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Abstract 

Background:  Environmental factors play a major role in transmission of malaria given their relationship to both the 
development and survival of the mosquito and parasite. The associations between environmental factors and malaria 
can be used to inform the development of early warning systems for increases in malaria burden. The objective of 
this study was to assess temporal relationships between rainfall, temperature and vegetation with malaria morbidity 
across three different transmission settings in Uganda.

Methods:  Temporal relationships between environmental factors (weekly total rainfall, mean day time temperature 
and enhanced vegetation index series) and malaria morbidity (weekly malaria case count data and test positivity 
rate series) over the period January 2010–May 2013 in three sites located in varying malaria transmission settings in 
Uganda was explored using cross-correlation with pre-whitening. Sites included Kamwezi (low transmission), Kasam-
bya (moderate transmission) and Nagongera (high transmission).

Results:  Nagongera received the most rain (30.6 mm) and experienced, on average, the highest daytime tempera-
tures (29.8 °C) per week. In the study period, weekly TPR and number of malaria cases were highest at Kasambya and 
lowest at Kamwezi. The largest cross-correlation coefficients between environmental factors and malaria morbidity for 
each site was 0.27 for Kamwezi (rainfall and cases), 0.21 for Kasambya (vegetation and TPR), and −0.27 for Nagongera 
(daytime temperature and TPR). Temporal associations between environmental factors (rainfall, temperature and 
vegetation) with malaria morbidity (number of malaria cases and TPR) varied by transmission setting. Longer time lags 
were observed at Kamwezi and Kasambya compared to Nagongera in the relationship between rainfall and number 
of malaria cases. Comparable time lags were observed at Kasambya and Nagongera in the relationship between 
temperature and malaria morbidity. Temporal analysis of vegetation with malaria morbidity revealed longer lags at 
Kasambya compared to those observed at the other two sites.

Conclusions:  This study showed that temporal associations between environmental factors with malaria morbidity 
vary by transmission setting in Uganda. This suggests the need to incorporate local transmission differences when 
developing malaria early warning systems that have environmental predictors in Uganda. This will result in develop-
ment of more accurate early warning systems, which are a prerequisite for effective malaria control in such a setting.
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Background
Malaria is a major public health challenge worldwide 
with 3.3 billion people at risk of infection, resulting in 
over 214 million cases and an estimated 438,000 deaths 
in 2015 [1]. In Uganda, it is the leading cause of mor-
bidity and mortality accounting for 40 % of the hospital 
outpatient visits, 20  % of hospital admissions, and 14  % 
of hospital deaths [2]. Despite malaria being endemic in 
over 95  % of the country, different regions of the coun-
try experience varying transmission intensities, some of 
which have been historically among the highest in the 
world [3].

Uganda is a relatively humid equatorial country 
although local differences in rainfall and temperature 
are caused by the topography, prevailing winds, and 
water bodies [4]. The yearly average rainfall ranges from 
800 to 1500 mm, generally falling in two seasons in the 
south (March–May and September–November), and in 
one season in the north (April–October). Conversely, 
temperatures vary mainly with altitude and changes little 
from season to season. Uganda has a relatively high alti-
tude, 1300–1500  m above sea level, and a mean annual 
temperature that ranges from 16  °C in the southwest to 
30  °C in the northeast and 25  °C in rest of the country 
[5]. Vegetation is varied, with tropical rain forests in the 
south, wooded savanna in central Uganda and semi-
desert conditions in the north [6].

Environmental factors play a major role in transmission 
of malaria given their relationship to both the develop-
ment and survival of the mosquito and the parasite. The 
incubation period for malaria parasites within the mos-
quito is largely temperature driven, and temperature also 
influences the frequency of blood feeding, the rate of lar-
val development and the survival capacity of the larvae 
and adult mosquito, making temperature a major deter-
minant of malaria risk [7, 8]. At the population level, the 
role of temperature in the spread of malaria was exam-
ined by Mordecai and colleagues [9], using observational 
data from the 1900s. They demonstrated that malaria 
transmission peaks at 25  °C and the spread decreases 
dramatically at temperatures above 28 °C. Siraj et al. [10] 
examined malaria spatial distribution with inter-annual 
variability of temperature in Colombia and Ethiopia, and 
found that warmer years were accompanied by a higher 
incidence of the disease.

Precipitation results in breeding sites for the aquatic 
stages of the mosquito’s life cycle although severe rainfall 
events may wash out any mosquito larvae in these pools 
or aquatic environments, consequently decreasing mos-
quito and parasite populations [11]. Several studies have 
found associations between changes in malaria incidence 
to patterns of rainfall. For instance, a study from Sri 
Lanka showed strong correlations between malaria cases 

and rainfall with lags of 0–3  months between a rainfall 
event and a corresponding increase in malaria cases [12], 
while a study in South Africa linked inter-annual differ-
ences in malaria to rainfall [13].

In addition to temperature and rainfall, malaria inci-
dence has also been associated with vegetation. Vegeta-
tion provides an outdoor resting refuge, serves as a food 
source [14] and its association with malaria incidence is 
well documented [15–17]. High vegetation density has 
been associated with higher areas of malaria transmis-
sion although conversely, low vegetation density due to 
intensive land use has also been associated with areas 
of elevated malaria transmission, given the high human 
population density [18].

Correlations between rainfall, temperature and vegeta-
tion with malaria morbidity have long been established. 
There is still, however, limited knowledge on variation of 
the temporal relationship (lag time) between these envi-
ronmental factors with malaria morbidity resulting from 
changes in transmission setting. This study assessed the 
temporal relationship between rainfall, temperature, and 
vegetation with malaria morbidity across three different 
transmission settings in Uganda.

Methods
Data
The study used laboratory confirmed malaria data col-
lected at three outpatient health facilities located at 
varying transmission settings in Uganda: Kamwezi [low 
transmission, entomological inoculation rate (EIR)  <  1], 
Kasambya (medium transmission, EIR  =  3), and 
Nagongera (high transmission, EIR  =  562) [19]. These 
sites are supported to produce high quality malaria sur-
veillance data based on laboratory confirmed cases. 
Weekly data from January 2010 through May 2013 was 
used in the study and restricted to each health facility’s 
catchment population [20]. Malaria morbidity was esti-
mated using two indicators: number of malaria cases 
defined as total number of patients testing positive for 
malaria, and test positivity rate (TPR) defined as the 
number of patients testing positive divided by the total 
number of patients tested.

The study used environmental data for the catchment 
areas of each health facility. Data included total rainfall, 
average daytime temperature, and enhanced vegetation 
index (EVI). Satellite-based daily rainfall estimates were 
obtained from the Tropical Rainfall Measuring Mis-
sion (TRMM). The daily TRMM product (3B42) was 
extracted from NASA Goddard Earth Sciences Data 
and Information Services Center and it was at a spa-
tial resolution of 0.25°  ×  0.25°. Temperature data was 
obtained from satellite estimates of land surface tem-
perature (LST) acquired from the moderate resolution 



Page 3 of 6Kigozi et al. Malar J  (2016) 15:511 

imaging spectro-radiometer (MODIS) instruments. The 
MODIS Terra LST product (MODI1A2) is an eight-day 
composite image with a 1-km spatial resolution. Mean 
8-day LST (°C) were computed for each site for the day-
time (10:30  a.m.) LST estimates. Vegetation data, the 
enhanced vegetation index (EVI), was also obtained from 
MODIS (MOD13A1) using 16-day composite images at a 
0.5 × 0.5 km resolution. Total rainfall was the cumulative 
total of rainfall over a 1-week period. EVI and daytime 
temperature values were interpolated to a weekly tempo-
ral resolution, given the different temporal frequencies. A 
linear spline was used to interpolate EVI and a quadratic 
spline to interpolate temperature measures. All polygons 
were projected using the Universal Transverse Mercator 
System; Zone 35 North (UTM35N).

Statistical analysis
Temporal relationships between rainfall, temperature 
and vegetation with malaria morbidity were examined 
using cross-correlation analysis with pre-whitening. 
Cross-correlations between each of the input series (rain-
fall, temperature, EVI) and the response series (malaria 
case counts and TPR) were analysed to detect statistically 
significant time lag(s) of the input series that preceded 
the response series with in a maximum lag of 26 weeks. 
Cross correlation analyses with pre-whitening involves 
fitting an auto regressive moving average (ARIMA) 
model to the input series so that the residuals are “white 
noise” exhibiting a random variation [21]. The same 
ARIMA model is then applied to the response series. 
Pre-whitening is used to minimize the effect of spuri-
ous correlations between the series. The residuals from 
each series are subsequently used to estimate the cross-
correlations between the predictor and response series. 
To obtain pre-whitened series, various ARIMA models 
were applied to the rainfall, temperature and vegetation 

series. For each series, the ARIMA model with the lowest 
Akaike’s information criterion (AIC) was selected. Analy-
sis was conducted using both SAS and STATA statistical 
packages. Time lags corresponding to significant cross 
correlations between the different environmental factors 
and malaria morbidity indicators were identified.

Results
Nagongera received the most rain (30.6  mm) and expe-
rienced, on average, the highest daytime temperatures 
(29.8 °C) per week (Table 1). Enhanced vegetation index 
was similar across the three sites and these series con-
tained the most distinct seasonality, especially for the low 
transmission site (Kamwezi). Contrary to known trans-
mission intensity, weekly TPR and number of malaria 
cases were highest at Kasambya (medium transmission 
setting), followed by Nagongera (high transmission set-
ting) and Kamwezi (low transmission setting) in the 
study period.

The largest cross-correlation coefficient for each 
site was 0.27 for Kamwezi (rainfall and cases), 0.21 
for Kasambya (vegetation and TPR), and −0.27 for 
Nagongera (daytime temperature and TPR). The study 
showed that temporal associations between environ-
mental factors (rainfall, temperature and vegetation) 
with malaria morbidity (number of malaria cases and 
TPR) varied by transmission setting (Table  2). Addi-
tionally, the results differed when case counts or TPR 
was used. Longer time lags were observed in the rela-
tionship between rainfall and number of malaria cases 
at Kamwezi and Kasambya, 11–12  weeks, compared 
to Nagongera that showed a lag of 3  weeks. Examina-
tion of temporal relationship between rainfall and TPR 
showed longest time lags (23  weeks) at Kamwezi. For 
temperature and malaria morbidity, similar time lags 
(7  weeks) were observed at Kasambya and Nagongera 

Table 1  Data summary

Measurement Kamwezi (low transmission) Kasambya (medium transmission) Nagongera (high transmission)

Total attendance 80,808 60,248 70,484

Number suspected to have malaria 24,487 29,128 32,944

Number tested for malaria 36,167 45,134 46,901

Number of confirmed malaria 14,001 17,509 15,890

Weekly TPR 30.7 % (3.0–63.7 %) 37.0 % (12.9–83.0 %) 33.7 % (8.9–57.7 %)

Weekly case count 79 (0–533) 98 (3–513) 89 (18–223)

Total rainfall 19.1 (0–113.8) 19.0 (0–113.4) 30.6 (0–107.8)

Vegetation 0.4 (0.2–0.6) 0.5 (0.2–0.6) 0.4 (0.2–0.5)

Daytime temperature 27.6 (19.9–35.8) 27.4 (20.4–37.9) 29.8 (22.0–41.6)
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regardless of malaria morbidity metric used. These were 
shorter compared to those seen at Kamwezi between 
temperature and TPR (25 weeks). Temporal analysis of 
vegetation with malaria morbidity revealed longer lags 
at Kasambya compared to those observed at the other 
two sites.

Negative relationships were observed between rainfall, 
temperature and vegetation with malaria case counts at 
Kasambya, showing that an increase in any of these input 
series resulted in a decrease in malaria case counts and 
vice versa. Similarly, negative relationships were observed 
between temperature and case counts at Kamwezi, tem-
perature and TPR at Kasambya and Nagongera, between 
vegetation and TPR at Kamwezi and also with vegetation 
and case counts at Kasambya and Nagongera. The mag-
nitude of the cross correlations between environmental 
factors and malaria morbidity were however comparable 
across sites.

The final ARIMA models were (p = 11, d = 1, q = 1), 
(p = 0, d = 1, q = 32) and (p = 16, d = 1, q = 1) for rain-
fall, daytime temperature and vegetation, respectively for 
Kamwezi, (p = 1, d = 1, q = 1), (p = 9, d = 1, q = 2) and 
(p = 4, d = 1, q = 1) for Kasambya, and (p = 9, d = 1, 
q = 1), (p = 12, d = 1, q = 1), (p = 18, d = 1, q = 1) for 
Nagongera.

Discussion
The present study suggests that temporal associations 
between environmental factors with malaria morbidity 
vary by transmission setting in Uganda. This is the first 
study to examine temporal relationships between envi-
ronmental factors and malaria morbidity across trans-
mission settings in Uganda. Overall, time lags obtained in 
this study are consistent with those showed in other stud-
ies that have examined these associations. In Ethiopia, 

rainfall was positively associated with malaria cases at 
five out of the twelve sites with a time lag of 4–12 weeks 
[22] and in Rwanda, which borders Uganda in the south-
west, rainfall was significantly associated with malaria 
incidence at 8 and 12  weeks in an area of unstable 
transmission [23]. The significant lags as determined 
by our study for malaria cases and rainfall ranged from 
3–12 weeks.

This range falls within estimated time periods for the 
life cycle development processes of the vector and the 
parasite inside the vector and the host. Once an egg in laid 
on the surface of water, the mosquito will take, on average, 
3 weeks to mature and seek a blood meal [24]. Increased 
flooding or rainfall could also increase the abundance of 
mosquitoes, given that there will be more breeding sites 
and increased humidity affecting mosquito longevity and 
parasite development [25]. Conversely, increases in severe 
rainfall events may wash out any mosquito larvae in these 
pools or aquatic environments, consequently decreasing 
mosquito and parasite populations [11].

This study observed significant associations between 
daytime temperature and malaria cases from 5 to 
7  weeks. On the contrary, a study in Kenya found that 
temperature was associated with the greatest transmis-
sion risk of malaria 4  months prior to the peak of an 
epidemic [8]. More recently however, significant associa-
tions were seen at lags starting from 7 and 13 weeks in 
Kenya [26]. In the highlands of Burundi, a lag of 4 weeks 
was significant between temperature and malaria [27], 
while lags of 4 and 8 weeks were significant for an area 
of unstable malaria transmission in Rwanda [23]. Tem-
perature has been documented to affect survival and 
growth of both the vector and the parasite in the vector 
[28–30]. Increasing temperatures will increase the speed 
of development of the parasite and mosquito, which in 

Table 2  Lags with  their corresponding cross-correlations (statistically significant) between  environmental factors 
and malaria

* If multiple lags were significant, the lag with the highest correlation coefficient was chosen

– indicates there were no significant lags from 0 to 26 weeks

Kamwezi (low transmission) Kasambya (medium transmission) Nagongera (high transmis-
sion)

Counts TPR Counts TPR Counts TPR

Lags

 Rainfall 11 23 12 7 3* 7

 Temperature 5 25 7 7 7* 7*

 Vegetation 3 0 23 6* 3 –

Cross-correlations

 Rainfall 0.27 0.16 −0.16 0.19 0.24 0.24

 Temperature −0.15 0.15 −0.14 −0.19 0.25 −0.27

 Vegetation 0.15 −0.17 −0.17 0.21 −0.15 –
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turn influences the survival of the parasite and mosquito 
[28]. The parasite matures in approximately one and half 
weeks within the mosquito at optimal temperatures while 
maturity in the human host takes approximately a week 
[24]. It is thought that temperatures of 30–32 °C are opti-
mal for parasite and mosquito in spreading malaria [29, 
30]. Therefore, if temperatures exceed 33  °C, the trans-
mission of malaria may decrease.

In terms of vegetation and malaria cases, the present 
study identified significant lags of 3–23  weeks while in 
Burundi and Ethiopia, 8 and 12 weeks were significantly 
correlated to vegetation and malaria [27, 31]. As dem-
onstrated in previous studies, malaria transmission and 
mosquito abundance can be influenced by vegetation 
cover through provision of an outdoor resting place for 
the vector [14].

Limitations of the study
This study did not explore other predictors of malaria 
such as land use and existing control interventions, which 
may be important considerations for an early warning 
system. Additionally, the study team could not know if 
the observed cases were incident or recrudescent. Inclu-
sion of recrudescent cases in the outcome series would 
weaken the correlation to environmental covariates [32], 
which have a stronger relationship with incident cases. 
Finally, this study did not include entomological data due 
to unavailability, which would provide a clearer under-
standing of the link between rainfall and malaria through 
the examination of rainfall and mosquito breeding and 
survival [12].

Conclusions
This study showed that temporal associations between 
environmental factors with malaria morbidity vary by 
the three transmission settings in Uganda included in 
this study. The magnitude of the cross-correlation coef-
ficients ranged from −0.27 to 0.27 with the significant 
lags between malaria cases and rainfall ranging from 3 
to 12 weeks. For daytime temperature and malaria cases, 
the significant lags ranged from 5 to 7 weeks and for veg-
etation and malaria cases, 3–23 weeks. Results from this 
study highlight the need to incorporate local climatic fac-
tors when developing early warning systems for malaria 
control. Consideration of the variability in lags of climatic 
factors and malaria morbidity between transmission set-
tings will result in development of more accurate early 
warning systems.
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