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Abstract: The Split Bregman method (SBM), a popular and universal CS reconstruction algorithm
for inverse problems with both l1-norm and TV-norm regularization, has been extensively applied
in complex domains through the complex-to-real transforming technique, e.g., MRI imaging and
radar. However, SBM still has great potential in complex applications due to the following two points;
Bregman Iteration (BI), employed in SBM, may not make good use of the phase information for
complex variables. In addition, the converting technique may consume more time. To address that, this
paper presents the complex-valued Split Bregman method (CV-SBM), which theoretically generalizes
the original SBM into the complex domain. The complex-valued Bregman distance (CV-BD) is first
defined by replacing the corresponding regularization in the inverse problem. Then, we propose
the complex-valued Bregman Iteration (CV-BI) to solve this new problem. How well-defined and
the convergence of CV-BI are analyzed in detail according to the complex-valued calculation rules
and optimization theory. These properties prove that CV-BI is able to solve inverse problems if the
regularization is convex. Nevertheless, CV-BI needs the help of other algorithms for various kinds
of regularization. To avoid the dependence on extra algorithms and simplify the iteration process
simultaneously, we adopt the variable separation technique and propose CV-SBM for resolving
convex inverse problems. Simulation results on complex-valued l1-norm problems illustrate the
effectiveness of the proposed CV-SBM. CV-SBM exhibits remarkable superiority compared with SBM
in the complex-to-real transforming technique. Specifically, in the case of large signal scale n = 512,
CV-SBM yields 18.2%, 17.6%, and 26.7% lower mean square error (MSE) as well as takes 28.8%, 25.6%,
and 23.6% less time cost than the original SBM in 10 dB, 15 dB, and 20 dB SNR situations, respectively.

Keywords: Split Bregman method; Bregman Iteration; complex domain; convex optimization;
compressed sensing

1. Introduction

Compressed sensing (CS) theory has been thoroughly analyzed and extensively applied in the
signal processing [1,2] and image processing community [3–5] during the past decades. CS theory
indicates that a sparse signal can be reconstructed from a few of measurements lower than the Nyquist
rate required [6,7]. Specifically, an unknown vector x ∈ Rn can be recovered by solving an inverse
problem with a sparsity-promoting regularization term, such as l1-norm or total variation (TV) norm,
as follows:

min
x

λ
2
‖y−Ax‖22 + ‖x‖1 (1)

min
x

λ
2
‖y−Ax‖22 + ‖x‖TV (2)
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where a measurements vector y ∈ Rm is generated by y = Ax + ε, A ∈ Rm×n with m < n denotes a sensing
matrix, and ε ∈ Rm represents a noise vector. There are various convex optimization methods [8–11] and
sparse Bayesian learning methods [12–14] dealing with related inverse problems. However, the vast
majority of the above-mentioned algorithms consider the real-valued situations. In many applications,
such as diverse as wireless communication [15–17], biomedical [18,19], and radar [20–22], the complex
domain provides signals and images with a more convenient and appropriate representation to
preserve their sparsity and phase information than the real domain. Motived by this, we investigate
CS reconstruction methods in complex-valued cases.

In recent years, there have been many papers focusing on this problem, such as Complex
Approximate Message Passing (CAMP) [23] and M-lasso [24]. CAMP is the extension of Approximate
Message Passing (AMP) [25] to the complex domain. However, the reconstruction performance of
CAMP for the unequal-amplitude sparse signal is poor [26]. M-lasso combines the zero subgradient
equations with M-estimation settling Equation (1) in the complex domain. However, the updating
strategy in M-lasso is cyclic coordinate descent (CCD) [27], which calculates one element at a time while
keeping others fixed at the current iteration. Obviously, it is computationally expensive. Furthermore,
these schemes are designed for specific l1-norm regularization problems. Thus, a more general
algorithm for CS recovery in complex variables is needed.

The Split Bregman method (SBM) proposed in [28] is a universal convex optimization algorithm for
both l1-norm and TV-norm regularization problems. By the idea of decomposing the original problem
into several subproblems worked out by Bregman Iteration (BI) [29,30], SBM has been widely utilized in
the complex domain through the complex-to-real converting technique [31,32], e.g., MRI imaging [33],
SAR imaging [34], forward-looking scanning radar imaging [35], SAR image super-resolution [36],
and massive MIMO channel estimation [37]. However, SBM still has great potential in terms of both
reconstruction performance and time cost considering the following two points: The original BI defined
in the real domain may not make good use of the phase information for complex variables, which
degrades the recovery accuracy; secondly, the converting technique quadruples the elements of the
sensing matrix A to 2m × 2n, which consumes more memory and time within the iteration process.

To tackle the aforementioned problems, this paper theoretically generalizes the original SBM into
the complex domain, named the complex-valued Split Bregman method (CV-SBM). We first define
the complex-valued Bregman distance (CV-BD) and replace the associated regularization term with
the CV-BD in the inverse problem. Then, complex-valued Bregman Iteration (CV-BI) is proposed to
solve this new problem. In addition, according to the calculation rules, Wirtinger’s Calculus, and
optimization theory for complex variables, how well-defined the CV-BI is and its convergence are
analyzed in detail. The proof of the above two properties reveals that CV-BI can settle inverse problems
if the regularization term is convex. Since CV-BI requires the help of additional algorithms to find the
solution to the specific regularization, as BI does, its solution is still complicated and computationally
expensive. Inspired by SBM, we adopt the variable separation technique to avoid the requirement
of other optimization algorithms and then present CV-SBM to settle the convex inverse problems
with the simplified solution. Simulation results on the complex-valued l1-norm problems reveal the
effectiveness of CV-SBM compared with existing methods. Particularly, the proposed CV-SBM exhibits
18.2%, 17.6%, and 26.7% lower mean square error (MSE) and takes 28.8%, 25.6%, and 23.6% less time
than SBM through the complex-to-real transforming technique in 10 dB, 15 dB and 20 dB SNR cases
with large signal scale n = 512.

The rest of this paper is organized as follows. In Section 2, we briefly review the original BI and
SBM techniques. Section 3 proposes and analyzes CV-BI and CV-SBM in detail. Section 4 conducts
numerical experiments and compares the results with some existing CS reconstruction algorithms in
the complex domain. Conclusions and future work are discussed in Section 5.
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2. Review of Bregman Iteration and Split Bregman Method

SBM, whose main idea is to decompose the original unconstrained problem into several equivalent
subproblems solved by BI [29,30], has shown its efficiency and effectiveness for inverse problems with
both l1-norm and TV-norm regularization [28]. For the convenience of the following illustration, we
will first present a brief review of BI and SBM.

2.1. Bregman Iteration

BI focuses on the optimization problem

min
x∈R

J(x) + H(x) (3)

where J(x) is a real convex function but not necessarily differentiable, and H is a real convex and
differentiable function. By replacing J(x) with corresponding Bregman distance (BD) Dp

J (u, v) [29,38],
BI tackles Equation (3) as follows:

Dp
J (u, v) = J(u) − J(v) −

〈
p, u− v

〉
(4)

xk = argmin
x

Dpk−1
J

(
x, xk−1

)
+ H(x) (5)

pk = pk−1
−∇H

(
xk

)
(6)

where p ∈ ∂J(v) is a subgradient of J(x) at the point v, and ∂J(v) is the subdifferential of J(x) at v,〈
f , g

〉
= f T g∗ denotes the inner product for all f , g ∈ Cn, and (·)* is used for the conjugate. To make it

clear, we give the definition of the subgradient and subdifferential.

Definition 1. Let T : Rm
→ R be a convex function defined on the real domain. A vector ∇s

xT(z0) ∈ Rm

is said to be a subgradient of T at z0 if T(z) ≥ T(z0) +
〈
z− z0,∇s

xT(z0)
〉
. The set of all subgradients

of T at z0 is called the subdifferential of T at z0 and is denoted by ∂zT(z0). More detials about the
subgradient and subdifferential can be found in [39].

A key property of the BD is that it has the same convex characteristic as J(x) so that (5) is still a
convex problem. Furthermore, it can be used as the measurement of the closeness of two points in
J(x) [29,30].

As for the l1-norm and TV-norm problems, Equation (6) is easily calculated, whereas dealing with
(5) is more complicated and needs the help of another algorithm [30], such as GPSR [8] or FPC [9].
To avoid the dependence on extra algorithms and simplify the iteration process simultaneously, SBM
is presented.

2.2. Split Bregman Method

SBM aims to find a solution to the unconstrained problem

min
x
‖Φx‖1 + H(x) (7)

where Φ is a linear operator. SBM introduces an auxiliary variable d and considers an equivalent
constrained problem to Equation (7)

min
x,d
‖d‖1 + H(x) s.t. d = Φx (8)
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The corresponding unconstrained version of (8) can be formulated as follows:

min
x,d

E(x, d) +
µ

2
‖d−Φx‖22 (9)

where E(x,d) = ||d||1 + H(x) and µ is a positive constant to balance the two terms in Equation (9) within
the iterations. Since there are two unknown variables completely fulfilling the demand of BI for
optimization problems, BI can be performed for each of them:(

xk, dk
)

= arg min
x,d

Dpk−1
E

(
x, xk−1, d, dk−1

)
+

µ
2 ‖d−Φx‖22

= arg min
x,d

E(x, d) − E
(
xk−1, dk−1

)
−

〈
pk−1

x , x− xk−1
〉
−

〈
pk−1

d , d− dk−1
〉
+

µ
2 ‖d−Φx‖22

(10)

pk
x = pk−1

x − µΦT
(
Φxk
− dk

)
(11)

pk
d = pk−1

d − µ
(
dk
−Φxk

)
(12)

Let bk = pk
d/µ, then the iterations become:(

xk, dk
)
= arg min

x,d
‖d‖1 + H(x) +

µ

2
‖d−Φx− bk−1

‖
2
2 (13)

bk = bk−1
−

(
dk
−Φxk

)
(14)

For (13), one can decompose it into resolving two subproblems alternately, i.e., working out xk by
fixing dk−1 and then clearing up dk by fixing xk

xk = arg min
x

H(x) +
µ

2
‖dk−1

−Φx− bk−1
‖

2
2 (15)

dk = arg min
d
‖d‖1 +

µ

2
‖d−Φxk

− bk−1
‖

2
2 (16)

The problems above can be computed conveniently by tackling zero subgradient equations.
Evidently, the combination of BI and SBM can be adopted to settle plenty of convex optimization

problems in a real system [40,41]. However, BD and BI are established in the real domain, and
consequently do not to take complex variables and phase information into account. Specifically, once
variables come in the complex domain, the BD becomes complex-valued and consequently cannot be
employed as the measurement of the closeness. Thus, we can no longer use the BD as the objective
function. In the following section, we will generalize the original BI and SBM into the complex
domain theoretically.

3. Complex-Valued Split Bregman Method

3.1. Wirtinger Calculus and Wirtinger’s Subgradients

As is well-known, convex optimization theory requires the differentiability of the objective
function. For T(c) = TR(c) + jTI(c) in complex variables c = cR + jcI, the complex differentiability equals
to the satisfied Cauchy–Riemann conditions:

∂TR(c)
∂cR

=
∂TI(c)
∂cI

∂TR(c)
∂cI

= −
∂TI(c)
∂cR

(17)
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For a complex-valued l1-norm regularization problem:

min
x∈Cn

F(x)

F(x) = H(x) + J(x)
(18)

where H(x) = λ‖y−Ax‖22, J(x) = ‖x‖1, y ∈ Cm, A ∈ Cm×n. Apparently, F(x) does not obey (17) so that
calculating the complex gradient directly is unavailable.

To overcome such a problem, an alternative tool for computing the complex gradient was brought
into light recently called Wirtinger’s calculus [39]. It relaxes the strict requirement for complex
differentiability and allows the computation of the complex gradient in simple rules and principles.
A key point in Wirtinger’s calculus is the definition of Wirtinger’s gradient (W-gradient) and the
conjugate Wirtinger’s gradient (CW-gradient)

∇cT(c) =
1
2
(∇cRT(c) − j∇cI T(c)) (19)

∇c∗T(c) =
1
2
(∇cRT(c) + j∇cI T(c)) (20)

where ∇cR T(c) and ∇cI T(c) represent the gradient of the T at cR and cI, which can be obtained by the
traditional ways. According to Equations (19) and (20), one can calculate the W-gradient of c* and the
CW-gradient of c:

∇cc∗ = 1
2 (∇cR c∗ − j∇cI c

∗) = 1
2 [∇cR(cR − jcI) − j∇cI (cR − jcI)]

= 1
2 [1− j(− j)] = 1

2 [1− 1] = 0
(21)

∇c∗c = 1
2 (∇cRc + j∇cI c) =

1
2 [∇cR(cR + jcI) + j∇cI (cR + jcI)]

= 1
2 [1 + j( j)] = 1

2 [1− 1] = 0
(22)

Considering that both the W-gradient for c* and the CW-gradient for c are equal to zero, in Wirtinger’s
calculus we can treat c and c* as two irrelevant or independent variables, which is the main approach
allowing us to utilize the elegance of Wirtinger’s calculus. Here is an example: if T(c) = c(c*)2, then we
have ∇cT(c) = (c∗)2 and ∇c∗T(c) = 2cc∗. More details and examples can be found in [42].

In general, for the convex function in complex variables, the optimization condition is the
CW-gradient equal to zeros vector. Nevertheless, in practice, some functions may not be differentiable
everywhere, e.g., l1-norm in F(x) at zero. In this case, the conjugate Wirtinger’s subgradients
(CW-subgradients) [39] can be adopted to construct the gradient path towards the optimal point. For a
real convex function in complex variables T : Cn

→ R , we define a CW-subgradient ∇s
c∗T(c) of T at c if

∀c0 ∈ Cn

∇
s
c∗T(c) = 1/2

[
∇

s
cR

T(c) + j∇s
cI

T(c)
]

(23)

and it satisfies

T(c + c0) ≥ T(c) + 2<
(〈

c,∇s
c∗T(c)

〉)
= T(c) +

〈
cR,∇s

cR
T(c)

〉
+

〈
cI,∇s

cI
T(c)

〉
(24)

where ∇s
cR

T(c) and ∇s
cI

T(c) denote the subgradient of T at cR and cI. The set of all CW-subgradients of
T at c is called Wirtinger’s differential of T at c and is represented by ∂c∗T(c). It should be noted that for
the differentiable point of T, the Wirtinger’s differential only contains one element, i.e., its CW-gradient.
Wirtinger’s differential of modulus |xi| and H(x) are presented as follows [43].

∂x∗ |xi| =

{ 1
2 sign(xi), for xi , 0
1
2 s for xi = 0

(25)

∂x∗H(x) = ∇x∗H(x) = λAH(Ax− y) (26)



Sensors 2019, 19, 4540 6 of 22

where i is the index for the element of vector x and s is some complex number verifying |s| ≤ 1. Then, a
necessary and sufficient condition for the optimization solution to Equation (18) is that 0 ∈ ∂x∗F(x) [43].
By the definition of the CW-subgradient, in the following subsection, we can generalize BD into the
complex domain.

3.2. CV Bregman Distance

To prevent the BD becoming complex-valued, we first generalize the BD into the complex domain
and introduce the CV Bregman distance (CV-BD) theoretically.

Definition 2. For p = ∇s
v∗T(v) ∈ ∂v∗T(v), we define the quantity

Dp
J (u, v) = J(u) − J(v) − 2<(

〈
u− v, p

〉
)

= J(u) − J(v) −
〈
uR − vR,∇s

uR
T(c)

〉
−

〈
uI − vI,∇s

uI
T(c)

〉 (27)

as a CV-BD associated with real convex function J in complex variables. Clearly, no matter whether
the variables u and v are in the real or the complex domain, Dp

J (u, v) is always a real-valued scalar.
According to (24), one can point out that a CV-BD is non-negative.

To ensure that the CV-BD can be utilized as the objective function as the BD, in the following
Lemma 1 and Lemma 2 prove that the CV-BD is as the same convex as J(x) and can measure the
closeness at two points in J.

Lemma 1. Let Dp
J (u, v)be a CV-BD associated with real convex or strictly convex function J, where u, v ∈ Cn.

Then Dp
J (u, v) is as the same convex property as J for variable u in each v.

Proof. Assume J is a real convex function and let ∀θ ∈ [0, 1], ∀x, y, v ∈ Cn, and p ∈ ∂v∗ J(v). Then we get

Dp
J (θx + (1− θ)y, v) = J(θx + (1− θ)y) − J(v) − 2<(

〈
θx + (1− θ)y− v, p

〉
)

= J(θx + (1− θ)y) − J(v) + C0
(28)

θDp
J (x, v) + (1− θ)Dp

J (y, v) = θ[J(x) − J(v) − 2<(
〈
x− v, p

〉
)]

+(1− θ)[J(y) − J(v) − 2<(
〈
y− v, p

〉
)]

= θJ(x) + (1− θ)J(y) − J(v) − 2<(
〈
θx + (1− θ)y− v, p

〉
)

= θJ(x) + (1− θ)J(y) − J(v) + C0

(29)

where C0 = −2<(
〈
θx + (1− θ)y− v, p

〉
).

Considering that J is a real convex function, J satisfies

J(θx + (1− θ)y) ≤ θJ(x) + (1− θ)J(y) (30)

Then we have
Dp

J (θx + (1− θ)y, v) ≤ θDp
J (x, v) + (1− θ)Dp

J (y, v) (31)

This completes the proof of Dp
J (u, v) is a convex function for variable u as J.

For J is a real strictly convex function, we assume ∀θ ∈ (0, 1), ∀x, y, v ∈ Cn and x , y. And J satisfies

J(θx + (1− θ)y) < θJ(x) + (1− θ)J(y) (32)

Then according to Equations (28), (29), and (32) we obtain

Dp
J (θx + (1− θ)y, v) < θDp

J (x, v) + (1− θ)Dp
J (y, v) (33)
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which proves that Dp
J (u, v) is a strictly convex function for variable u as J. Then, it can be concluded

that Dp
J (u, v) is as the same convex property as J for variable u in each v. �

Lemma 2. Let Dp
J (u, v) be a CV-BD associated with real strictly convex function J and assume a point w =

θu+ (1− θ)v is on the line segment connecting u and v, where u, v ∈ Cn, θ ∈ (0, 1). Then Dp
J (u, v) ≥ Dp

J (w, v)
and equality holds if and only if u = v.

Proof. Assume u , v, then we derive according to Lemma 1

Dp
J (w, v) = Dp

J (θu + (1− θ)v, v) < θDp
J (u, v) + (1− θ)Dp

J (v, v)
= θDp

J (u, v) < Dp
J (u, v)

(34)

when u = v, we yield

Dp
J (w, v) = Dp

J (θu + (1− θ)v, v) = Dp
J (v, v) = Dp

J (u, v) = 0 (35)

This completes the proof of Lemma 2. Then, the CV-BD at two points in convex function J would
decrease when they get closer, and may become zero if and only if the two points coincide. This
property makes the CV-BD the measurement of closeness at two points.

Thus, inspired by the original BI, we use the CV-BD between the variables to be solved and the
current solution to replace real convex function J(x) as the objective function:

xk = arg min
x∈Cn

Qk(x)

Qk(x) = H(x) + Dpk−1
J (x, xk−1)

(36)

Within the iterations, the CV-BD is nonincreasing. This will be proved in the next subsection. �

Obviously, Qk(x) is convex because of H(x) and the CV-BD. However, the CV-BD Dpk−1
J (x, xk−1)

may be multivalued at nondifferential xk-1, which inevitably interferes with the solution of xk. As
we shall prove below, this issue is not vital, since CV-BI introduced in the following subsection
automatically chooses a suitable CW-subgradient when dealing with Equation (36).

3.3. CV Bregman Iterations

CV-BI for Equation (36) is proposed directly and the definition and the convergence are proved in
the following.

3.3.1. CV-BI Algorithm

Algorithm 1. Let x0 = 0, p0 = 0, for k = 1,2,
1. compute xk as a minimizer of the convex function Qk(x)

xk = arg min
x∈Cn

Qk(x)

Qk(x) = λ‖y−Ax‖22 + J(x) − J(xk−1) − 2<(
〈
x− xk−1, pk−1

〉
)

(37)

2. compute pk = pk−1 − λAH(Ax− y) ∈ ∂x∗ J(xk)

Generally, we can initialize x0 and p0 whatever satisfy p0 ∈ ∂x∗ J(x0). Nevertheless, for any x0,0,
its CW-subgradient requires optional calculation, which is not desired in practical.

3.3.2. Definition of the Iteration

In this subsection, we reveal that the iterative procedure in Algorithm 1 is well defined. Specifically,
a minimizer xk exists in Qk(x) and the iteration can find an appropriate CW-subgradient pk automatically.
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Proposition 1. Assume that H(x) = λ‖y−Ax‖22, J(x) is convex and bounded, and let x0=0, p0 = 0 ∈ ∂x∗ J(x0).
Then, for each k ∈ N, there exists a minimizer xk in Qk(x), and there exists an appropriate CW-subgradient
pk ∈ ∂x∗ J(xk) and qk = ∂x∗H(xk) = λAH(Axk − y) such that

pk + qk = pk−1 (38)

Moreover, if A has no null space, a minimizer xk is unique.

Proof. We prove the result by induction. In the case of k = 1, Q1(x) becomes the original function F(x),
of which the existence of minimizers and the optimality condition p1 + q1 = p0 = 0 is well known [44].
In addition, assume rk = λ(y−Axk) and we have p1 = AHr1.

Then, we proceed from k−1 to k and assume pk−1 = AHrk−1 exists. To prove that the minimizers
exist, we first discus the boundedness of Qk(x). Recalling the l2-norm greater than or equal to zero,
Qk(x) can be estimated as

Qk(x) = J(x) − J(xk−1) − 2<(
〈
x− xk−1, pk−1

〉
) + λ‖y−Ax‖22

= J(x) − J(xk−1) − 2<
(〈

x− xk−1, AHrk−1

〉)
+ λ‖y−Ax‖22

= J(x) − J(xk−1) − 2<(〈Ax−Axk−1, rk−1〉) + λ‖y−Ax‖22
= J(x) − J(xk−1) − 2<(

〈
y−Axk−1, rk−1

〉
−

〈
y−Ax, rk−1

〉
) + λ‖y−Ax‖22

= J(x) − J(xk−1) − 2<
(

1
λ 〈rk−1, rk−1〉

)
+

〈
y−Ax, rk−1

〉
+ (

〈
y−Ax, rk−1

〉
)∗ + λ‖y−Ax‖22

= J(x) − J(xk−1) −
2‖rk−1‖

2
2

λ + λ‖y−Ax + rk−1
λ ‖

2
2 −

‖rk−1‖
2
2

λ

= J(x) − J(xk−1) −
3‖rk−1‖

2
2

λ + λ‖y−Ax + rk−1
λ ‖

2
2

≥ J(x) − J(xk−1) −
3‖rk−1‖

2
2

λ

(39)

Since only J(x) is not constant, the boundedness of Qk(x) implies the boundedness of J(x). This
shows that the level sets of Qk are weak-* compact [29]. Hence, a minimizer of Qk exists due to the
optimization theory. Besides, if A has no null space and H(x) as well as J(x) is strictly convex, Qk(x) is
also strictly convex, and therefore the minimizer is unique. This completes the proof of the existence of
minimizers for all k > 1.

The following proves pk and qk exist for all k > 1. According to the optimality conditions for Qk(x)

0 ∈ ∂x∗Qk(x) = ∂x∗H(xk) + ∂x∗ J(xk) − ∂x∗2<(
〈
x− xk−1, pk−1

〉
)

= ∂x∗H(xk) + ∂x∗ J(xk) − ∂x∗
〈
x− xk−1, pk−1

〉
− ∂x∗(

〈
x− xk−1, pk−1

〉
)∗

= ∂x∗H(xk) + ∂x∗ J(xk) − pk−1

(40)

we derive that
pk−1 ∈ ∂x∗H(xk) + ∂x∗ J(xk) (41)

Recalling that assume pk−1 exists, one can get that ∂x∗ J(xk) and ∂x∗H(xk) are not null sets, and consequently
yields the existence of pk ∈ ∂x∗ J(xk) and qk = ∂x∗H(xk) = λAH(Ax− y), which also satisfies Equation (38).

Recalling Equation (38) and p0 = 0, we obtain that

pk = −
k∑

i=1

qi = λ
k∑

i=1

AH(y−Axi) (42)

The definition of CV-BI has been proved as mentioned above. The whole CV-BI can be summarized
as follows:

xk = arg min
x

H(x) + Dpk−1
J (x, xk−1) (43)

pk = pk−1 −∇x∗H
(
xk

)
(44)

�
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Algorithm 1: CV-BI

Initialization: x0 = 0 p0 = 0 k = 1 λ,
While “stopping criterion is not met” do

xk = argmin
x

H(x) + Dpk−1

J (x, xk−1);

pk = pk−1 −∇x∗H
(
xk

)
;

K = k + 1;
End while

Review the entire process of proof and one can find that CV-BI possesses the ability to solve
any kind of regularization term J(x) in Equation (18) if J(x) is a real convex function in complex
variables. Furthermore, since each step of Algorithm 1 obeys the optimization rules in the complex
domain instead of converting the objective function Qk(x) and variable x into the real domain, one can
summarize that CV-BI preserve phase information for complex variables.

3.3.3. Convergence Analysis

In this subsection, the convergence property of CV-BI is analyzed. To be specific, two monotonicity
properties are proved with the help of the CV-BD.

Proposition 2. Under the above assumption, the sequence of H(xk) obtained from the CV-BI is monotonically
nonincreasing, we get

H(xk) ≤ H(xk) + Dpk−1
J (xk, xk−1) ≤ H(xk−1) (45)

Moreover, let x be such that J(x) <∞, then we even have

Dpk
J (x, xk) + Dpk−1

J (xk, xk−1) + H(xk) ≤ H(x) + Dpk−1
J (x, xk−1) (46)

Proof. Recall the nonnegative property of the CV-BD and that xk is the minimizer of the convex
function Qk(x), we obtain

H(xk) ≤ H(xk) + J(xk) − J(xk−1) − 2<(
〈
xk − xk−1, pk−1

〉
)

= Qk(xk) ≤ Qk(xk−1) = H(xk−1)
(47)

which implies Equation (45).
We can derive a formula motivated by the identity of the original BD [45]:

Dpk
J (x, xk) −Dpk−1

J (x, xk−1) + Dpk
J (xk, xk−1)

= J(x) − J(xk) − 2<(
〈
x− xk, pk

〉
)

−J(x) + J(xk−1) + 2<(
〈
x− xk−1, pk−1

〉
)

+J(xk) − J(xk−1) − 2<(
〈
xk − xk−1, pk−1

〉
)

= 2<(
〈
x− xk, pk−1 − pk

〉
)

= 2<(
〈
x− xk, qk

〉
)

(48)

Considering the definition of the CW subgradient and qk ∈ ∂x∗H(xk), we yield

Dpk
J (x, xk) −Dpk−1

J (x, xk−1) + Dpk
J (xk, xk−1) = 2<(

〈
x− xk, qk

〉
)

≤ H(x) −H(xk)
(49)

which is equivalent to Equation (46). �
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Proposition 3. Under the same assumption as Proposition 2, let x̃be a minimizer of H(x) with J(x̃) < ∞, then
we have

Dpk
J (x̃, xk) ≤ Dpk−1

J (x̃, xk−1) (50)

Proof. Recall the nonnegative property of the CV-BD and that x̃ is a minimizer of H(x), we get
an inequality

Dpk
J (x̃, xk) ≤ Dpk

J (x̃, xk) + Dpk−1
J (xk, xk−1) + H(xk) −H(x̃) (51)

According to Equations (49), (51) can be derived as

Dpk
J (x̃, xk) ≤ Dpk

J (x̃, xk) + Dpk−1
J (xk, xk−1) + H(xk) −H(x̃) ≤ Dpk−1

J (x̃, xk−1) (52)

which proves Equation (50). The results of Equations (45) and (50) conclude a general convergence
conclusion for CV-BI. More details about convergence can be found in [29]. �

3.4. CV-SBM

For various kinds of regularization terms corresponding to Equation (43), CV-BI still has to employ
other algorithms as BI does, which makes the solution process complicated and computationally
expensive. Inspired by SBM, we separate the original variable and present CV-SBM to settle the convex
inverse problems with the simplified solutions.

A constrained optimization problem in complex variables

min
x,d∈Cn

J(d) + H(x) s.t. d = Φx (53)

can be transformed into an unconstrained one

min
x,d∈Cn

F(x, d) + µ‖d−Φx‖22

F(x, d) = J(d) + H(x)
(54)

Evidently, F(x,d) is convex in x and d. Thus, by applying CV-BI to Equation (54) in each variable,
we can derive that(

xk, dk
)

= arg min
x,d

Dpk−1
F

(
x, xk−1, d, dk−1

)
+ µ‖d−Φx‖22

= arg min
x,d

F(x, d) − F
(
xk−1, dk−1

)
−2<

(〈
x− xk−1, pk−1

x

〉)
− 2<

(〈
d− dk−1, pk−1

d

〉)
+ µ‖d−Φx‖22

(55)

pk
x = pk−1

x − µΦH
(
Φxk
− dk

)
(56)

pk
d = pk−1

d − µ
(
dk
−Φxk

)
(57)
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To simplify the above iteration step Equation (55), we assume bk = pk
d/µ and get

−2<
(〈

x− xk−1, pk−1
x

〉)
− 2<

(〈
d− dk−1, pk−1

d

〉)
+ µ‖d−Φx‖22

= 2µ<
(〈

x− xk−1, ΦHbk−1
〉)
− 2µ<

(〈
d− dk−1, bk−1

〉)
+ µ‖d−Φx‖22

= 2µ<
(〈

Φx−Φxk−1, bk−1
〉)
− 2µ<

(〈
d− dk−1, bk−1

〉)
+ µ‖d−Φx‖22

= µ
[
2<

(〈
Φx− d, bk−1

〉)
− 2<

(〈
Φxk−1

− dk−1, bk−1
〉)
+ ‖d−Φx‖22

]
= µ

[
2<

(〈
Φx− d, bk−1

〉)
+ ‖d−Φx‖22

]
+ C1

= µ
[〈

Φx− d, bk−1
〉
+

〈
Φx− d, bk−1

〉∗
+ ‖d−Φx‖22

]
+ C1

= µ
[(

bk−1
)H

(Φx− d) + (Φx− d)Hbk−1 + ‖d−Φx‖22
]
+ C1

= µ‖d−Φx− bk−1
‖

2
2 + C1

(58)

where C1 is a constant. Substituting Equation (58) in Equations (55)–(57) yields(
xk, dk

)
= arg min

x,d
F(x, d) + µ‖d−Φx− bk−1

‖
2
2 (59)

bk = bk−1
−

(
dk
−Φxk

)
(60)

One can resolve Equation (59) by alternating minimization scheme with respect to x and d

xk = arg min
x

H(x) +
µ

2
‖dk−1

−Φx− bk−1
‖

2
2 (61)

dk = arg min
d

J(d) +
µ

2
‖d−Φxk

− bk−1
‖

2
2 (62)

The above two subproblems can be worked out easily. Considering the property of CV-BI, it can
be inferred that CV-SBM is also universal for convex J(x) in any convex optimization task.

The overall CV-SBM is shown as Algorithm 2

Algorithm 2: CV-SBM

Initialization: x0 = 0, d0 = 0, p0 = 0, λ, µ, k = 1
While “stopping criterion is not met” do

xk = argmin
x

H(x) + µ
2 ‖d

k−1
−Φx− bk−1

‖
2
2;

dk = argmin
d
‖d‖1 +

µ
2 ‖d−Φxk

− bk−1
‖

2
2;

bk = bk−1
−

(
dk
−Φxk

)
;

k =k+1;
End while

Assuming Φ = I, then we can work out Equation (18) through CV-SBM by three steps [35]:
Step1: Clear up the x subproblem

xk = arg min
x∈Cn

λ‖y−Ax‖22 + µ‖dk−1
− x− bk−1

‖
2
2 (63)

Considering the l2-norm is differentiable, Equation (63) can be tackled by taking the CW-gradient of x
equal to zero, and yield

xk =
(
λATA + µI

)−1(
λAT y + µdk−1

− µbk−1
)

(64)

Step2: Find a solution to the d subproblem

dk = arg min
d∈Cn
‖d‖1 +

µ

2
‖d− xk

− bk−1
‖

2
2 (65)
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This subproblem can be dealt with by a shrinkage operator

dk = shrink
(
xk + bk−1, 1/µ

)
(66)

shrink(γ, η) = sign(γ)max
(∣∣∣γ∣∣∣− η, 0

)
(67)

Step3: Update b
bk = bk−1

−

(
dk
− xk

)
(68)

CV-SBM for l1-norm problem can be presented as Algorithm 3

Algorithm 3: CV-SBM for l1-norm problem

Initialization: x0=0, d0=0, p0=0, λ, µ, k=1
While “stopping criterion is not met” do

xk =
(
λATA + µI

)−1(
λAT y + µdk−1

− µbk−1
)
;

dk = shrink
(
xk + bk−1, 1/µ

)
;

bk = bk−1
−

(
dk
− xk

)
;

k = k+1;
End while

4. Numerical Experiments

This section presents the performance of the proposed CV-SBM by conducting a wide range
of experiments solving l1-norm problems in the complex domain. We apply the proposed method
to recover a complex-valued random sparse signal x from the noisy measurements y generated by
y = Ax + ε, where x ∈ Cn, y ∈ Cm, A ∈ Cm×n, ε ∈ Cm. The sparse signal x consists of L nonzero elements
and the amplitudes of both x’s and A’s real part and imaginary part obey Gaussian Distribution N (0,1).
The noise vector ε is assumed to be i.i.d zero-mean complex Gaussian noise. The contrastive means for
the proposed scheme in the following subsections are as follows: classical OMP [46], CAMP, M-lasso,
and the original SBM converting technique [47]. Noted that in the following, the original SBM is called
RV-SBM. In addition, Section 4.1.2 presents the performance of the proposed method conducted in
ISAR imaging.

The stopping criterion for all algorithms is given as follow

‖xk
− xk−1

‖
2
2

‖xk−1‖
2
2

≤ tol (69)

or
k = kmax (70)

where tol = 2e−4 denotes the tolerance and kmax = 2000 is the maximum iteration times. All the
experiments are carried out in MATLAB 2016b on the PC with Intel I7 7700K @4.2 GHz with
32 GB memory.



Sensors 2019, 19, 4540 13 of 22

4.1. An Illustrative Example

4.1.1. Complex-Valued Random Sparse Signal Recovery

In this subsection, an illustrative example is devised to demonstrate the effectiveness of the
proposed method in comparison with OMP, CAMP, M-lasso, and RV-SBM. We consider that the signal
and measurement dimension is n = 256 and m = 128, respectively. Moreover, the sparsity level of x is
fixed L = 32 and the Signal to Noise Ratio (SNR) is set to 15 dB.

Figure 1 shows the contrast to the real and imaginary part of reconstruction signal among the
contrastive means and the proposed CV-SBM. The blue circle lines represent the recovered signal
and the black stars denote the ground truth. Note that zero-valued points of x remain hidden to
emphasize the nonzero ones in Figure 1. As shown in Figure 1a,b, there are five and nine accurately
reconstructed points (circle and star coincide) in real and imaginary part achieved by OMP, respectively.
Unsurprisingly, plenty of points mismatch far away from their position, especially the 150th point
in the imaginary domain. Figure 1c,d exhibits the reconstruction result of CAMP, which yields nine
well-recovered points in both the real and imaginary parts. However, there also exist outliers, but less
than OMP’s. In Figure 1e,f, eight and nine points are accurately recovered in the real and imaginary
domains by M-lasso, respectively. It can be seen that CAMP and M-lasso behave almost the same,
better than OMP. Figure 1g,h give the recovery results for the original RV-SBM whose real part shows
eight well-reconstructed points and whose imaginary part demonstrates 11 points. The proposed
technique yields 10 and 15 accurately recovered points, shown in Figure 1i,j, the most among the
algorithms. Comparison of the number of accurately reconstructed points is presented in Table 1.
In addition, the furthest outlier given by CV-SBM is at the same length as RV-SBM’s but far less than
the others’. This proves the effectiveness of CV-SBM for complex sparse signal recovery.

Table 1. Comparison of recovery performance by OMP, CAMP, M-lasso, RV-SBM, and the
proposed CV-SBM.

Number of Well-Recovered Points

Real Part of x Imaginary Part of x

OMP 5 9
CAMP 9 9
M-lasso 8 9
RV-SBM 8 11
CV-SBM 10 15

4.1.2. ISAR Imaging with Real Data

In this subsection, CV-SBM is applied in ISAR imaging with real data of the Yak-42 plane to
demonstrate its superiority, comparing with RV-SBM, the range-Doppler (RD) algorithm, and the CS
recovery method [48]. Detailed descriptions of targets and data are provided in [49]. Main radar
parameters are listed as follows: The signal bandwidth is 400 MHz with carrier frequency 10 GHz,
corresponding to a range resolution of 0.375 m. The pulse repetition frequency is 100 Hz, i.e., 64 pulses
within dwell time [−0.32, 0.32] (s) are used in this experiment. Motion compensated data are utilized
by the aforementioned four algorithms, shown in Figure 2a–d.
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Figure 1. Comparison of the real and imaginary parts of the reconstruction results by OMP, CAMP,
M-lasso, RV-SBM, and the proposed CV-SBM: (a) recovery performance for the real part of x by OMP;
(b) recovery performance for the imaginary part of x by OMP; (c) recovery performance for the real
part of x by CAMP; (d) recovery performance for the imaginary part of x by CAMP; (e) recovery
performance for the real part of x by M-lasso; (f) recovery performance for the imaginary part of x by
M-lasso; (g) recovery performance for the real part of x by RV-SBM; (h) recovery performance for the
imaginary part of x by RV-SBM; (i) recovery performance for the real part of x by CV-SBM; (j) recovery
performance for the imaginary part of x by CV-SBM.Sensors 2019, 19, x FOR PEER REVIEW 16 of 23 
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lowest among all the algorithms. Both OMP’s and RV-SBM’s MSE numerically exceed CV-SBM’s.  
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Figure 2. Comparison of ISAR imaging by RD [48], RV-SBM, and the proposed CV-SBM: (a) imaging
result by RD; (b) imaging result by [48]; (c) imaging result by RV-SBM; (d) imaging result by CV-SBM.

Figure 2a exhibits the result of the RD algorithm, in which low-quality focal and high side-lobes
occur. In Figure 2b, many strong scatters are extracted by [48]. However, there still exist several
strong outliers marked in red boxes. Figure 2c indicates the target’s geometry. Besides, the number
of outliers recovered by RV-SBM is less than [48]. In Figure 2d, the target’s geometry is clear and
scatters, marked in red box, extracted by CV-SBM are stronger than ones in the same area by [48]
and RV-SBM. Furthermore, most of the outliers shown in Figure 2b,c are suppressed greatly by the
proposed CV-SBM. This proves the effectiveness of CV-SBM in real data processing of ISAR imaging.
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4.2. Robustness Against Measurement Noise

In this subsection, we test the robustness of the proposed technique against the measurement
noise. The experimental parameters are set as follows: SNR varies from 5 dB to 20 dB and other
parameters are fixed the same as in the previous subsection. For each SNR, we average the MSE of 100
independent trials as the experimental result, as shown in Figure 3.Sensors 2019, 19, x FOR PEER REVIEW 17 of 23 
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Figure 3. Average MSE in different measurement noise levels.

As the SNR increases, the MSE of the proposed scheme declines, which implies CV-SBM is robust
to the noise. Before the SNR reaches 7 dB, the MSEs of CAMP and CV-SBM are almost the same,
but when SNR goes beyond 7 dB, the MSE of CV-SBM surpasses CAMP’s and becomes the lowest
among all the algorithms. Both OMP’s and RV-SBM’s MSE numerically exceed CV-SBM’s. In addition,
CV-SBM behaves better than M-lasso, except at the point when the SNR is equal to 7 dB, at which they
are approximately the same. This demonstrates that the proposed algorithm has better robustness
against the measurement noise among the methods.

4.3. Robustness Against Measurement Noise

In this subsection, how the dimension of measurements influences the recovery result is presented.
We set n = 256, SNR = 15 dB, L = 32, and m varies from 29 to 128. As in the previous subsection, we
measure the average MSE over 100 independent trials, as shown in Figure 4. It can be seen that as the
dimension of the measurements rises, the MSE of CV-SBM decreases, which means that the larger the
dimension of the measurements, the better the recovery performance of the proposed method.

In Figure 4, the MSE of CV-SBM is lower than RV-SBM’s and M-lasso’s. Except when the
measurement dimension is equal to 52 and 59, the performance of the proposed method is better than
CAMP’s. Before the dimension reaches 75, the MSE of OMP is far worse than CV-SBM’s. However,
when the dimension exceeds 75, the MSE of OMP reaches to 0.01 suddenly but reduces slowly as
it improves, becoming equal to CV-SBM’s at 90. When the dimension is larger than 90, the MSE of
CV-SBM continues to decline and becomes the lowest among all the algorithms.
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4.4. Time Cost Assessment

In this subsection, the computational cost of the proposed method is measured with increasing
dimension of the signal. To this end, we vary n from 128 to 1024 and fix SNR = 20 dB, m = 0.5n,
L = 0.125n. For each n, we conduct 20 independent trials and average the CPU time cost as the result,
as shown in Figure 5.Sensors 2019, 19, x FOR PEER REVIEW 19 of 23 
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The result shows that CV-SBM takes less CPU time than OMP and M-lasso in all test dimensions.
Before the dimension reaches 512, RV-SBM requires the least time. However, when the dimension is
more than 512, CV-SBM requires less CPU time than RV-SBM. This is because the complex-to-real
transformation utilized in RV-SBM expands the dimension of the sensing matrix A to 2m × 2n, which
leads to an inverse matrix with 2n × 2n elements and takes more memory and time within the
resolving process, while CV-SBM only needs to calculate a complex inverse matrix with n × n elements.
Nevertheless, CV-SBM takes a little more time than CAMP in large signal scale situations thanks to
CAMP’s specific design for l1-norm problems, whereas CV-SBM contains an inverse operator. However,
CV-SBM still has great potential to exceed CAMP considering that the gap between CAMP and CV-SBM
is not large.

4.5. Performance Comparison with RV-SBM

The tests mentioned above have shown that the proposed CV-SBM presents remarkable
performance compared with RV-SBM in the same experimental environment. Thus, in this subsection,
we focus on the convergence, time cost, and performance of CV-SBM and RV-SBM by implementing
experiments with various parameters. In the following experiments, two main parameters for CV-SBM
and RV-SBM are set to λ = 0.005 and µ = 120 and the stopping criterion (the tolerance tol and kmax)
varies. Furthermore, other experimental parameters are as follow: L = 0.125n, m = 0.5n and SNR varies
from 10 dB, 15 dB, and 20 dB. For each stopping criterion and SNR, 20 independent trials were carried
out and the average MSE, CPU time cost, and iteration time are selected as the result. The average MSE
and CPU time cost of the proposed method are also presented if CV-SBM presents better performance.

In the first test, we examine CV-SBM and RV-SBM in small scale n = 256 and fix tol = 2e−4,
kmax = 2000, as shown in Table 2. It can be seen that in each SNR situation, in the vast majority of
trials, RV-SBM achieves the stopping criterion Equation (69) and requires less CPU time and fewer
iterations, while the MSE of CV-SBM is always superior. This implies that RV-SBM possesses more
rapid convergence, but this property also leads to a severe performance loss. Besides, the convergence
speed of CV-SBM is about five times slower than that of RV-SBM, but this provides CV-SBM more
iterations to attain better performance. It should be pointed out that the average CPU time of RV-SBM
is not five times as fast as CV-SBM because a minority of trials of RV-SBM still consume 2000 iterations.

Table 2. Comparison of CV-SBM and RV-SBM when tol = 2e−4, kmax = 2000, and n = 256.

SNR (dB)
Average MSE Average CPU Time (s) Average Iterations

CV-SBM RV-SBM Promotion CV-SBM RV-SBM Promotion CV-SBM RV-SBM

10 dB 0.0426 0.0592 28.04% 0.0892 0.0258 N/A 2000.0 728.4
15 dB 0.0125 0.0523 76.10% 0.0885 0.0167 N/A 1991.3 387.3
20 dB 0.0031 0.0484 93.60% 0.0766 0.0167 N/A 1740.9 375.3

To inspect the performance regardless of the convergence condition, we reduce the tolerance to
tol = 2e−5 and keep the other parameters consistent with the previous experiment (Table 3). For any
situation in Table 3, both RV-SBM and CV-SBM stop by reaching the maximum iterations. As we can
see, the MSE gap between CV-SBM and RV-SBM is extremely narrow, but still exists. This illustrates
that CV-SBM achieves better performance due to employing the phase information. Furthermore,
CV-SBM still requires a little more time than RV-SBM, as in the first experiment.

Table 3. Comparison of CV-SBM and RV-SBM when tol = 2e−5, kmax = 2000, and n = 256.

SNR (dB)
Average MSE Average CPU Time (s) Average Iterations

CV-SBM RV-SBM Promotion CV-SBM RV-SBM Promotion CV-SBM RV-SBM

10 dB 0.0426 0.0489 12.88% 0.0892 0.0537 N/A 2000 2000
15 dB 0.0125 0.0146 14.38% 0.0874 0.0519 N/A 2000 2000
20 dB 0.0029 0.0042 30.95% 0.0865 0.0517 N/A 2000 2000
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At last, large scale n = 512 is taken into consideration (Table 4). The tolerance tol and the maximum
iteration times kmax are set the same as in Table 3. CV-SBM achieves superior performance in terms of
both MSE and time cost in comparison with RV-SBM. Specifically, CV-SBM yields 18.20%, 17.58%, and
26.67% lower MSE and requires 28.75%, 25.59%, and 23.64% less CPU time than RV-SBM in all kinds of
SNR cases, respectively. This reveals that the proposed CV-SBM is extremely applicable in large-scale
complex-valued sparse signal recovery.

Table 4. Comparison of CV-SBM and RV-SBM when tol = 2e−4, kmax = 2000 and n = 512.

SNR(dB)
Average MSE Average CPU Time(s) Average Iterations

CV-SBM RV-SBM Promotion CV-SBM RV-SBM Promotion CV-SBM RV-SBM

10dB 0.0445 0.0544 18.20% 0.2706 0.3798 28.75% 2000 2000
15dB 0.0136 0.0165 17.58% 0.2608 0.3505 25.59% 2000 2000
20dB 0.0033 0.0045 26.67% 0.2633 0.3448 23.64% 2000 2000

5. Conclusions

In this paper, a new CS recovery algorithm named CV-SBM is presented, which generalizes the
widely employed SBM into the complex domain. CV-SBM induces a theoretical support to directly
reconstruct the sparse signal in complex-valued variables, instead of converting them into real ones.
We apply the proposed CV-SBM to a l1-norm problem to recover a complex-valued sparse signal.
Experimental results demonstrate the superiority of CV-SBM over other existing CS reconstruction
methods, especially RV-SBM, in both recovery accuracy and time cost for large-scale cases.

A significant goal for future work lies in applying CV-SBM to more complicated regularization
problems, since CV-BI and CV-SBM are theoretically able to deal with any convex optimization problem.
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