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Abstract

Predefined sets of short DNA sequences are commonly used as barcodes to identify individual biomolecules in pooled populations.
Such use requires either sufficiently small DNA error rates, or else an error-correction methodology. Most existing DNA error-correcting
codes (ECCs) correct only one or two errors per barcode in sets of typically �104 barcodes. We here consider the use of random
barcodes of sufficient length that they remain accurately decodable even with �6 errors and even at ∼ 10% or 20% nucleotide error
rates. We show that length ∼34 nt is sufficient even with �106 barcodes. The obvious objection to this scheme is that it requires
comparing every read to every possible barcode by a slow Levenshtein or Needleman-Wunsch comparison. We show that several
orders of magnitude speedup can be achieved by (i) a fast triage method that compares only trimer (three consecutive nucleotide)
occurence statistics, precomputed in linear time for both reads and barcodes, and (ii) the massive parallelism available on today’s even
commodity-grade Graphics Processing Units (GPUs). With 106 barcodes of length 34 and 10% DNA errors (substitutions and indels),
we achieve in simulation 99.9% precision (decode accuracy) with 98.8% recall (read acceptance rate). Similarly high precision with
somewhat smaller recall is achievable even with 20% DNA errors. The amortized computation cost on a commodity workstation with
two GPUs (2022 capability and price) is estimated as between US$ 0.15 and US$ 0.60 per million decoded reads.

Significance Statement:

DNA barcodes—known, short, unique DNA segments—are often used by experimenters to identify individual biomolecules in
pooled populations. In experiments with large DNA synthesis or DNA sequencing error rates, such segments sometimes use an
error-correcting code. But such codes typically can correct only one or two errors per barcode and may limit barcode set sizes to
∼104. Here we describe a method for creating and decoding barcodes that gives accurate results even with six or more errors per
barcode, can have >106 barcodes, and is useful even at >10% nucleotide error rates.

1 Introduction

The use of DNA barcode libraries to identify tagged individual
biomolecules in pooled populations has become an essential tool
for today’s massively parallel biomedical experiments. Barcodes
find use in gene synthesis (1,2), antibody screens (3,4), drug dis-
covery via tagged chemical libraries (5–7), and many other appli-
cations (8–14), including their potential use in schemes for en-
gineered DNA data storage (15,16). For some applications, bar-
codes must function robustly in experimental situations subject
to significant error rates (that is, the unintended occurrence of
nucleotide substitutions, insertions, and deletions). Errors may be
introduced during barcode synthesis, the processes of the exper-
iment, the final sequencing, or all of these (15). Errors in bar-
code synthesis (“wrong barcodes”) are particularly troublesome
because they create errors that persist at any depth of final se-
quencing.

“Next-generation sequencing” (NGS), as exemplified in Illumna
technology (17), has relatively short read lengths (200 to 300 nt),
but also relatively small error rates (10−3 to10−4 per nt). In this
regime, barcodes need to be short (�20 nt), but they need only
modest (if any) error-correction capability. In other words, bar-
codes as ultimately sequenced can be assumed to have at most
one or two errors, allowing the use of repurposed mathematical
error-correcting codes (ECCs) (18,19), sometimes (20–24), but not
always (25,26), with the necessary extensions to account for in-
sertion and deletion errors (“indels”). By a “mathematical” ECC,
we mean a set of codewords and also an algorithm for recov-
ering an original codeword from its garbled version, specifically
without needing to compare every potentially garbled read to ev-
ery known possible codeword in the library. (We use the terms
“barcode” and “codeword” almost interchangeably, the former
being the physical manifestation in DNA of the mathematical
latter.)
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Useful mathematical ECCs for use with NGS have in practice
been limited to libraries with no more than tens of thousands of
unique codewords. While any code should ideally signal a reject
(“erasure”) rather than return a wrong identification if the garbled
word has more errors than the ECC can handle, this in general
cannot be mathematically assured if the number of errors is not
strictly bounded (19).

Hawkins et al.’s “FREE” barcodes (27) overcame some of these
limitations with a direct approach: Libraries of pairwise dissim-
ilar codewords were constructed by comparing each proposed
new codeword to all previously accepted ones, a slow, but one-
time, process. A novel similarity measure was designed to be
tolerant of indels that could produce garbled barcodes with
unknown, altered lengths. Advantageously, codewords could be
constrained to have balanced GC content, minimal homopoly-
mer runs, reduced hairpin propensity, or any other experimen-
tally motivated constraints. In the FREE scheme, garbled code-
words are decoded by table lookup into a very large table con-
taining not only the codewords but also all of their possible
single- or double-error garbles. This is very fast, but requires
very large computer memory. Practically, this scheme achieves
single-error–correcting codes of 16-nt length with 1.6 × 106 bar-
codes or double-error–correcting codes of 17-nt length with 23,000
codes (27).

In recent years, third-generation sequencing (also known as
TGS or long-read sequencing), in variants developed by Pacific
Biosciences and Oxford Nanopore (28), has added new capa-
bilities. TGS is capable of very long reads, >104 nt, so bar-
code length is of small consequence. However, read error rates
may be as high as ∼10% (29). Such error rates render virtu-
ally useless single- and double-error-correcting barcode libraries
of useful size. In the most favorable case of independent ran-
dom errors, three or more errors can occur frequently; burst er-
rors such as stuttering or repeated deletions only make things
worse.

This paper explores a possible solution via the use of ran-
dom barcodes (“randomers”) (30), that is, barcode libraries of any
desired size (�106, for example), whose codewords are approxi-
mately uniformly random, as generated by computer, with con-
straints of GC content, homopolymers, etc., easily imposed by re-
jecting random draws that fail to meet those constraints (never
a significant fraction). Like “designed” barcodes, random barcodes
would be synthesized in defined oligo pools, but with the differ-
ence that the number of pools could be as large as desired. There
are two obvious, immediate objections to this scheme that must
be overcome: (1). How can we avoid too-similar pairs of codewords
in the library so that the garbles of one are not mistakenly de-
coded as the other? (2). How can we avoid the impractical all-to-
all in-silico comparison of every read to every codeword in the
library?

The answers are unexpectedly simple. (1) We use barcodes
of length sufficient to make near-collisions statistically unlikely
to any desired degree. To implement this, we below investigate
the statistics of such near-collisions. (2) Instead of rejecting all-
against-all brute force comparison, we embrace it. Below, we will
describe a novel, fast computational technique that character-
izes codewords by their overlapping trimers (three-nucleotide se-
quences), both trimer presence versus absence, and the order of
those present. We show in particular that these techniques can
run with massive parallelism on commodity graphics processing
units (GPUs) and that cloud GPU availability (31,32) makes such
all-against-all comparisons practical at low cost and with reason-
able throughput.

2 Materials and methods
2.1 Distance measures
Given a set of barcode codewords and given a garbled barcode
read (possibly because of indels, prefixed, or suffixed by spurious
nucleotides), by definition the best decode we can do is to assign
the read to its most probable codeword—or to declare it an era-
sure that cannot be reliably so assigned. “Most probable” implies
an accurate statistical characterization of all the processes that
produce errors, in practice rarely available (33). So, any practical
procedure involves choosing a surrogate, a distance measure be-
tween the two strings that at least approximates (a monotonic
function of) P(R|C), the probability of a garbled read R given the
true codeword C.

A gold standard for such an approximation is the Needleman–
Wunsch (34) alignment distance between the strings, with the
skew, substitution, insertion, and deletion penalties set to the neg-
ative log-probabilities of their respective occurrence in an experi-
mentally validated error model. To the degree that errors are inde-
pendent, the distance so obtained is the negative log-probability
of the most probable single path from codeword to read. Note that
even this gold standard is not exact because (i) the implied model
of independent and identically distributed (i.i.d.) errors is surely
not right in detail and (ii) the probability P(R|C) is actually a sum
over all possible paths, not the single most probable path.

Levenshtein distance (also called edit distance) (22) is a kind of
silver standard, not as good as Needleman-Wunsch, but also not
dependent on knowing error probabilities. Levenshtein distance is
identical to Needleman–Wunsch when the skew, substitution, in-
sertion, and deletion penalties all set to the same constant value
(without loss of generality, the value 1). In the remainder of this
paper, we will use Levenshtein distance exclusively. However, all
of the algorithms developed (and all of the implementing com-
puter code) are designed to allow arbitrary penalties, hence the
easy generalization to Needleman–Wunsch.

2.2 Levenshtein distance distribution of random
strings

If there were no indels, then the Levenshtein distance between
two random strings of the same length would be their Hamming
distance, with an easily calculated binomial probability distribu-
tion (for independent errors). With indels, the distribution of Lev-
enshtein distances between two random strings is a famously
unsolved problem, closely related to the better-known unsolved
problem of longest-common subsequences (35). While it is known
that for asymptotically long strings the mean distance scales as a
constant γ c times string length (hardly a surprise, given that the
errors are local), γ c, termed the Chvátal–Sankoff constant (36), is
not known, though it is conjectured to be 2/(1 + √

c), where c is
the alphabet size (for us, 4). Beyond this mean, virtually nothing is
known about the distribution of distances, although there is a con-
jectured connection to so-called Tracy–Widom distributions (37).

While little is known analytically, simulation is straightforward.
Supporting Information S1 (text) describes, and Fig. S1 illustrates,
how one-to-many Levenshtein distances can be parallelized on
a GPU, allowing the calculation of >108 distances on a single-
headed desktop machine in minutes. Fig. 1 shows the results of
such a simulation.

We are concerned about the extreme left-hand tails of the dis-
tributions, where a garbled read from one codeword might end
up by unlucky chance, close to another in a large set of barcodes.
In this regime, direct sampling is impractical, but we can use the
polynomial extrapolations (in log-space) shown in Fig. 1. Their
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Fig. 1. Probability distribution of Levenshtein distances. Random oligomers of lengths 18, 22, 26, 30, and 34 are generated and random pairwise
Levenshtein distances are calculated. Dots show the results. The curves are a bivariate polynomial fit (in log-space) to all the dots simultaneously. The
distributions are non-Gaussian in their tail, the curves deviating from parabolas slightly but significantly.

uncertainty at probability 10−12 is likely �1 in Levenshtein dis-
tance, as estimated by the robustness of the curves as details of
the fitting procedure are varied. Supporting Information S2 gives
details of the polynomial fit shown in the figure. Also, we have
verified that these results are not significantly altered by choos-
ing otherwise random codewords that satisfy constraints on CG
content and homopolymer avoidance (never a large fraction of
random draws).

2.3 Distribution of closest noncausal distance to
a set of N codewords

Given a set of N random codewords {C} of length M from which
a given read R does not derive, what is the probability P(L) that
R’s smallest Levenshtein distance to the set is L? We may as-
sume that R is itself (close to) random, because it derives from
errors on a random starting point, its true codeword. Given
one of the distributions in Fig. 1, which we now denote p(L|M),
this is a straightforward calculation in extreme value theory
(38): The probability P(0) is the cumulative Poisson probabil-
ity of one or more zero distances when the mean number is
Np(0|M),

P(0) = Poisson{≥ 1, Np(0|M) }, (1)

Then, recursively,

P(i + 1) =
⎛
⎝1 −

i∑
j=0

P( j)

⎞
⎠ Poisson{≥ 1, Np(i + 1|M) }, (2)

where the term in parentheses is the remaining probability to be
allocated, and the Poisson cumulative distribution function is the

probability of allocating it to the value i + 1. Eq. (2) is easily com-
puted numerically and is shown for the case of M = 34 nt in Fig. 2.
The values near the peaks seem haphazard due to discreteness
effects, but are accurately shown.

The figure also plots the cumulative distribution functions for
binomial deviates with parameters 34 (the codeword length) and
probabilities 0.05, 0.10, and 0.20. These model, at least crudely,
the Levenshtein distances to be expected in the causal case
of comparison to the correct codeword. That fact that some
orders of magnitude of vertical white space lie between each
green curve and at least one other-colored curve points the
way forward: by picking an appropriate threshold Levenshtein
distance T, calling as decodes all reads with ≤T and as era-
sures all reads with >T, we may hope to achieve both very
high accuracy (high precision) on decodes and a very low era-
sure rate (high recall). The figure demonstrates this in an ap-
proximate, but relatively model-independent way. In the results,
we will explore a more accurate, detailed model and, impor-
tantly, will give a procedure for choosing T based on observed
data.

Supporting Information S3 shows figures analogous to Fig. 2 for
the cases of other codeword lengths, M = 30, 26, 22, and 18 nt.

2.4 Three-parameter Poisson error model for
substitutions, insertions, and deletions

An error model for a M-mer barcode set can be described by
three parameters, psub, pins, and pdel, respectively, the probabil-
ities per nucleotide of a substitution, insertion, or deletion er-
ror. Formally, we need to be more precise: the different types
of errors can interact, and insertion and deletion errors change
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Fig. 2. Probability of the smallest distance to a set of N-34 nucleotide random codewords. Left: probability mass function. The larger is N, the smaller is
the expected distance to a given garbled read by chance. Right: cumulative distribution function. Also shown as thin green lines are the cumulative
binomial probabilities for the number of errors in a garbled 34-mer for the large error rates (per nucleotide) 5%, 10%, and 20%.

the length of the string. Among various equally good pos-
sibilities, for purposes of this paper we adopt the following
error-generation model, the steps to be executed in the order
listed.

� Start with a codeword string in {a, c, g, t} of length M, indexed
as 0…M − 1.

� Substitutions. Draw a deviate nsub ∼ Binomial (M, 4
3 psub). The

factor 4/3 corrects for the fact that 1/4 of substitutions will
substitute an unchanged nucleotide. Draw (with replace-
ment) nsub indices in the uniform distribution U(0,..., M − 1).
Draw (with replacement) nsub values uniformly in the nu-
cleotides {a, c, g, t}. Substitute the values at the indices. (Note
that indices may collide, in which case only one of the corre-
sponding values will “win” the substitution, it doesn’t matter
which).

� Deletions. Draw a deviate ndel ∼ Binomial(M, pdel). Draw (with
replacement) ndel indices in the uniform distribution U(0,..., M
− 1). Delete the nucleotides at those positions. Here, colliding
indices delete the same position only once. Call the new string
length M

′ ≥ M − ndel with equality in the case of no collisions.
� Insertions. Draw a deviate nins ∼ Binomial(M

′
, pins). Draw (with

replacement) ninsindices in the uniform distribution U(0,...,
M

′
). Draw (with replacement) ninsvalues uniformly in the nu-

cleotides {a, c, g, t}. Insert each value before the original in-
dex position (or, for index M

′
, after the last character). Here,

colliding indices result in more than one insertion before an
existing character (order irrelevant). The string length is now
M

′′ = M
′ + nins.

� Padding or truncation. If M
′′
> M, truncate the string to length

M. If M
′′

< M pad the string to length M with random char-
acters in {a, c, g, t}. The resulting string of length M is the
garbled codeword. This padding/truncation implements the
worst-case assumption that we have no independent infor-
mation about where the true barcode begins or ends, but sim-
ply attempt to decode exactly M characters at the codeword’s
nominal position (e.g. beginning of strand).

2.5 Fast triage of codewords by trimer similarity
We are committed to comparing each of Q (possibly many millions
of) reads to each of N (possibly millions) codewords of length M,
so as to find, for each read, that codeword with the smallest Lev-
enshtein distance. Theoretical scalings imply that the number of
implied operations is const × Q × N × M2, where the constant is
∼10 and the factor M2 is the Levenshtein calculation. While fea-
sible on a supercomputer, the implied ∼1016 operation count is
not to be recommended. Here, we show how to reduce it to ∼1013

operations that can be done on a commodity GPU with 103 to 104

parallelism, implying as few as ∼109 calculation steps, feasible on
a single-head desktop machine.

We will employ a strategy of “triage,” that is, comparing each
read to every codeword using only an approximate distance met-
ric or similarity score, but one with a very small number of com-
puter operations per comparison. This step will eliminate a large
(often very large) fraction of possible identifications. Then, it is
feasible to apply a more exact comparison to the small number of
possible identifications that remain—either as a secondary triage
(another approximate distance measure) or a true Levenshtein
calculation. The final step will always be a Levenshtein (or sim-
ilar) distance comparison, finding the decoding with the smallest
true distance.

Primary triage by trimer Hamming popcount
Every codeword of length M has exactly M − 2 overlapping, consec-
utive trimers in {a, c, g, t}3 (a set of cardinality 43 = 64). Why focus
on trimers? Why not dimers or tetramers? The results of §2.3, es-
pecially in Fig. 2 and Fig. S2 (right panels), suggest the need for bar-
codes of length ∼30. On average, the 42 = 16 dimers will appear in
a barcode about twice, and �80% will occur at least once. So there
is relatively little information in either their uniqueness of occur-
rence or uniqueness of position. For tetramers, which number 44 =
256, only ∼10% of them will appear in any given barcode, so ∼90%
of the effort of keeping track of them is wasted. Trimers, each ap-
pearing on the order of once per barcode, are a unique sweet spot.
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See Supporting Information S4 for more accurate statistics of this
kind.

A suitable function B(Ci) maps each codeword Ci to a 64-bit un-
signed integer whose bits signify the presence (1) or absence (0) of
each trimer in Ci The values Bi = B(Ci) can be precomputed. Now,
for each garbled M-mer read Rj, we compute the distance mea-
sure

S = Popcount(B(Rj ) ⊕ Bi ), (3)

where ⊕ denotes bitwise exclusive-or and Popcount returns the
number of set bits in a word, here the Hamming distance. Pop-
count is a single machine-language CUDA instruction on GPUs
(39) that can readily be made accessible to PyTorch, or calculated
(a few times slower) as a few-line PyTorch (40) function. Impor-
tantly, in either case, the calculation of Eq. (3) can be done in par-
allel across all N of the Bi’s simultaneously. We may then eliminate
from further consideration those codewords with the largest dis-
tances S, between 90% and 99%, depending on the DNA error rate
(see further details below).

Secondary triage by trimer position correlation
Conceptually, a secondary triage should need to be calculated for
each read only for the list of codeword candidates that survive
the primary triage. The output of the secondary triage would be
an even shorter list of survivors. In practice, our proposed sec-
ondary triage is almost as fast as the above primary triage. That
being the case, it is about equally efficient to apply the primary
and secondary triages simultaneously to all the codewords, and
then combine the triages, as will be described below. This strategy
allows us to then jump directly to a Levenshtein comparison of
the joint triage survivors.

Our secondary triage is motivated as follows: To be close in dis-
tance, a read Rj and codeword Ci should not only be similar by set-
comparison of their trimers (popcount test above), but also close
in the position indices, 0, …, M − 3, of identical trimers.

Denote individual trimers as t ∈ [0, 64), and denote the ordered
sequence of trimers in a read or codeword as ti, i = 0, …, M − 2. Let
V(R) be a function returning an integer vector of length 64, defined
for a codeword or read R by the 64 components,

V(R)t =
{

i, if ti occurs in R
0, otherwise.

(4)

This is not quite a well-posed definition, because we might have
ti = tj for i �= j, i.e., a collision in V(R)t. Supporting Information S5
discusses how collisions can be resolved in a computationally fast
manner.

Now, the dot product V(Rj) · V(Ci), something like an unnormal-
ized correlation of the two position functions, can be taken as a
similarity measure. Since V(Rj) and V(Ci) can be precomputed, the
dot products over all i and j can all be done in parallel on the GPU,
exactly the kind of tensor calculation it is best at.

But why stop there? For any kernel function K that acts com-
ponentwise on a vector, the dot product K(V(Rj)) · K(V(Ci)) is also a
similarity measure. Multiple K’s return different similarity infor-
mation. We find that kernels of cosine shape,

Kn(k) ≡ cos [πkn/(M − 1)] , n = 1, 2, . . . , k = 0, 1, . . . , M − 1, (5)

(with small n being the desired higher harmonic of the cosine),
each give good results, even better when combined as next de-
scribed. The intuition here is that values n > 1 are more sensitive
to the ordering of trimers on finer scales, but only up to some value

of n where indels result, on average, in a loss of phase coherence
with the cosines. We find that 1 ≤ n ≤ 4 works well, with larger
values giving little improvement.

Combined triage
Although operations across all pairs of reads and codewords are
by definition expensive, we have found it efficient to expend the
cost of ranking (i.e. sorting) each read’s N distance scores (against
every codeword) for the handful of distance measures, Eqs. (3) and
(5) (with n = 1, 2, 3, and 4). Let r(i, n) denote the rank of the ith
codeword in the nth distance measure, small ranks meaning most
similar. Then we define the combined distance measure r(i) as the
product

r(i) ≡
∏

n

r(i, n).

This can be viewed as akin to a naive Bayes estimate, since r(i, n)/N
is something like a Bayes evidence factor provided by the distance
measure n. Finally, we rank the r(i)s.

Fig. 3 shows results for a simulation with N = 106 codewords of
length M = 34 whose reads are corrupted (using the error model
describe above) with psub = pins = pdel = 0.03, a total error rate of
9%. One sees that, here, the Hamming popcount is doing most of
the heavy lifting, but combining with position similarity gives a
substantial improvement. In the figure, “cosn” denotes the kernel
functions in Eq. (5). While these have very similar performances
individually, the elimination of any of them decreases the com-
bined performance somewhat.

In this example, triage from 106 down to 103 codeword possibili-
ties for each read would capture the correct answer almost always
(
99%) so that the exact Levenshtein calculation could be done
on only the smaller set, at negligible computational cost.

A somewhat less favorable, but still very feasible, example is
for the large error rates psub = 0.05, pins = 0.05, and pdel = 0.10, as
shown in Fig. 4. Here, triage from 106 to 105 produces negligible
loss of recall. We will see in the "Results" section that the paral-
lel computation of Levenshtein on 105 codewords per read is also
very feasible.

3 Results
Illustrating the use and practicality of the above methods, we here
give the results of detailed simulations for the case of one million
barcodes (N = 106) of length M = 34 nucleotides in the presence
of end-to-end DNA total error rates of 20% per nucleotide (base
case) with excursions to smaller (9%) and larger (30%) rates. These
rates are intentionally chosen to be all very large as compared to
next-generation NGS error rates, and even large or very large as
compared to third-generation TGS rates (see the Section 1). For
some simulations, we assume equal error rates (psub = pins = pdel),
while for others we take psub = pins = 0.5 × pdel, in deference to
experimental results in which pdel dominates (27,28,41). We know
of no previously proposed barcode sets capable of success with
these parameters at plausible computational workloads.

3.1 Precision and recall
It is important to emphasize that the methods of this paper do not
give either perfect precision, that is, the correct decoding of every
garbled read independent of its number of errors, nor perfect re-
call, that is, no garbled reads rejected as undecodable erasures.
Rather, by choice of an integer threshold Levenshtein distance T,
the user may set any desired recall between 0% (all erasures) and
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Fig. 3. Triage performance of individual filters and combined. For N = 106 codewords of length M = 34 nt and for an error model with psub = pins = pdel =
0.03, the figure shows the probability of capturing the correct codeword with triage to sets of codeword possibilities much smaller than N. Here, after
triage and with negligible loss of recall, exact Levenshtein testing is needed for fewer than 103 codewords.

Fig. 4. Same as Fig. 3, but with error rates psub = 0.05, pins = 0.05, and pdel = 0.10. Here, further testing on about a tenth of codewords is required.

100% (no erasures) and must then accept the implied level of pre-
cision.

For these tests, we generated either random sets of code-
words, or else otherwise random sets that excluded codewords

with homopolymer runs of >3, or CG or AT fraction greater
than 0.66. There was no discernible difference in results between
same-sized fully random and sequence-constrained codeword
sets.
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Fig. 5. Simulation with 20% DNA error rate. Left: distribution of distances seen when decoding to the Levenshtein-closest codeword among 106

possibilities. The experimenter, not knowing, which decodes are correct, sees the sum of the red and green histograms. Right: with data from the left
panel, for each choice of threshold T, recall is the fraction of all events (green plus red) ≤T. This is knowable to the experimenter. Precision is, for
events ≤T, the fraction of green (versus red) events. This is not directly knowable but can be estimated by the models shown (see text).

Garbled reads were assigned to the closest codeword by Lev-
enshtein distance when the distance was ≤T, otherwise called as
erasures. For the base case of 20% total errors, with psub = 0.05,
pins = 0.05, and pdel = 0.10, Fig. 5 shows results for the full range of
choices of T. In a real experiment, the user does not know which
decodes are correct, so sees the sum of true and false positives
(green and red histograms). That is enough to calculate the recall
for each possible value of T, but not the precision, which requires
“knowing the answers”.

However, the user does know that there is some red histogram
whose expected shape was already calculated above in Eqs. (1)
and (2) and Fig. 2. The user also knows that the green histogram
should be roughly binomial, but “censored” by the red histogram
in a computable way. In Supporting Information S6, we show that
this is enough information to model the expected precision func-
tion either naively (shown in Fig. 5 as Model 1) or, with additional
assumptions, somewhat more accurately (shown as Model 2). So,
in practice, the user can use these models to choose an appropri-
ate value T. In the figure, a suitable choice based only on the mod-
els might be T = 8, which in simulation gives 99.6% precision with
67% recall. Whether this is a sufficiently large recall to be useful
depends on the design of the experiment, for example, whether
a given barcode is expected to be read several or many times, in
which case a 33% loss to erasures can be tolerable.

Supporting Information S7 shows the analogous figures for er-
ror rates of 10% (with psub = 0.033, pins = 0.033, and pdel = 0.033) and
30% (with psub = 0.075, pins = 0.075, and pdel = 0.15). For the former
of these, the choice T = 9 yields precision 99.9% with recall 98.8%.
For the latter, recall must be sacrificed to get good precision. T = 7
gives precision 99.8% with recall 20.4%, while T = 8 gives precision
98.2% with recall 32.6%.

The user is assumed to know something about the experimen-
tal DNA error rate a priori. However, if this is not the case, then
the above values can be assumed as lower bounds. Specifically,
for any assumed total error rate significantly less than 30%, the
value T = 8 should give >99% precision along with a recall that

will be immediately known from the data, by the number of era-
sures called.

3.2 Performance and cost
The minimum requirement for using the methods described in
this paper is a compute node (or cloud instance) with at least 2
CPU cores and at least 1 commodity- or server-grade GPU hav-
ing at least 8 GB memory. To use exactly our code (as available
on Github), PyTorch (40) and its associated software tool chain is
required, but porting to other CUDA tool chains (e.g. TensorFlow
(42)) should be straightforward.

We measured actual performance on a standalone workstation
with an Intel i9-10900 processor (10 CPU cores and 20 logical pro-
cessors) and two Nvidia RTX 3090 GPUs, each with 10,496 CUDA
cores and 328 tensor cores. The purchase price of this machine
(year 2022) was US$12,000. The (year 2022) marginal cost of adding
additional comparable GPUs would be about US$1,500 each.

As a typical performance test, we generated 1,000,000 simu-
lated reads of 34-nt random barcodes with 20% error rates. (Per-
formance does not actually depend on error rate.) Reads were
divided among processes running concurrently on separate CPU
cores. On the above machine, we found that four such processes,
two assigned specifically to each GPU, gave the best performance,
saturating the two GPUs (and four CPUs) at close to 100% us-
age. Memory usage per GPU was 7.4 GB. Wallclock execution time
was 4943 seconds, implying about 17.5 million reads per 24-hour
day. This is likely adequate performance for many applications
and will only improve with time as GPU cycles get faster and
cheaper.

For applications requiring greater throughput, there are vari-
ous options: Academic supercomputer centers allocate time (at
no cost) competitively to academic users. A current example is
the Longhorn computer at the Texas Advanced Computing Cen-
ter (TACC) (43) with 384 Nvidia V100 GPUs, implying on the order
of 7 billion reads per day for the full machine. The “startup”
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allocation of 100 node hours should process on the order of 150
million reads, and much larger allocations are routinely awarded.
Alternatively, commercial cloud instances of GPUs can be stood
up by the hour in any desired quantities and thus any desired
throughput. Current (2022 (31,32)) prices of about US$ 0.50 per
GPU-hour imply a cost of about US$ 1.50 per million reads pro-
cessed. This can be compared to the 3-year amortized cost of the
standalone machine described above implying about US$ 0.60 per
million reads; or the amortized marginal cost of each additional
GPU, which implies about US$ 0.15 per million reads.

4 Discussion
The main point of this paper is demonstrating by simulations the
practicality of all-to-all comparisons for the closest Levenshtein
or Needleman–Wunsch match (that is, comparing all reads to all
barcodes) with DNA barcodes sets of 106 barcodes or larger and for
reads numbering many millions or more. The elements that make
this possible are (1) the parallel processing capabilities of current
commodity GPUs, (2) the use of a novel, very fast parallel triage
that, for each read, eliminates from competition all but a small
fraction of candidate barcodes, and (3) the ability to parallelize the
Levenshtein or Needleman–Wunsch computation to a significant
degree, both within a single calculation and across many such.

All-to-all comparison in turn makes practical the use of ran-
dom barcode sets (defined and fixed for each experiment) that
derive error-correcting capability simply by the statistics of their
average distances from one another. While the required lengths
∼30 nucleotides may be undesirably long for use with short read
lengths, they are not a detriment with read lengths of third-
generation sequencing. And, in that context, the ability to use of
direct, parallel Levenshtein (or an even faster approximation as
discussed), allows as many as 6 to 8 errors to be corrected (set
above by the threshold value T ), along with correctly flagging as
undecodable “erasures” reads with more than this number. At 10%
errors per nucleotide, considered a large value, we are able to
demonstrate precision of 99.9% and recall of 98.8%. Even with 20%
errors per nucleotide, we demonstrate 99.6% precision with recall
of 67% (meaning that at most 1/3 of reads are wasted). We know of
no other existing, practical DNA barcode methodologies that are
able to operate in these high-error-rate regimes with �106 bar-
codes. In these statistics, errors in barcode synthesis (“wrong bar-
codes”) are as equally correctable as errors created at later stages
of an experiment or during final sequencing. High-density DNA
microarrays are an example of an application where error rates a
high as ∼ 15% are reported, due to position-dependent synthesis
errors in the array (41).

In contrast to this paper, mathematically constructed error-
correcting codes (ECCs) of a given length L are designed to have
fewer near-collisions than our random barcodes of the same
length. If there existed known mathematical ECCs capable of (i)
correcting as many as 6 to 8 errors, and (ii) correcting not just
substitution errors, but also insertions and deletions (indels), then
these would be superior to random barcodes. But we know of no
such ECCs (27).
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