ESOPHAGEAL ORGANOID PROLIFERATION AND DIFFERENTIATION ARE ALTERED BY LOSS OF MSH2

M. Rolland, A. Gonneaud, D. Jean, V. Giroux

Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada

Background: The stratified epithelium of the esophagus includes Krt15+ basal stem cells that display self-renewing and regenerative capacity, and multipotency. However, the mechanisms that specifically control their functions remain unknown. Interestingly, RNA sequencing and GSEA revealed an enrichment of a gene set associated with DNA repair in Krt15+ cells vs Krt15- cells. We also observed that Msh2 (DNA mismatch repair pathway) is the most significantly upregulated gene in Krt15+ stem cells.

Aims: To determine the effect of Msh2 loss on self-renewal and differentiation of esophageal organoids.

Methods: Esophageal epithelial cells were isolated from a wild-type mouse. Using flow cytometry, esophageal Krt15+ (GFP+) and Krt15- (GFP-) cells were sorted from Krt15-CrePR1 ($R26^{mT/mG}$) mice. All cell populations were grown as organoids and Msh2 was depleted using a CRISPR/Cas9 approach. Impact of Msh2 loss on self-renewal and differentiation in esophageal epithelial organoids was evaluated through organoid formation assays, WST-1 proliferation assays and histological analysis.

Results: At baseline, organoids depleted for *Msh2* formed more poorly differentiated and less well-differentiated organoids than controls. Lower expression of differentiation gene *Krt13* was also observed in *Msh2*-depleted organoids, confirming an altered differentiation pattern. Furthermore, these organoids showed a higher organoid formation rate and proliferation by WST-1 assay, suggesting that self-renewal capacity and viability are increased when *Msh2* is depleted. Interestingly, following radiation, organoids depleted for *Msh2* showed higher residual levels of p-H2AX (DNA damage marker), suggesting that their capacity to cope with DNA damages is altered. As mentioned above, we previously reported that *Msh2* is the most upregulated gene in *Krt15*+ vs *Krt15*- cells. Therefore, to determine if Msh2 role is distinct in both populations, we depleted *Msh2* in *Krt15*+ and *Krt15*- cells-derived organoids. Interestingly, our preliminary results suggest that *Msh2* deletion led to increased p-H2AX and decreased Krt13 levels in *Krt15*+ organoids but not in *Krt15*- organoids.

Conclusions: Our results show that Msh2 is potentially a key contributor of esophageal stemness in homeostatic and injured conditions.

Funding Agencies: CIHRCanada Research Chair

A16