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The field of coronary plaque analysis is advancing including more quantitative analysis 
of coronary artery diseases such as plaque burden, high-risk plaque features, com-
puted tomography-derived fractional flow reserve, and radiomics. Although these bio-
markers have shown great promise for the diagnosis and prognosis of cardiac patients 
in a research setting, many of these advanced analyses are labour and time intensive 
and therefore hard to implement in daily clinical practice. Artificial intelligence (AI) is 
playing an increasing role in supporting the quantification of these new biomarkers. AI 
offers the opportunity to increase efficiency, reduce human error and reader variabil-
ity and to increase the accuracy of diagnosis and prognosis by automating many pro-
cessing and supporting clinicians in their decision-making. With the use of AI these 
novel analysis approaches for coronary artery disease can be made feasible for clinical 
practice without increasing cost and workload and potentially improve patient care.
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Introduction

Artificial intelligence (AI) is rapidly advancing in the 
healthcare sector. In 2020, AI applications across the 
healthcare market were estimated to be valued at 4.9 bil-
lion dollars in the US alone with an estimated growth to 
$45.2 billion by 2026. Medical imaging can especially 
benefit from the use of AI. The development of convolu-
tion neural networks (CNN), a type of deep learning algo-
rithm ideally suited to deal with imaging data, and the 
increasing availability of medical imaging data have great-
ly supported the creation of imaging-dedicated AI algo-
rithms. Over 300 AI applications are currently approved 
by the FDA in the radiology and cardiovascular fields.1 In 
cardiac imaging, AI technologies are expected to increase 
diagnostic accuracy by increasing rates of detection of 

abnormalities, permitting better characterization of car-
diovascular disease and optimization of the clinical work-
flow by contributing to scheduling, protocol selection and 
reconstruction and post-processing of images.

Cardiovascular disease is one of the leading causes of 
death globally, the majority of which are due to coronary 
artery disease (CAD), with atherosclerosis being the main 
process driving the risk of adverse events. Coronary com-
puted tomography angiography (CCTA) offers a non- 
invasive approach to evaluate CAD with very high accuracy 
for the detection of CAD and is now clinically well inte-
grated. With increasing support for CCTA as a class I indi-
cation for the evaluation of stable chest pain in the new 
guidelines,2 the demand for cardiac imaging is on the 
rise. CAD imaging has traditionally focused on the evalu-
ation of coronary stenosis severity even though revascu-
larization of obstructive stenoses has failed to 
consistently improve prognosis.3 There are several im-
aging biomarkers of coronary atherosclerosis besides sten-
osis severity that appear to be more indicative of high-risk 
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anatomy and can help improve risk prediction and guide 
treatment. The magnitude of plaque burden is a superior 
predictor of thrombotic events than stenosis grading 
alone, with the risk of rupture increasing with higher pla-
que burden.4 Coronary artery calcium (CAC) scoring using 
CT offers the simplest method of assessing plaque burden. 
However, statin therapy may result in an increase in CAC 
that prevents its use as a method for longitudinal assess-
ment of plaque burden. There is increasing evidence 
that plaque composition, in addition to plaque burden, 
plays a pivotal role in mediating the risk of adverse events, 
indicating that phenotyping of high-risk plaques (HRP) 
that are unstable and vulnerable to rupture is critical in 
identifying those that are responsible for acute coronary 
syndromes (ACS) and myocardial infarction.5

Emerging invasive and non-invasive imaging technolo-
gies enable the identification of plaque components and 
HRP features. Although intravascular ultrasound (IVUS) 
has traditionally been used for plaque morphological ana-
lysis, recent advances in CCTA enable accurate and simul-
taneous assessment of stenosis severity, plaque burden, 
and HRP features.

Adipose tissue parameters, indicative of early stage ath-
erosclerosis, include epicardial (EAT) and peri-coronary 
adipose tissue (PCAT) quantification. In addition, it is hy-
pothesized that inflammation is related to active more 
vulnerable plaque and can therefore be used to identify 
HRP.6 In addition to these morphological plaque features, 
the functional significance of coronary plaque has proven 
to be a more accurate predictor of adverse events. 
Fractional flow reserve (FFR) is currently recommended 
to assess the functional significance of coronary artery 
stenosis, however, FFR is an invasive, costly, and time- 
consuming procedure. AI has paved the way to calculate 
CT-derived FFR, a measure of flow reduction caused by 
coronary stenoses, without the need for time-consuming 
extensive computations.

With increasing interest in these quantitative biomar-
kers comes an increase in manual labour to perform all 
the analysis involved, challenging making clinical imple-
mentation in a field that is already suffering a massive in-
crease in workload. AI can help in making these 
biomarkers clinically accessible by assisting in data ex-
traction and by automation of preprocessing and data ana-
lysis. In addition, with the help of AI, it is possible to 
combine information of the electronic medical records 
with imaging biomarkers to further personalize and im-
prove risk stratification and prognostication.

Coronary plaque detection and stenosis 
severity quantification
One of the main applications of CT in CAD imaging is the 
detection of coronary plaque and the quantification of 
stenosis severity by utilizing a combination of CAC assess-
ment and CCTA.

Coronary artery calcium
Quantification of CAC, a relatively simple procedure, is re-
commended by several international guidelines for the de-
tection and risk assessment of CAD.7 The CAC score serves 
as an indirect measure of plaque burden and is a strong 
predictor of incident adverse events. CAC scoring can be 
readily automated and AI-based CAC scoring has excellent 

accuracy when compared to expert readings and can be 
obtained accurately in a fraction of the time, thus improv-
ing clinical workflow, Figure 1(A). CAC scoring is tradition-
ally performed on ECG-triggered non-contrast 
acquisitions. However, chest CT imaging for other indica-
tions offers an opportunity for incidental CAC scoring 
that can be achieved using AI on non-ECG-triggered non- 
cardiac examinations, thus expanding the availability of 
cardiovascular risk assessment.

CCTA and CAD-RADS 2.0
CCTA is required for the detection and classification of cor-
onary artery stenoses as it has a high negative predictive 
value for the exclusion of CAD that is found in almost 
50% of patients currently. In patients with CAD, CCTA per-
mits grading of the severity of lesions and identification of 
obstructive lesions that might benefit from intervention. 
Even individuals with non-obstructive CAD (<50% stenosis) 
have worse outcomes (event rate ∼1.6%) compared to 
those without CAD (event rate 0.2%).8 The CAD-RADS™ 
system was designed to standardize reporting of CAD sten-
osis severity and enhance multidisciplinary communica-
tion. This system classifies stenosis severity in 
predefined categories paired with follow-up recommenda-
tions: (CAD-RADS 0 = no atherosclerosis; CAD-RADS 1–2 = 
non-obstructive disease present; CAD-RADS 3–5 = ob-
structive disease).9 However, manual CAD-RADS reading 
is more complex than CAC scoring, can be time consuming 
and is prone to inter-reader variability and is susceptible 
to differences between centres and in reporting practices. 
Augmentation of CAD-RADS evaluation using AI-based soft-
ware can form the cornerstones of coronary artery seg-
mentation, stenosis detection, and severity analysis. 
Dedicated algorithms are currently under development, 
with initially promising results, that can assist radiologists 
in determining CAD-RADS with higher accuracy and re-
duced reading time and variability, Figure 1(B) and (C). 
CAD-RADS 2.0 now recommends reporting of HRP and pla-
que burden,9 that can be assisted by AI-based software in-
novation. AI-assisted plaque burden quantification, 
normally time intensive and subject to inter-reader vari-
ability, is being developed. Nevertheless, CCTAs are com-
plex exams and further evaluation is needed for the 
analysis of coronary anomalies, myocardial bridging, and 
imaging artefacts.

Morphological plaque features
In addition to detecting coronary plaque, CCTA permits 
the evaluation of morphological and functional character-
istics of the plaque, such as plaque burden and compos-
ition that aid in the prognostication of CAD.

High-risk plaque features
Histological assessment of coronary atherosclerosis has 
identified a set of HRP features that characterize culprit 
lesions responsible for ACS and include thin-cap fibroather-
oma, large plaque volume, and necrotic core.10 These fea-
tures can be identified using invasive imaging methods 
including IVUS, optical coherence tomography and near- 
infrared spectroscopy, or non-invasively using CCTA. CCTA 
allows identification of both calcified and non-calcified 
plaque, determination of plaque size and specific HRP fea-
tures including low attenuation plaque (<30HU), napkin 



C114                                                                                                                                                                                   M. van Assen et al.

ring sign, positive remodelling, and spotty calcifications, 
entities that are more frequently found in culprit lesions 
associated with ACS and adverse clinical outcomes.8

Manual segmentation and identification of coronary pla-
que and HRP features is very labour intensive and therefore 
impractical for clinical deployment. Recent advances in 
several AI-augmented software programmes that auto-
matically perform quantitative plaque analysis, permits 
reproducible quantification of plaque burden, identifica-
tion and quantitation of calcified and non-calcified plaque, 
detection of HRP features including positive remodelling 
and determination of stenosis severity.11 Many of these 
AI-assisted software programmes have been successfully 
validated using IVUS measurements or histology data 
from carotid plaques.11

Plaque burden and progression
The total coronary plaque burden is an indicator of disease 
severity and more accurately predicts outcomes com-
pared to stenosis severity assessments.12 In addition, non- 
calcified plaque burden that identifies more vulnerable or 
active plaque, can also be detected by CCTA, allowing 
more accurate prognostication. AI permits rapid and 
more standardized analysis of plaque burden (Figure 2). 
Coronary atherosclerosis usually progresses over time 
although the rate of progression can vary widely. 
Quantification of CAD progression can play a crucial 
role in improving prognostication and can be utilized to 
assess the effectiveness of anti-atherosclerotic therapies 
and to guide treatment decisions. Although serial CT im-
aging enables longitudinal evaluation of plaque progres-
sion, there are concerns regarding the consistency of 
CT imaging protocols and systems that complicate inter-
pretation. The PARADIGM (Progression of AtheRosclerotic 

PlAque DetermIned by Computed TomoGraphic Angiography 
IMaging) study,13 conducted serial CCTA 3.8 years apart in 
1225 patients, highlights the value of CT for the evaluation 
of plaque progression and determination of the impact of 
lipid-lowering intervention AI-based plaque quantification 
methods can aid evaluation of large patient populations, 
more accurate determination of relatively small changes 
in plaque burden and reduce the variability of measure-
ments (Figure 2).

Functional measures
Computed tomography-fractional flow reserve
While CCTA is known for the assessment of morphological 
features of coronary plaque, functional assessments that 
determine flow consequences of CAD appear to have add-
itional value in risk stratification. FFR assesses the haemo-
dynamic significance of coronary stenoses and is 
traditionally assessed during coronary angiography using 
invasive methods. It is now to perform FFR analysis coron-
ary CT images. CT-derived FFR (CT-FFRCFD, Heartflow Inc.) 
employs computational fluid dynamics (CFD) and to date is 
the only FDA-approved method. However, there are sev-
eral machine learning-based CT-FFR applications that 
are available and allow rapid in-house calculation of 
CT-FFR with high accuracy when compared to invasive 
FFR and CFD-based FFR,14 Figure 3. The use of CT-FFR al-
lows simultaneous anatomical and functional assessments 
and can thereby improve the prognostication.

Adipose tissue
Inflammation plays a key role in the development and pro-
gression of CAD. Although stenosis assessment and plaque 
analysis play a major role in the evaluation of CAD, 10% of 

Figure 1 AI algorithms for CAC Agatston score, CCTA plaque detection, and automated CAD-RADS classification. (A) showing an AI-based coronary calcium 
scoring (Siemens Healthineers). (B) The AIHeart algorithm (Siemens Healthineers) is a prototype that allows CAD-RADS classification by identification and clas-
sification of coronary plaque. (C) shows the AIHeart results for all coronary segments and lesions including stenosis degree and plaque composition, with op-
tions for manual correction.
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all ACS occurs in patients without significant (>50% diam-
eter) stenosis.15 These are most likely caused by abrupt 
disruption of vulnerable, highly inflamed non-obstructive 
atherosclerotic plaques. While HRP features can identify 
vulnerable plaques, the evaluation of cardiac adipose tis-
sue could detect this inflammation and may be a potential 
early indicator of future or even ongoing high-risk plaque 
development.6 Several adipose tissue biomarkers current-
ly being investigated include epicardial adipose tissue 
(EAT) and PCAT volume and density. Obesity, diabetes, 
and other genetic and environmental factors can contrib-
ute to EAT hypertrophy which is associated with failure of 
triglyceride storage, increased lipolysis, and inflamma-
tion.16 PCAT, in closer vicinity to the coronary arteries, is 
hypothesized to be a more specific bidirectional marker 
of coronary inflammation and therefore of the CAD sta-
tus.17 Quantitation of adipose biomarkers requires time- 
consuming manual analysis and is dependent on accurate 
segmentation. AI technology is being increasingly utilized 
to assess adipose tissue-based cardiac biomarkers. AI can 
assist in the segmentation and quantification of adipose tis-
sue depots while greatly reducing the labour intensiveness. 
CNN are often used to segment the EAT/PCAT depots and 
subsequently calculate the volume and/or attenuation. 
Although studies have not used these techniques for PCAT, 
they have been extensively used for EAT assessment.18

Radiomics
Radiomics refers to a quantitative approach to extract 
large amounts of tissue characterization features from 
imaging data using advanced mathematical analysis. 

Features extracted are related to the spatial distribution 
of the signal and pixel interrelationships and do not have 
to have a direct relationship with a clinical feature. 
Radiomics can be used to assess tissue properties of mul-
tiple important cardiac structures that are mentioned 
above such as coronary plaques and adipose tissues. 
Radiomics not only plays a role in adipose tissue quantifi-
cation but is also of interest for the analysis of all cardiac 
imaging datasets and can be used for risk stratification 
and prognostic modelling.19 Because of its capabilities 
in analysing large datasets and enabling the detection 
of complex relationships, AI algorithms using radiomics 
data are an ideal way to create predictive models that le-
verage cardiac imaging.

There are studies using radiomics to identify EAT and 
PCAT-specific features and subsequently use AI for diag-
nostic or prognostic purposes. An example is the study per-
formed by Oikonomou et al.20 on PCAT quantification 
showing that an AI-powered fat radiomic profile identifies 
inflammatory differences and improves cardiac risk 
prediction.

Prediction and outcomes
Availability of an increasing number of cardiac risk imaging 
biomarkers offers a unique opportunity to develop pre-
dictive models that can add value to current risk scores 
and prognostic models. Current models utilize limited 
amounts of clinical risk factor data, but the addition of 
AI-assisted incorporation of imaging-based markers such 
as CAC scores, plaque morphology features, adipose tis-
sue, and radiomics will likely provide more accurate and 

Figure 2 AI algorithms for advanced CCTA plaque analysis. The left panel shows AI-based plaque quantification with software from Cleerly Inc. allowing the 
evaluation of plaque progression over time. The right panel shows the Elucid Vascucap Software for structural and plaque component-based quantitative pro-
files of coronary plaque.
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personalized models for risk assessment. However, its im-
plementation into routine clinical workflow will require 
infrastructure that allows extraction of both clinical and 
imaging data and standardization of data formats.

Challenges
AI for CAD evaluation has some limitations. First is data ac-
cessibility, quality, and representativeness. Without large 
amounts of data that equally represent the target popula-
tion, including accurate labelling and reference stan-
dards, AI will not be able to reach its full potential. 
Larger prospective studies are needed to reduce bias 
and prove the value of these parameters in representative 
populations. While one of the strengths of AI is to evaluate 
complex relationships in large amounts of data in an auto-
mated way, it also is sensitive to propagate bias in data and 
interpretation in an automated way. In addition, reprodu-
cibility needs to be proven, especially with the use of 
radiomics, as variability in ROI placements, etc. can affect 
reproducibility. External validation is needed to provide 
information on the accuracy of AI software in order to clin-
ically implement the right algorithms and fulfil expecta-
tions. For AI solutions to have a beneficial impact on 
clinical workflow, data transparency, including fundamen-
tal functional principles, and reproducibility are essential. 
Clinicians need to build trust in the AI software in order to 
implement it into their daily practice. Currently, the clin-
ical cost effectiveness and value of AI in practice is lacking 
and is a crucial step for reimbursement and for clinical im-
plementation of AI-based software.

Summary
Artificial intelligence is set to change the medical sector 
and can greatly impact CAD evaluation. AI-based applica-
tions can play a significant role in the identification, quan-
tification, and prognostication of CAD. Moreover, AI can 

play a significant role in the identification and clinical appli-
cation of novel imaging biomarkers and workflow optimiza-
tion for cardiac CT and coronary plaque analysis. AI can 
rapidly and accurately provide physicians with better data 
and information allowing better decision-making. We need 
to embrace and guide this technology to improve the quality 
of healthcare by improving patient treatment and outcomes.
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