GC-MS as instru-
mental system. The results indicated good detection limits (0.5–15 pg/mg) using only
10 mg of sample. Table 4 summarizes in detail these miniaturized applications for the
enrichment of cannabinoids and related substances in forensic matrices, with emphasis on
the key characteristics on the developed methodologies. Table S4 (Supplementary Material)
contains information regarding other techniques for the determination of these classes of
compounds in the forensic context [89,100,205–219].
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Table 4. Microextraction-based approaches for the analysis of cannabinoids and related substances in the forensic matrix.

Drugs Matrix Sample Amount Sample Pretreatment Microextraction
Technique

Optimized Experimental
Conditions

Instrumental
System

LOD
(µg/L)

Absolute
Recovery (%) Precision (%) Ref.

THC
CBN
CBD

Breast milk 0.05 mL • Dilution
• pH adjustment

HS-SPME
• Sorbent: PDMS
• Extraction: 70 ◦C, 40 min,

25% NaCl
• TD: 250 ◦C

GC-MS 10.0 n.a. ≤13.3 [203]

THC
11-OH-THC
THC-COOH

CBN
CBD

THCAA
CBG

THCV
THC-gluc

THC-COOH-gluc

Urine 0.2 mL

• Centrifugation
• Dilution
• Protein

precipitation
• pH adjustment

DPX
• Sorbent: WAX
• Samples aspirated × 4
• Upper layer diluted and

centrifuged

LC-MS/MS 0.5–5.0 42.4–81.5 ≤14.3 [201]

THC
CBN
CBD

Hair 10 mg

• Washing
• Alkaline digestion
• Evaporation to

dryness
• Dilution

HF-LPME
• Extraction: 20 min (pH 14,

6.8% NaCl, 600 rpm)
• SLM: butyl acetate
• AP: 20 µL butyl acetate

GC-MS 0.5–15 pg/mg 4.4–8.9 ≤13.7 [204]

THC
11-OH-THC
THC-COOH

Plasma and urine Urine: 1 mL
Plasma: 0.1 mL

• Dilution
• pH adjustment

µSPE

• Sorbent: MIP
• Conditioning: 5 mL of 0.1

M/0.1 M phosphate/NaOH
buffer solution (pH 6.0) for
10 min

• Extraction: 150 rpm (12 min,
40 ◦C)

• Rinsing: 5 mL of 0.1 M/0.1
M phosphate/NaOH buffer
solution at pH 6.0 for rinsing
(ultrasound assistance,
37 kHz, 325 W, 8 min)

• Elution: 2 mL of
MeOH/aqueous acetic acid
(90:10, v/v) through
sonication (37 kHz, 325 W,
6 min)

HPLC-MS/MS

Urine:
0.14–0.16
Plasma:

0.11–0.15

87–94 Urine: ≤6
Plasma: ≤11 [202]

µSPE: micro-solid-phase extraction; 11-OH-THC: 11-hydroxy-9-tetrahydrocannabinol; ACN: acetonitrile; AP: acceptor phase; CBD: cannabidiol; CBN: cannabinol; DPX: disposable pipette extraction; GC: gas
chromatography; HP-LPME: hollow-fiber liquid-phase microextraction; HPLC: high-performance liquid chromatography; HS-SPME: headspace solid-phase microextraction; MeOH: methanol; MIP: molecular
imprinted polymer; MS/MS: tandem mass spectrometry; MS: mass spectrometry; NaCl: sodium chloride; PDMS: polydimethylsiloxane; SLM: supported liquid membrane; THC: 9-tetrahydrocannabinol; THCAA:
9-tetrahydrocannabinolic acid; THC-COOH: 11-nor-9-carboxy-9-tetrahydrocannabinol; THC-COOH-gluc: 11-nor-9-carboxy-9-tetrahydrocannabinol-glucuronide; THC-gluc: 9-tetrahydrocannabinol-glucuronide;
THCV: 9-tetrahydrocannabiverin; THCV-COOH: 11-nor-9-carboxy-9-tetrahydrocannabiverin; WAX: weak anionic exchange.
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2.4. Hallucinogens, Dissociative Drugs, and Related Substances

Hallucinogens are substances that promote hallucinations, a unique psychoactive
effect, which are profound distortions in a person’s perceptions of reality. Hallucinogens
can be found in some plants and mushrooms (or their extracts) or can be man-made, and
they are commonly divided into two broad categories: classic hallucinogens, including
lysergic acid diethylamide (LSD), 4-phosphoryloxy-N,N-dimethyltryptamine (psilocybin),
peyote (mescaline), and dimethyltryptamine or ayahuasca (DMT); and dissociative drugs,
including ketamine (KET), dextromethorphan, phencyclidine (PCP), and Salvia divinorum.
When under the influence of either type of drugs, people often report experiencing rapid,
intense emotional swings and seeing images, hearing sounds, and feeling sensations that
are unreal [31,32].

To date, there has not been a microextraction-based approach dedicated solely to the
determination of classic hallucinogens from forensic matrices, and very few have included
these compounds as target analytes in their method development. Nevertheless, recently,
Vicenti et al. [100] developed a very comprehensive methodology using DLLME combined
with pressurized liquid extraction, and liquid chromatography coupled to high-resolution
tandem mass spectrometry (LC-HRMS/MS) for the enrichment of over 60 drugs of abuse
in hair, including mescaline. The results showed that the developed method allowed the
researchers to attain recovery yields of up to 40% for mescaline using only 10 mg of sample.
Table 5 resumes in detail most of the miniaturized applications for the enrichment of classic
hallucinogens and related classes of compounds in the forensic context, with emphasis on
the key characteristics of the developed methodologies.



Molecules 2021, 26, 2168 12 of 32

Table 5. Microextraction-based approaches for the analysis of hallucinogenic drugs and related substances in the forensic matrix.

Drugs Matrix Sample Amount Sample Pretreatment Microextraction
Technique

Optimized Experimental
Conditions

Instrumental
System

LOD
(µg/L)

Absolute
Recovery (%)

Precision
(%) Ref.

LSD Blood 0.5 mL

• Protein precipitation
• Centrifugation
• Dilution
• Salt addition
• pH adjustment

DLLME

• DS: 250 µL MeOH
• ES: 100 µL chloroform
• Rapid injection
• Sonication (1 min)
• Centrifugation (4000 rpm, 5 min)
• Infranatant collected, evaporated, and

redissolved

UPLC-MS/MS 0.5 90–127 ≤15 [90]

LSD Urine 4 mL
• Dilution
• Salt addition
• pH adjustment

DLLME

• DS: 1505 µL ACN
• ES: 606 µL CH2Br2
• Extraction: 30% NH3, pH ≥ 11.5
• Rapid injection
• Centrifugation (9500 rpm,5 min)
• Infranatant collected, evaporated, and

redissolved

CE-UV 3.9–6.3 80.3 ≤12.0 [164]

Psylocibin
Mescaline Oral fluid 0.090 mL

• Centrifugation
• pH adjustment
• Dilution

µSPE

• Sorbent: C18
• Extraction: 15 min (30 ◦C, 200 rpm)
• Washing: 100 µL H2O
• Elution: 100 µL MeOH containing 10

mM of COOH

LC-MS/MS 0.07–0.1 61–64 ≤9 [129]

Mescaline
Psylocibin

Urine
Plasma

Urine: 0.090 mL
Plasma: 0.180 mL

• Urine samples were
diluted

• Sonication
• Centrifugation
• pH adjustment
• Dilution

µSPE
• Sorbent: C18
• Washing: 100 µL H2O
• Elution: 100 µL MeOH containing 10

mM of COOH

LC-MS/MS 0.3–1.4 57–66 ≤7 [130]

Muscimol
Tryptamine
Tryptophan

Urine 2 mL
• Dilution
• Salt addition
• pH adjustment

HF-LPME
• SLM: DEHPA in DHE
• AP: HCl 0.1 mol/L
• Extraction: 60 min (800 rpm, pH 5,

0.001% NaCl)

HPLC-UV 0.7–17 n.a. ≤10.2 [220]

Mescaline Hair 10 mg

• Washing
• Digestion
• PLE extraction
• Evaporation
• Redissolution
• Centrifugation
• Dilution
• pH adjustment
• Salt addition

PLE-DLLME

• DS: 500 µL 2-propanol
• ES: 200 µL chloroform
• Extraction: 24% NaCl, pH 11.0, 10%

iso-propanol
• Sonication (10 min)
• Centrifugation (9000 rpm, 5 min, 3 ◦C)
• Infranatant collected, evaporated, and

redissolved

LC-HRMS/MS 0.1 pg/mg 39 ≤19 [100]

µSPE: micro-solid-phase extraction; ACN: acetonitrile; C18: octadecyl silica; CE: capillary electrophoresis; CH2Br2: dibromo methane; COOH: formic acid; DEHPA: di-(2-ethylhexyl)phosphoric acid; DHE:
dihexylether; DLLME: dispersive liquid–liquid microextraction; HF-LPME: hollow-fiber liquid-phase microextraction; HPLC: high-performance liquid chromatography; HRMS/MS: high-resolution tandem mass
spectrometry; LC: liquid chromatography; LSD: lysergic acid diethylamide; MeOH: methanol; MS/MS: tandem mass spectrometry; MS: mass spectrometry; NaCl: sodium chloride; NH3: ammonia; PLE:
pressurized liquid extraction; UPLC: ultra-performance liquid chromatography; UV: ultraviolet.
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As was mentioned before, another important class to consider is dissociative drugs,
which include dextromethorphan, Salvia divinorum, PCP, and KET, in which the latter
have been more largely abused than the other dissociative drugs.

PCP was synthesized in 1956 and was tested as an anesthetic because it had pro-
nounced tranquilizing effects. With animals, it produced a general anesthesia that left them
conscious but not feeling pain, even during surgery. In clinical trials of PCP with humans,
however, some patients experienced hyperexcitability, delirium, and visual disturbances.
For this reason, it was largely abandoned for human use [31].

KET was developed in 1962 during a search for a less problematic replacement for
PCP. Due to its quick onset and short duration of action with only slight cardiorespiratory
depression in comparison with other general anesthetics and the possibility of inhalation
to maintain the anesthetic state, KET is a preferred drug for short-term surgical proce-
dures in veterinary and human medicine, especially in children [221]. Several applications
have been developed for the analysis of cannabinoids and related substances in forensic
matrices using miniaturized sample preparation approaches. Most were based on HS or
direct immersion SPME, DLLME, and HF-LPME. Nevertheless, other techniques were also
employed, including MEPS, SDME, µSPE, and high-throughput bar adsorptive microex-
traction (HT-BAµE), among others. One of the first reports using microextraction-based
approaches to determine dissociative drugs in forensic matrices was developed by Ishii et
al. [222]. These authors used HS-SPME to selectively extract PCP from urine and blood
samples followed by thermal desorption and gas chromatography with surface ionization
detection (TD/GC-SID) analysis. The results showed that recoveries were up to 48% with
limits of detection between 0.25 and 1.0 ng/mL, depending on the matrix type. Casari
and Andrews [195] developed a floating HP-LPME-based methodology for the extraction,
preconcentration, and determination of PCP and other compounds from urine samples.
This approach employed only 2 µL of chloroform as extraction solvent, resulting in suit-
able sensitivity with convenient limits of detection (70 ng/mL). On the other hand, Meng
et al. [92] decided to compare HF-LPME and ultrasound-assisted DLLME methodologies
combined with GC-MS for the determination of selected drugs of abuse, including KET, in
biological samples. The results show similar detection limits, extraction efficiencies and
inter-day repeatability levels, although the former employed a smaller amount of organic
solvent. More recently, a HT-BAµE methodology was developed to monitor KET and its
main metabolite (norketamine) in urine matrices, followed by GC-MS. The developed ap-
paratus allows for the extraction and desorption of the target compounds in up to 100 urine
samples simultaneously, resulting in an assay time of only 0.45 min/sample [223]. Table 6
summarizes in detail these miniaturized applications for the enrichment of dissociative
drugs and related substances in forensic matrices, with emphasis on the key characteristics
on the developed methodologies. Table S5 (Supplementary Material) contains information
regarding other techniques for the determination of these classes of compounds in the
forensic context [89,90,98,100,105,120,129,130,145,157,164,174,194,196,224–234].
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Table 6. Microextraction-based approaches for the analysis of dissociative drugs and related substances in the forensic matrix.

Drugs Matrix Sample Amount Sample Pretreatment Microextraction
Technique

Optimized Experimental
Conditions

Instrumental
System

LOD
(µg/L)

Absolute
Recovery (%) Precision (%) Ref.

PCP Urine
Whole blood 1 mL

• Protein precipitation
• pH adjustment
• Salt addition

HS-SPME
• Coating: PDMS
• Extraction: 30 min, 50% K2CO3

(w/v) (900 rpm, 90 ◦C)
• TD: 250 ◦C

GC-SID 0.25–1.0 9.3–47.8 ≤27 [222]

PCP Urine 2 mL • Filtration
• pH adjustment

SDME
• Solvent: chloroform (2 µL)
• AP: (pH 10.5)
• Extraction: 8 min, 0.1 M NaOH

GC-PDHID 70 n.a. ≤16.2 [195]

KET Urine Blood 1 mL
• Dilution
• pH adjustment

HF-LPME
• SLM: toluene
• AP: toluene (10 µL)
• Extraction: 10 min (500 rpm, pH

13.0, 30 ◦C)

GC-MS

2.5 81.3–98.6 ≤4.5

[92]

DLLME

• ES and DS: 100 µL toluene
• Sonication (3 min) and manual

shaking
• Centrifugation (10,000 rpm, 3 min)
• Supernatant collected
• For blood samples, 10 mg of NaCl

was added to break emulsion

1.5–2.5 87.3–103.4 ≤3.5

KET
NorKET Urine 0.5 mL

• Centrifugation
• Acid hydrolysis
• pH adjustment
• Dilution

HT-BAµE

• Sorbent: NVP-DVB
• Extraction: 30 min (1800 rpm) pH

11.0
• LD: sonication with 100 µL MeOH

(15 min)

GC-MS 1.0 84.9–105.0 ≤12.6 [223]

AP: acceptor phase; DLLME: dispersive liquid–liquid microextraction; DS: dispersion solvent; ES: extraction solvent; GC: gas chromatography; GC-SID: gas chromatography with surface ionization detection;
HF-LPME: hollow-fiber liquid-phase microextraction; HS-SPME: headspace solid-phase microextraction; K2CO3: potassium carbonate; LC: liquid chromatography; MS: mass spectrometry; NaCl: sodium
chloride; NaOH: sodium hydroxide; NVP-DVB: n-vinylpyrrolidone-divinylbenzene co-polymer; PCP: phencyclidine; PDHID: pulsed discharge helium ionization detector; PDMS: polydimethylsiloxane; SDME:
single-drop microextraction; SLM: supported liquid membrane; TD: thermal desorption; UV: ultraviolet.
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3. Future Trends in the Forensic Context
3.1. New Psychoactive Substances (NPS)

Nowadays, the illicit drug market has become more versatile than ever, where not
only the classic drugs (i.e., cocaine, cannabis, heroin, etc.) are sold, but also NPS. Although
some of these compounds are not really “new” since they were developed many decades
ago, most (<85%) appeared only in the last decade, being sold in smart shops and on the
Internet as innocuous products designed “not for human consumption” [235]. A NPS
is defined as “a new narcotic or psychotropic drug, in pure form or in preparation, that
is not controlled by the United Nations drug conventions, but which may pose a public
health threat” comparable to that substances listed in these conventions [236]. Many of
them are traded as “legal” replacements to established controlled drugs such as cannabis,
heroin, benzodiazepines, cocaine, amphetamines, and MDMA. In 2018, the number of
NPS controlled by the EMCDDA reached a total of over 730 substances that have been
detected in a wide range of different products, including synthetic cannabinoids, opioids,
benzodiazepines, arylcyclohexylamines, synthetic cathinones, and phenethylamines. How-
ever, understanding the epidemiology of NPS remains poor. This includes problems with
estimating the prevalence of use of new substances, which can be a complex and hard
task because of the large number of substances and products that are available, but also
because of the highly dynamic nature of the market. In many cases, individuals do not
actually know what new substance they are using, while in other cases they may not even
realize that they are using a new one. Therefore, the detection of NPS, and especially
their metabolites in the forensic context, will remain a very hot topic for years to come.
Figure 1a shows the number of applications for screening-controlled drugs in forensic
matrices over the last quarter of a century, including opioids, cocaine, ATS, cannabinoids,
hallucinogens, dissociative drugs, and NPS, and the figure highlights that monitoring
the latter class of substances has grown in the last decade. For these reasons, several
applications have been proposed for the analysis of NPS and related substances in the
forensic context using innovative sample preparation approaches. Odoardi et al. [237]
developed a comprehensive screening method for 78 substances in whole blood using
DLLME combined with ultra-high-performance liquid chromatography coupled to tan-
dem mass spectrometry (UHPLC-MS/MS). The results showed excellent recovery yields
(~100%) with suitable inter-day repeatability levels (<15%). The target analytes included
cathinones, synthetic cannabinoids, phenethylamines, piperazines, KET, analogues, benzo-
furans, tryptamines, and some of their metabolites. The data showed that high recovery
rates (up to 110%) and low detection limits (0.2 ng/mL) were achieved. More recently,
Bianchi et al. [238] combined MEPS and desorption electrospray ionization high-resolution
mass spectrometry (DESI-HRMS) for the analysis of selected synthetic cathinones and
cannabinoids in oral matrices. The results showed that good quantification limits were
achieved (0.25–0.5 mg/L) using only 25 µL of sample. Additionally, a very simple and
effective BAµE-based approach was also proposed for the enrichment of mitragynine
from urine samples, followed by liquid desorption and HPLC-DAD analysis [239]. Ta-
ble 7 summarizes in detail the main miniaturized microextraction applications for the
enrichment of NPS and related substances in forensic matrices, with emphasis on the
key characteristics on the developed methodologies. Table S6 (Supplementary Material)
contains additional information regarding other techniques for the determination of NPS
in the forensic context [99,100,128,131,143,197,219,238–246].
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Table 7. Microextraction-based approaches for the analysis of new psychoactive substances (NPS) and related substances in the forensic matrix.

Drugs Matrix Sample
Amount Sample Pretreatment Microextraction

Technique
Optimized Experimental

Conditions
Instrumental

System
LOD

(µg/L)
Absolute

Recovery (%)
Precision

(%) Ref.

Synthetic cathinones
MPD

Synthetic cannabinoid
UR-144, JWH-250, JWH-200,

JWH-122, JWH- 019, AM-2201,
JWH-081, HU-211, CP47497

Oral fluid 0.025 mL
• Dilution
• Centrifugation
• pH adjustment

MEPS

• Sorbent: C18
• Conditioning: 100 µL MeOH +

100 µL H2O
• Samples aspirated × 5 (50 µL)
• Elution: 50 µL

DCM/IPA/NH4OH × 25
• Cleaning: 50 µL × 10

DESI-HRMS
0.25–0.5
mg/L

(LLOQ)
n.a. <19.4 [238]

Mitragynine Urine 1 mL • Dilution BAµE

• Sorbent: NVP
• Extraction: 4 h (1300 rpm), pH 5.5
• Elution: 200 µL MeOH/ACN

(1:1, v:v) under sonication (10
min)

HPLC-DAD 0.1 103 ≤15 [239]

Synthetic cannabinoids
AM-2201, AM-2233, AM-694,

CB-13, JWH-007, JWH-019,
JWH-015, JWH-018, JWH-030,
JWH-073, JWH-081, JWH-098,
JWH-122, JWH-147, JWH-200,
JWH-201, JWH-250, JWH-251,

JWH-307, JWH-398, RCS4,
JWH-018 4OH indole, JWH- 018
5OH pentyl, JWH-018-COOH,
JWH-073 4OH butyl, JWH-073
5OH indole, JWH-073 COOH,

JWH-250 5OH pentyl
Synthetic cathinones4-FAMP,

4-MEC, BL, BPD, CAT, EL, EPN,
HML, HMO, MBDB, MDAI,

MDPV, MPD, MD, ML, 4- MTA,
NM-2-AI, PD, PL

Piperaine derivatives
BZP, mCPP

Blood 0.5 mL

• Protein
precipitation

• Centrifugation
• Dilution
• Salt addition
• pH adjustment

DLLME

• DS + ES: 350 µL of
CHCl3/MeOH 1:2.5 (v:v),

• Rapid injection
• Sonication (2 min)
• Centrifugation (4000 rpm,5 min)
• Infranatant collected, evaporated,

and redissolved

UHPLC-MS/MS 0.2 4–110 n.a. [237]

µSPE: micro-solid-phase extraction; 25I-NBOMe: 4-iodo-2,5-dimethoxy-N-[(2-methoxyphenyl)methyl]-benzeneethanamine; 2-CB: 4-bromo-2,5-dimethoxyphenethylamine; 2C-E: 4-ethyl-2,5-
dimetoxiphenethylamine; 2C-H: 2,5-dimethoxyphenethylamine; 2C-T-4: 2,5-dimethoxy-4-isopropylthiophenethylamine; 2C-T-7: 2-[2,5-dimethoxy-4-(propylsulfanyl)phenyl]ethan-1-amine; 2-FAMP: 2-
fluoroamphetamine; 2-FMAMP: 2-fluoromethamphetamine; 2-FMC: 2-fluoromethcathinone; 2-MMC: 2-methoxymethcathinone; 3,4-DMMC: 3,4-dimethylmethcathinone; 3-FAMP: 3-fluoroamphetamine;
3-FEAMP: 3-fluoroethamphetamine; 3-MMAMP: 3-methoxymethamphetamine; 3-MMC: 3-methylmethcathinone; 4-CECAT: 4-chloroethcathinone; 4-CMCAT: 4-chloromethcathinone; 4-FAMP: 4-
fluoroamphetamine; 4-FMAMP: 4-fluoromethamphetamine; 4-FMC: 4-fluoromethcathinone; 4-MEC: 4-methylethcathinone; 4-MeMABP: 4-methylbuphedrone; 4-MEPE: 4-methylephedrine; 4-MTA: 4-
methylthioamphetamine; 6-APB: 6-(2-aminopropyl)benzofuran; AB-005: [1-[(1-methyl-2-piperidinyl)methyl]-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)-methanone; ACN: acetonitrile; AH-7921: 3,4-
dichloro-N-{[1-(dimethylamino)cyclohexyl]methyl}benzamide; AM-1220: [1-[(1-methyl-2-piperidinyl)methyl]-1H-indol-3-yl]-1-naphthalenyl-methanone; AM-2201 4OH pentyl: AM-2201-N-(4-hydroxypentyl);
AM-2201 metabolite: (1-(5-fluoro-4-hydroxypentyl)-1H-indol-3-yl)(naphthalen-1-yl)methanone; AM-2201: 1-[(5-fluoropentyl)-1H-indol-3-yl]-(naphthalen-1-yl)methanone; AM-2233: (2-iodophenyl)[1-[(1-
methyl-2-piperidinyl)methyl]-1H-indol-3-yl]-methanone; AM-694: [1-(5-fluoropentyl)-1H-indol-3-yl](2-iodophenyl)-methanone; BL: butylone; BPD: buphedone; BPE: buphedrine; BPN: buprenorphine;
bromo-dragonfly: 8-bromo-α-methyl-benzo [1,2-b:4,5-b’]difuran-4-ethanamine, monohydrochloride; BZP: 1-benzylpiperazine; C18: octadecyl silica; C8: octyl silica; CAT: cathinone; CB13: 1-naphthalenyl[4
-(pentylox)-1-naphthalenyl]-methanone; CHCl3: chloroform; COOH: formic acid; CP47497: [(1R,3S)-3-hydroxycyclohexyl]-5-(2-methyl-2-octanyl)phenol); CP47497-C8: C8 homologue of CP47497; DAD:
diode array detection; DCA: dodecyl acetate; DCM: dichloromethane; DCP: dichloropane; DECAT: diethylcathinone; DESI: desorption electrospray ionization; DI-SPME: direct immersion solid-phase
microextraction; DLLME: dispersive liquid–liquid microextraction; DMCAT: N,N-dimethylcathinone; DS: disperser solvent; DVB: divinylbenzene; ECAT: ethylcathinone; ECATEPE: ethylcathinone ephedrine;
EDDP: 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine; EL: ethylone; EPN: ethylphenidate; ES: extraction solvent; ETCAT: ethcathinone; FPD: flephedrone; GC: gas chromatography; H2O: distilled, deionized,
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or ultra-pure water; HCl: hydrochloric acid; HML: harmaline; HMO: harmalol; HPLC: high-performance liquid chromatography; HRMS: high resolution mass spectrometry; HU-211: dexanabinol; IMS: ion

mobility spectroscopy; IPA: isopropanol/2-propanol; JWH-007: (2-methyl-1-pentyl-1H-indol-3-yl)-1-naphthalenyl-methanone; JWH-015: (2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenyl-methanone; JWH-018

4OH indole: JWH-018-4-hydroxyindole; JWH-018 4OH pentyl: JWH-018-4-hydroxypentyl; JWH-018 5OH pentyl: JWH-018-5-hydroxypentyl; JWH-018-COOH: JWH-018 N-pentanoic acid; JWH-019: (1-hexyl-1H-

indol-3-yl)-1-naphthalenyl-methanone; JWH-030: 1-naphthalenyl(1-pentyl-1H-pyrrol-3-yl)-methanone; JWH-073 4OH butyl: JWH-073-4-hydroxybutyl; JWH-073 5OH indole: JWH-073-5-hydroxyindole; JWH-073

COOH: JWH-073 N-pentanoic acid; JWH-073: (1-butyl-1H-indol-3-yl)-1-naphthalenyl-methanone; JWH-081 5OH pentyl: JWH-081-5-hydroxypentyl; JWH-081: (4-methoxy-1-naphthalenyl)(1-pentyl-1H-indol-3-

yl)-methanone; JWH-098: (4-methoxy-1-naphthalenyl)(2-methyl-1-pentyl-1H-indol-3-yl)-methanone; JWH-122: (4-methyl-1-naph-thalenyl)(1-pentyl-1H-indol-3-yl)methanone; JWH-147: (1-hexyl-5-phenyl-

1H-pyrrol-3-yl)-1-naphthalenyl-methanone; JWH-200: [1-(2-morpholin-4-ylethyl)indol-3-yl]-naph- thalen-1-ylmethanone; JWH-201: 2-(4-methoxyphenyl)-1-(1-pentyl-1H-indol-3-yl)-ethanone; JWH-250 5OH

pentyl: JWH-250-5-hydroxypentyl; JWH-250: 1-(1-pentyl-1H- indol-3-yl)-2-(2-methoxyphenyl)-ethanone; JWH-251: 2-(2-methylphenyl)-1-(1-pentyl-1H-indol-3-yl)-ethanone; JWH-307: [5-(2-fluorophenyl)-1-

pentyl-1H-pyrrol-3-yl]-1-naphthalenyl-methanone; JWH-398: (4-chloro-1-naphthalenyl)(1-pentyl-1H-indol-3-yl)-methanone; LC: liquid chromatography; LD: liquid desortion; MAM-2201 COOH: MAM-2201

N-pentanoic acid; MAM-2201: [1-(5-fluoropentyl)-1H-indol-3-yl](4-methyl-1-naphthalenyl)-methanone; MBDB: methylbenzodioxolylbutanamine; MBPP: methylbenzylpiperazine; mCPP: 1-(3-chlorophenyl)

piperazine; MD: methedrone; MDAI: 5,6-methylenedioxy-2-aminoindane; MDPBP: 3′4′-methylenedioxy-α-dimethylamino-isovalerophenone; MDPPP: 3′,4′-methylenedioxy-α-pyrrolidinopropiophenone;

MDPV: methylenedioxy-pyrovalerone; MeOH: methanol; MEOPP: 1-(4-methoxyphenyl) piperazine; MEPE: methylephedrine; MEPS: microextraction by packed sorbent; MET: methoxetamine; MIP: molecularly

imprinted polymer; ML: methylone; MP: monolithic polymer; MPD: mephedrone; MPHP: 4′-methyl-α-pyrrolidinohexiophenone; MS/MS: tandem mass spectrometry; MS: mass spectrometry; MT-45:

1-cyclohexyl-4-(1,2-diphenylethyl)-piperazine; MXD: mexedrone; NaCl: sodium chloride; NBPN: norbuprenorphine; n-C7: n-heptane; NH3: ammonia; NH4OH: ammonium hydroxide; NM2AI: N-methyl-2-

aminoindane; NM-2-AI: N-methyl-2-aminoindane; NPR: naphyrone; NVP: N-vinylpyrrolidone; PALME: parallel artificial liquid membrane extraction; PD: pentedrone; PDMS: polydimethylsiloxane; PL:

pentylone; PLE: pressurized liquid extraction; PPP: 1-piperonylpiperazine; PTL: pentylon; PV: pyrovalerone; RCS4: (4-methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone; SCX: silica-based cationic exchange

polymer; TFMPP: 1-(3-trifluoromethylphenyl) piperazine; TOA: trioctylamine; UHPLC: ultra-high-performance liquid chromatography; UPLC: ultra-performance liquid chromatography; UR-144 4OH pentyl:

UR-144-N-(4-hydroxypentyl); UR-144: ((1-pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone); US: ultrasound; WIN-55: [(3S)-2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-

1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone, methanesulfonate; XLR-11 4OH pentyl: XLR-11 N-(4-hydroxypentyl); XLR11: (1-(5-fluoropentyl)-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone;

α-PHP: α-pyrrolidinohexiophenone; α-PVP: α-pyrrolidinopentiophenone.



Molecules 2021, 26, 2168 19 of 32

3.2. Comparison of the Top-Eight Most Applied Microextraction-Based Techniques

Miniaturized analytical techniques present many advantages over conventional sam-
ple preparation approaches. For this reason, they have been proposed in the last two
decades for screening-controlled drugs in the forensic context, such as opioids and re-
lated compounds, cocaine, metabolites, ATS, cannabinoids, hallucinogens, dissociative
drugs, and NPS. Figure 1b shows the total number of applications dedicated for screening-
controlled drugs in forensic matrices over the last two decades, sorted by the microextraction-
based techniques. Most techniques are based on SPME, DLLME, HF-LPME, and MEPS, but
also µSPE and BAµE (among others); good examples can be consulted in the bibliography.
From all these techniques, SPME and DLLME represent more than 50% of the miniaturized
microextraction-based applications in the forensic context, and they were mostly applied
to monitor opioids and ATS in biological matrices. Nonetheless, the other approaches
have also gained some notoriety over the last few years, once they presented additional
interesting characteristics. However, if we evaluate and compare the adequacy of the main
characteristics of the top-eight most frequently applied microextraction techniques for
screening-controlled drugs in the forensic context, several advantages and limitations can
be noted, as summarized in Table 8.

In any analytical framework, these relevant characteristics condition the sample
preparation stage (whether it is user-friendly, environmentally acceptable, reusable, cost-
effective, and allows for routine work), the instrumental systems (whether the online
coupling is possible and comprehensive), as well as the analytical performance (namely, if
the enrichment factor, recovery yields, and level of precision are favored). In addition, the
assessment of these characteristics is very important in particular for the beginners who
intend to select and start to apply microextraction-based techniques for screening-controlled
drugs in any forensic context. For instance, the sorbent-based microextraction techniques
have been much more applied for screening-controlled drugs in the forensic context than
the liquid-based ones, in which methodologies such as DLLME, HP-LPME, and SDME
standing out mainly for their very low cost. Nevertheless, the sorbent-based techniques,
such as SPME, SBSE, BAµE, MEPS, and µSPE, have been more widely employed since they
present much more advantageous characteristics in any analytical framework. Even so,
the passive or non-exhaustive sampling techniques (SPME, SBSE, and BAµE) have been
proposed more than the active or exhaustive sampling ones (MEPS and µSPE), because
they present interesting features.

Therefore, we can carry out a detailed analysis, as shown in Table 8, on the most
relevant or “extremely suitable” (+++) characteristics, presented by the main passive
sorbent-based methodologies. In general, SPME is the most well-established microextrac-
tion technique, largely used in the forensic context, because it presents several advantages:
it is an eco-friendly approach (i.e., a solventless or solvent-free process) and can be applied
for routine work allowing for online coupling and automation, particularly with GC sys-
tems. On the other hand, SBSE and BAµE are user-friendly approaches that show great
simplicity of handling. Furthermore, the former present wide reusability and high enrich-
ment factors (such as SPME), whereas the latter is very cost-effective and comprehensive
(like µSPE), because it can be applied to a large number of classes of compounds having
widened polarity and allows for coupling with both GC and HPLC systems. In addition
to other distinct characteristics that it presents, the BAµE devices can be lab-made, which
is a remarkable advantage over the remaining sorbent-phase microextraction techniques.
Furthermore, microextraction techniques such as BAµE allow for the high-throughput
approach (HT-BAµE), which is an asset for the routine analytical work, as discussed before.
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Table 8. Comparison of the main characteristics of the top-eight most frequently applied microextraction-based techniques for screening-controlled drugs in the forensic context.

Microextraction-Based Techniques

Sorbent-Phase Liquid-Phase

Analytical
Framework Characteristics SPME SBSE BAµE MEPS µSPE DLLME HP-LPME SDME

Sample
Preparation

User-friendly ++ +++ +++ + + ++ + +

Eco-friendly +++ ++ ++ + + ++ + ++

Reusability ++ +++ + + + − ++ −
Cost-effective + + +++ ++ ++ +++ ++ +++

Routine work +++ ++ ++ + + + + +

Instrumental
Systems

Online coupling +++ ++ ++ + + + − +

Comprehensive ++ ++ +++ + +++ + ++ +

Performance
Enrichment factor +++ +++ ++ + + + ++ ++

Recovery yields + ++ ++ ++ ++ + + +

Precision level ++ ++ ++ + + + ++ +

The “−“ signal means that the technique is unsuitable for that particular characteristic. The “+”, “++”, and “+++” signals means that the microextraction-based approaches are suitable, very suitable, or extremely
suitable for that particular characteristic, respectively.
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4. Concluding Remarks

The need for analytical methodologies that currently meet the high selectivity, sensi-
tivity, and the principles of green analytical chemistry that are required by forensic science,
pushes for the development of novel microextraction-based techniques.

Although the application of these techniques for screening-controlled drugs in foren-
sic matrices is not yet very extensive, several works have shown that they are credible
alternatives as analytical methodologies. Even so, these miniaturized techniques still need
further improvement in clinical and toxicological context, although potential alternatives
have shown several advantages in comparison to the well-established reference methods,
because many of them allow for fast response in routine work. This is particularly im-
portant for the rapid detection of the increasing occurrence of NPS worldwide, since the
development and implementation of faster alert systems is critical for legal and judicial
authorities.

Supplementary Materials: The following are available online, Table S1: Microextraction-based
approaches for the analysis of opioids and related substances in the forensic matrix, Table S2:
Microextraction-based approaches for the analysis of cocaine and related substances in the forensic
matrix, Table S3: Microextraction-based approaches for the analysis of amphetamine and related
substances in the forensic matrix, Table S4: Microextraction-based approaches for the analysis
of cannabinoids and related substances in the forensic matrix, Table S5: Microextraction-based
approaches for the analysis of dissociative drugs and related substances in the forensic matrix,
Table S6: Microextraction-based approaches for the analysis of new psychoactive substances (NPS)
and related substances in the forensic matrix.
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