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The vast majority of studies regarding the immune basis of MS (and its animal model, EAE) 
have largely focused on CD4+ T-cells as mediators and regulators of disease. Interestingly, 
CD8+ T-cells represent the predominant T-cell population in human MS lesions and are 
oligoclonally expanded at the site of pathology. However, their role in the autoimmune 
pathologic process has been both understudied and controversial. Several animal mod-
els and MS patient studies support a pathogenic role for CNS-specific CD8+ T-cells, 
whereas we and others have demonstrated a regulatory role for these cells in disease. In 
this review, we describe studies that have investigated the role of CD8+ T-cells in MS and 
EAE, presenting evidence for both pathogenic and regulatory functions. In our studies, 
we have shown that cytotoxic/suppressor CD8+ T-cells are CNS antigen-specific, MHC 
class I-restricted, IFNγ- and perforin-dependent, and are able to inhibit disease. The 
clinical relevance for CD8+ T-cell suppressive function is best described by a lack of their 
function during MS relapse, and importantly, restoration of their suppressive function 
during quiescence. Furthermore, CD8+ T-cells with immunosuppressive functions can be 
therapeutically induced in MS patients by glatiramer acetate (GA) treatment. Unlike CNS-
specific CD8+ T-cells, these immunosuppressive GA-induced CD8+ T-cells appear to be 
HLA-E restricted. These studies have provided greater fundamental insight into the role 
of autoreactive as well as therapeutically induced CD8+ T-cells in disease amelioration. 
The clinical implications for these findings are immense and we propose that this natural 
process can be harnessed toward the development of an effective immunotherapeutic 
strategy.
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iNTRODUCTiON

Studies addressing the immunobiology of multiple sclerosis (MS) and its animal model experimental 
autoimmune encephalomyelitis (EAE) have focused on CD4+ T-cells as the main orchestrators of 
pathogenesis and regulation. CD8+ T-cells are the most abundant T-cells in CNS lesions of MS 
patients (1) and exhibit oligoclonal expansion (2–4). This indicates an important role for these cells 
in the target organ. However, the functional nature of these cells during disease and its treatment 
is unclear and somewhat controversial. There are abundant CNS-specific (5, 6) and therapeutically 
induced CD8+ T-cell responses in MS patients (5–8). Recent studies suggest that certain MHC class 
I alleles can be associated with genetic risk or protection in MS (9–11). Functional roles for some of 
these MHC class I molecules have been tested in the EAE models. 2D1-TCR humanized transgenic 
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mice, expressing MS risk variant HLA-A3 together with TCR 
that  recognizes myelin proteolipid protein (PLP), develope spon-
taneous EAE in only 4% of mice and mild EAE early on when 
immunized with PLP peptide. A quarter of these mice went on 
to develop a severe disease course with 2D1+-TCR+–CD8+ T-cells 
present in the CNS of these mice, suggesting a pathogenic role for 
HLA-A3-restricted myelin-specific CD8+ T-cells (12). However, 
introduction of HLA-A2 alleles in the same model completely 
abrogates spontaneous and induced EAE, providing evidence for 
the protective role for HLA-A2-restricted CD8+ T-cells (12). We 
are only beginning to understand these responses and here attempt 
to provide an overview of such studies. We will summarize the 
evidence for both pathogenic and regulatory functions of CD8+ 
T-cells in MS and EAE. We will provide an overview of the various 
cellular and molecular interactions that mediate the role of these 
cells and develop a model for such functions during disease.

PATHOGeNiC ROLe FOR CD8+ T-CeLLS 
iN eAe

Much of the focus regarding the pathogenesis of EAE has revolved 
primarily around myelin-specific CD4+ T-cells. Adoptive transfer 
of CD4+ T-cells isolated from myelin antigen-primed animals is 
sufficient to induce disease. This observation partly facilitated the 
overall ignorance surrounding CD8+ T-cells and their potential 
contribution to disease. A pathogenic role first became evident 
when a CD8+ T-cell-mediated model of EAE was developed using 
the self-protein myelin basic protein (MBP) (13). In attempts to 
prime an MHC class I-restricted T-cell response, C3H.Fej, and 
C3H MBP-deficient shiverer mice were infected with MBP-
expressing vaccinia. CD8+ T-cell lines specific for MBP79–87 drove 
pathogenesis and demyelination when transferred into wildtype 
(WT) C3H recipients. Mice developed neurological symptoms 
including ataxia, spasticity, and lost weight when compared to 
control animals that received vaccinia-specific CD8+ T-cells. 
Histologically, perivascular cuffs composed primarily of lympho-
cytes and macrophages were detected in the brain but not in the 
spinal cord. IFNγ was found to play an important role in mediat-
ing MBP-specific CD8+ T-cell-driven disease, as its neutralization 
reduced severity. The break of peripheral tolerance following 
viral infection was also shown to induce CD8+ T-cell-mediated 
CNS autoimmunity (14). In this report, dual TCR-expressing 
CD8+ T-cells recognizing both viral antigen and MBP triggered 
disease. Following viral infection, CD8+ T-cells, macrophages, 
and activated microglia infiltrated both the brain and spinal cord. 
Clinically, mice lost weight and exhibited symptoms of ataxia, 
impaired mobility, and tail weakness.

CD8+ T-cell-mediated EAE has also been induced in C57BL/6 
(B6) mice through transfer of myelin oligodendrocyte glycopro-
tein (MOG)-specific CD8+ T-cells (15). MOG-specific CD8+ 
T-cells isolated from mice immunized with MOG35–55 peptide 
were encephalitogenic, and transferred severe paralytic disease 
to B6 mice. One caveat to this study is that cells were nylon wool-
enriched, calling purity into question. Disease was transferred 
using <1e6 MOG35–55 CD8+ T-cells and resulted in more severe 
EAE compared to active immunization. Transferred cells could 

be re-isolated 6–8 months later, possibly due to additional IL-2 
stimulus. How these cells induced pathology was not investigated.

A separate group identified MOG37–46-specific CD8+ T-cells as 
autoaggressive effectors (16). In this system, MOG-specific CD8+ 
T-cells were generated following immunization. Restimulation 
with antigen and IL-2 readily yielded IFNγ from these cells, but 
not TGFβ or IL-10. These cells, which were found to be H-2Db-
restricted, could induce EAE when transferred into SCID or 
naïve WT B6 recipients. MOG37–46 elicited the best IFNγ response 
from MOG35–55-primed lymph node cells, although bound MHC 
poorly. When used to induce active EAE in B6 mice, MOG37–46 
led to similar disease as MOG35–55-immunized mice. Using 
MOG37–50/H-2Db tetramers, MOG-specific CD8+ T-cells were 
found to persist within the CNS.

While these studies utilized myelin-components to examine 
the potential pathogenic role of CD8+ T-cells in EAE, non-
myelin antigen-driven systems have been used as well. One report 
describes CD8+ TCR transgenic mice recognizing glial fibrillary 
acidic protein (GFAP), an intermediate filament protein expressed 
in the CNS by astrocytes and in various peripheral tissues (17). 
BG1 transgenic mice are reactive to the GFAP264–274 peptide pre-
sented on H-2Kb, and develop spontaneous inflammatory CNS 
disease by 6–12  months of age. Interestingly, GFAP-expressing 
vaccinia induced distinct disease pathology compared to spon-
taneous disease. Lesion localization and clinical manifestations 
of disease was dependent upon how CNS-reactive CD8+ T-cells 
were activated. CD8+ T-cells isolated from brains of WT BG1 
mice were poor secretors of IFNγ, IL-17A, and granzyme B, sug-
gesting alternative effector mechanisms.

Efforts to study the role of Src homology 2 domain-containing 
protein tyrosine phosphatase (SHP-2) in EAE demonstrated 
that disease could be ameliorated through phosphatase inhibi-
tion (18). The competitive inhibitor, NSC-87877 led to reduced 
demyelination and blocked CD8+ but not CD4+ T-cell migration 
into the CNS, suggesting a pathogenic role for CD8+ T-cells in 
this model.

A study of engineered transgenic NOD mice expressing 
a MOG35–55-reactive TCR (1C6) lends further support for 
pathogenic CD8+ T-cells in EAE (19). 1C6 mice spontane-
ously generated MOG-specific CD4+ and CD8+ T-cells that 
secrete pro-inflammatory cytokines. 1C6 CD8+ T-cells could 
recognize MOG35–55 in the context of MHC class I and II, and 
when adoptively transferred into NOD. Scid recipients, induced 
optic neuritis and mild EAE, while 1C6 CD4+ T-cells induced 
severe EAE.

CD8+ T-cells’ ability to target CNS components has also been 
evaluated in several viral models (20–22). LCMV GP33 peptide-
specific CD8+ T-cells can induce lesions in cultured murine neu-
rons presenting GP33 in MHC class I. While this report relies on 
peptide pulsing and artificial upregulation of MHC class I, viral 
infection-induced upregulation of class I has been demonstrated 
in Borna disease virus-infected rat neuronal cultures, which 
could be targeted by antiviral CD8+ T-cells, eventually leading to 
apoptosis of neurons (23). Although electrical signals were not 
initially disrupted in this model and longer incubation times were 
needed for neuronal apoptosis, another study has demonstrated 
impaired murine neuronal signaling following neuron/CD8+ 
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T-cell interactions along with eventual apoptosis which interest-
ingly occurred independent of perforin/granzymes (24). To this 
end, IFNγ-production from CNS CD8+ T-cells and subsequent 
IFNγ signaling in neurons has been shown to be significant 
for intracranial LCMV disease in mice (25). In another study, 
OT-I CD8+ T-cells formed immune synapses with MHC class 
I (H-2Kb)-expressing axons presenting SIINFEKL peptide, and 
loss of axon integrity was observed. Additionally, axonal injury 
was dependent upon antigen-specific TCR recognition and 
granzyme B (26).

Another report also described mice expressing neo-self anti-
gen in oligodendrocytes (ODCs) targeted by transgenic CD8+ 
T-cells (27). In this model, ovalbumin was expressed exclusively 
in the cytosol of ODCs and therefore ignored by CD4+ T-cells 
and B-cells. Following immunization, mild EAE was observed in 
some ODC–OVA mice. Studies using double transgenic ODC–
OVA/OT-I mice demonstrate treatment with D1 mAb (specific 
for H-2Kb/OVA) prevented the lethal EAE normally observed in 
these animals (28). Double transgenic mice were also given D1 
prophylactically, which in certain instances led to spontaneous 
disease remission.

CD8+ T-cells have also been shown to indirectly influ-
ence CNS autoimmunity. Tc17 cells, coined for their ability to 
produce IL-17A, were detected in the lymph nodes and CNS of 
MOG37–50 EAE mice (29). Tc17s differ from conventional CD8+ 
T-cells regarding granzyme B and IFNγ expression, and thus are 
impaired in their cytotoxic capacity. In a separate study imple-
menting CD4+ and CD8+ T-cell co-transfer, Tc17 cells were found 
to help CD4+ Th17 cells accumulate in the CNS and induce EAE 
(30). Furthermore, their ability to produce IL-17A was required 
to render CD4+ T-cells encephalitogenic.

ReGULATORY ROLe FOR CD8+ T-CeLLS 
iN eAe

While evidence exists to suggest a pathogenic role for CD8+ 
T-cells in MS and EAE (reviewed in Ref. (31) and discussed 
above), there is a growing body of evidence supporting the 
opposite conclusion – CD8+ T-cells play an important regulatory 
role in the pathogenesis of MS and MS-like disease. Ultimately, 
CD8+ T-cell subsets likely perform varying effector functions in 
the context of MS/EAE. However, the seeming discrepancy is in 
part due to a lack of concrete in vivo evidence demonstrating a 
cytotoxic effect of CD8+ T-cells in MS lesions. Furthermore, it has 
been demonstrated that depletion of CD8+ T-cells prior to EAE 
induction results in exacerbated disease (32). Similar results are 
seen in mice lacking MHC class I (although a role for NK cells can 
be argued) (33) and in CD8-deficient mice (32, 34, 35). This is in 
addition to work from our lab, which clearly demonstrated – in 
marked contrast to their CD4+ counterparts  –  neuroantigen-
specific CD8+ T-cells failed to adoptively transfer EAE disease 
to naïve recipient mice (36). We have seen this protective CD8+ 
T-cells phenotype very robustly in several models of EAE (37).

The notion of a regulatory CD8+ T-cell subset (CD8+ Tregs) 
in MS is not a new idea. Studies spanning several decades point 
to the suppressive potential of CD8+ T-cells in MS patients (5–8, 

38–41). In lieu of these examples, T-cell-mediated tolerance stud-
ies have largely focused on CD4+CD25+Foxp3+ T-cells. Although 
full appreciation of CD8+ Treg function and significance in MS 
and EAE is lacking, the last 15 years have seen a steady growth 
toward this understanding.

CD8+ T-cells’ suppressive ability has been described in many 
mouse models, including cancer (42), diabetes (43), colitis 
(44), SLE-like disease (45), Grave’s disease (46), and transplant 
tolerance (47). Inhibitory CD8+ T-cell subsets involved in 
autoimmunity in both mice and humans have been exhaustively 
reviewed in Ref. (48). These regulatory CD8+ T-cells have been 
extensively studied in T1D where it has been shown that low-
avidity autoreactive CD8+ T-cells convert into memory-like 
autoregulatory cells and blunt diabetes progression (49, 50). 
However, CD8+ Treg participation in EAE is less-widely studied. 
Moreover, unlike murine CD4+Foxp3+ Tregs, a universal CD8+ 
Treg phenotype has yet to be described. For example, in EAE, 
CD8+CD28− T-cells have been shown to play an inhibitory role 
(32) while others show CD8+CD122+ T-cells to be protective 
(51–53). Little is known concerning the induction of these cells 
in MS-like disease, though the involvement of one subtype versus 
another surely is influenced by disease setting and may depend on 
the cell’s antigen specificity/MHC-restriction. Studies of anterior 
chamber-associated immune deviation (ACAID) represent some 
of the best efforts to understand antigen-specific CD8+ Tregs, 
which appear to be Qa-1-restricted (54–56). Several ACAID 
studies further complicate the CD8+ Treg phenotyping picture 
(e.g., Foxp3+, CD94+, CD103+, TGFβ-producing, etc.) (56–60). 
Interestingly, immune deviation can be elicited against myelin 
antigens (61, 62), pointing to the potential role for Qa-1-restricted 
CD8+ T-cells in EAE disease. Qa-1-restricted CD8+ T-cells have 
been described as being important for protection in MBP-driven 
EAE (63). We have demonstrated that Qa-1-restricted CD8+ 
T-cells suppress EAE. We have also demonstrated that GA treat-
ment induces CD8+ Treg in mice, and that these CD8+ T-cells are 
required for GA to be therapeutically effective in ameliorating 
EAE disease (64).

While little is still known about Qa-1-restricted CD8+ Tregs, 
even less was understood about CNS-specific CD8+ T-cells 
until very recently. We observed the surprising result that 
neuroantigen-specific CD8+ T-cells could suppress EAE induc-
tion and even ameliorate established EAE disease (36). To our 
knowledge, this was the first documentation of neuroantigen-
specific CD8+ Tregs in mice. In our recently published and 
unpublished results, adoptive transfer of both MOG35–55- and 
PLP178–191-specific CD8+ T-cells can suppress EAE (34, 65). 
Due to mechanistic studies, we will elaborate upon later that 
these cells are quite distinct from previously described Qa-1-
restricted CD8+ Tregs (37).

Recent work has suggested a role of IL-10-producing CD8+ 
T-cells in diminishing disease pathology in virus-induced 
encephalitis models. These IL-10-producing CD8+ T-cells dis-
play a more functional profile including increased expression of 
pro-inflammatory cytokines and chemokines, are immunosup-
pressive, and their presence in the CNS following Coronavirus 
infection reduces tissue destruction and morbidity in these 
mice (66).
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iNTeRACTiONS BeTweeN CD8+ Tregs 
AND OTHeR CeLL TYPeS iN eAe/MS

Advancement in therapy for MS patients, particularly cellular 
immunotherapy, necessitates the full understanding of regula-
tory immune cell interplay. Studies concerning the functional 
interactions between CD8+ Tregs and other cells in the context 
of MS and MS-like disease are therefore of paramount interest. 
The next several sections will provide mechanistic insights into 
CD8+ T-cell-mediated modulation of other immune cells includ-
ing CD4+ T-cells and antigen presenting cell (APC) populations.

influence of CD8+ T Regulatory Cells on 
CD4+ T-Cells
Qa-1-restricted CD8+ T-cells have been shown to modulate EAE 
disease through action on CD4+ T-cells. It has been demonstrated 
in a model of MBP-driven EAE that CD4+ T-cell vaccination 
protocol-mediated protection against EAE disease is dependent 
on the presence of Qa-1-restricted CD8+ T-cells that recognize 
specific TCRVβ molecules on MBP-reactive CD4+ T-cells (63). 
In this particular example, CD8+ T-cells mediated their control 
by preferentially suppressing Th1 CD4+ T-cells during EAE. 
While this report did not directly test cytotoxic killing as a 
means of suppression, the group had previously established this 
capability in T-cell vaccination scenarios. Data from another 
group later confirmed a cytotoxic effect by demonstrating that 
CD8αα+TCRαβ+ T-cells from lines that recognize TCRVβ8.2+ 
(MBP-reactive) CD4+ T-cells could protect against EAE disease 
in recipient mice by the targeted killing of these pathogenic cells 
via Qa-1-recognition (67).

We have showed that the disease-ameliorating effect of 
GA-therapy in EAE is dependent upon Qa-1-restricted CD8+ 
Tregs (64). In this report, we demonstrated that the protective 
ability of CD8+ T-cells was completely lost or diminished when 
unable to produce IFNγ or perforin, respectively. These CD8+ 
T-cells could kill GA-loaded target T-cells and even limited the 
proliferation of ex vivo neuroantigen-specific CD4+ T-cells (64). 
Furthermore, the GA-induced Qa-1-restricted CD8+ T-cells 
in this study were important for generation of CD4+ Tregs 
(64). These GA-specific CD8+ T-cells have the potential to kill 
GA-expressing CD4+ T-cells and limit proliferation of neuroan-
tigen-specific and anti-CD3-stimulated CD4+ T-cells (8, 40). We 
have also demonstrated that GA therapy, whose effects require 
CD8+ T-cells in mice (64), was able to increase the induction of 
CD4+CD25+ Tregs from the CD4+CD25− T-cell population in MS 
patient blood (40).

Distinct from the non-classical HLA-E-like Qa-1-restricted 
murine CD8+ Tregs, we have also demonstrated the exist-
ence of neuroantigen-specific CD8+ Tregs in MS and EAE. 
Neuroantigen-specific, MHC class Ia-restricted CD8+ T-cells 
can kill MOG-loaded CD4+ T-cells in mice (34, 36) and mediate 
their disease-ameliorating effects via the targeting of encepha-
litogenic CD4+ T-cells during EAE disease (34). We have also 
demonstrated an ability of neuroantigen-specific CD8+ Tregs to 
induce anti-inflammatory profiles in CD4+ T-cells during EAE 
(65). Importantly, we have also shown that neuroantigen-specific 

CD8+ T-cells are detectable in MS patient blood, and possess 
capacity to suppress CD4+ T-cell proliferation (5, 68).

influence of CD8+ Tregs on Dendritic Cells
The potential for CD8+ T-cells to alter CD4+ T-cell priming 
through direct effects on DCs is worth investigation. CD8+CD28− 
T-cells have been implicated as regulators of EAE disease. It 
has been demonstrated that DCs have reduced costimulatory 
molecule (CD80, CD86, and CD40) expression after culture 
with CD8+CD28− T regulatory cells, rendering these DCs as sub-
standard APCs (32). It has been similarly demonstrated that DCs 
cultured with CD8+CD122+ T-cells had a reduction in CD80/86 
and MHC molecules and showed inferior antigen-presentation 
ability compared to DCs cultured with CD8+CD122− T-cells (52).

While it remains unclear whether Qa-1-restricted CD8+ Tregs 
have a direct effect on DCs, we have shown that neuroantigen-spe-
cific CD8+ Tregs can both kill and suppress antigen presentation 
of MOG-loaded bulk APCs (contains DCs) (36). Interestingly, we 
have demonstrated that neuroantigen-specific CD8+ Tregs have 
little effect on DC surface expression of MHC or costimulatory 
molecules, but rather shift the inflammatory profiles of CD11c+ 
DCs from IL-12 to IL-10 (65). Early human MS work from our 
lab points to the potential of GA therapy-induced CD8+ Treg-
mediated killing of APCs, as CD4+ T-cells were only a part of the 
larger target pool (8).

influence of CD8+ Tregs on Monocytes/
Macrophages
Another potential mechanism of suppression is CD8+ T-cell-
mediated regulation of monocytes or macrophages, which are 
present in MS lesions and important for pathology in the CNS 
of EAE mice. Interestingly, GA treatment has been demon-
strated to affect monocyte populations in EAE. For example, 
anti-inflammatory type II monocytes are induced in GA-treated 
mice, which can shift inflammatory cytokine profiles toward 
immunosuppressive IL-10, expand Th2 cells, and induce CD4+ 
Tregs capable of ameliorating EAE (69). We have observed 
similar results and have further demonstrated that the action of 
GA on monocytes elicits CD8+ Tregs and actually requires CD8+ 
T-cells for its ameliorative effects in EAE (64). This GA-induced 
monocyte-CD8+ T-cell interaction is largely unknown in MS, 
as is the effect of GA-induced CD8+ T-cell targeting of other 
macrophage populations. While a direct link to CD8+ T-cells 
has yet to be confirmed, studies from us and others have shown 
modulation of monocytes following GA therapy in humans (40, 
70, 71). As mentioned in the section above, GA-induced CD8+ 
T-cell-mediated killing of APC populations like dendritic cells 
and monocytes/macrophages while unconfirmed, cannot be 
ruled out, as CD4+ T cells were only a portion of a larger affected 
target pool (8). Refining these assays for direct detection of killed 
targets is needed going forward.

Beyond GA-induced CD8+ Tregs, neuroantigen-specific CD8+ 
Tregs could conceivably modulate monocytes/macrophages in 
EAE. We have demonstrated that these cells can kill MOG-loaded 
bulk APCs, which may contain monocytes/macrophages, and can 
suppress their antigen presentation (36). However, we did not 
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observe a substantial neuroantigen-specific CD8+ Treg effect on 
monocytes during EAE (65). Furthermore, neuroantigen-specific 
CD8+ Tregs from MS patients do not appear to specifically target 
monocytes. More work is needed to understand the potential 
functional interactions between CD8+ T-cells and monocytes/
macrophages during MS and MS-like disease, and may ultimately 
be a GA treatment-specific phenomenon.

Potential CD8+ T-Cell: B-Cell interactions 
in MS/eAe?
In light of depletion therapy success, more focus is now being 
given to B-cells and their role in MS. The literature supports both 
a pathogenic (72–82) and regulatory (76, 83–94) role for B-cells 
in MS/EAE, and it is intriguing to speculate about the potential 
immune cell interplay between CD4+ T-cells, B-cells, and CD8+ 
T-cells therein. There is evidence in the literature to support a 
B-cell effect on CD8+ T-cells (54, 55, 82, 95–100). Many of these 
reports point to B-cell antigen presentation to CD8+ T-cells and 
even a B-cell requirement for CD8+ Treg function in some models. 
There is also literature supporting a role for Bregs in controlling 
CD8+ T-cell responses (17, 101–105). Additionally, CD8+ T-cells 
can be detected in follicles and modulate B-cell biology, such as 
germinal centers and antibody production (45, 106–111). The 
significance of these CD8+ T cell and B-cell subset interactions in 
the context of MS/EAE remains to be seen.

PATHOGeNiC ROLe FOR CD8+ T-CeLLS 
iN MS

Due to the inherent complexity of studying CD8+ T-cell function 
in the human brain, only circumstantial evidence exists regarding 
a pathogenic role for CD8+ T-cells in MS.

CD8+ T-cells are the most abundant T-cells found in the CNS 
lesions of MS patients, far outnumbering CD4+ T-cells (1). In 
patients with active disease, CD8+ T-cells were detected in increas-
ing amounts from the center to the edge of the lesions studied 
(112). The CD8/CD4 ratio is shown to have been as high as 50/1 
in the lymphocytic perivascular cuffs at the edge of active plaques 
(113). CD8+ T-cells displaying activated and memory phenotypes 
(suggesting previous interaction with local antigens) have also 
been detected in the CNS and CSF of MS patients (3, 114). CD8+ 
T-cell clones have also been shown to move throughout the 
affected CNS and into normal appearing white matter (NAWM) 
(112). One study demonstrated that there is diffuse infiltration by 
CD8+ T-cells combined with microglial activation and meningeal 
inflammation in the NAWM of MS patients (115).

Unfortunately, assigning function to these CD8+ T-cells 
remains a challenging task, although speculations have been made 
that CD8+ T-cells present in the CNS lesions of MS patients may 
be cytotoxic toward CNS cells including glia and axons. CD8+ 
MHC class I-restricted myelin peptide-specific T-cells have been 
shown to cause injury to human ODCs in vitro (116). Similarly, 
an MBP-specific memory phenotype CD8+ T-cell line generated 
from the peripheral blood of MS patients, in addition to secreting 
IFNγ and TNFα, was able to lyse COS-MBP/HLA-A2-transfected 
cells that were presenting endogenous MBP (114).

CD8+ T-cells have also been detected near or attached to 
ODCs and demyelinated axons in MS patients (117–119). 
Importantly, MHC class I molecules are present on astrocytes, 
ODCs, neurons, and endothelial cells (120, 121). Furthermore, 
MHC class I molecules are upregulated – depending on disease 
severity – and can be induced by IFNγ (121). CNS blood vessel 
endothelium as well as several APCs also express MHC class I 
molecules, which can cross-present exogenous peptides (122). 
Thus, it is not surprising that CD8+ T-cells have been demon-
strated to interact with APCs at CNS plaque margins (119). The 
potentially detrimental nature of this interaction is supported 
by a study that showed that the amount of CD8+ T-cells and 
macrophages present in an MS lesion is proportional to the 
amount of acute axonal damage present (123).

Effector cytokines from CD8+ T-cells can also enhance their 
cytotoxic function and activate other immune cells to amplify 
inflammatory cascades in the CNS. For example, neuroantigen-
specific CD8+ T-cells present in the peripheral blood express 
IFNγ and TNFα in response to their cognate antigen ex vivo 
(6, 124, 125). IFNγ- and IL-17-producing CD8+ T-cells can be 
recruited into the CNS when responding to apoptotic T-cell-
associated self-epitopes (126). One report demonstrated that 
CD8+ but not CD4+ T-cells from patients with acute RRMS had 
increased ability to be recruited in inflamed CNS venules (127). 
Additionally, CD8+ IL-17-secreting T-cell numbers have been 
shown to be significantly elevated in acute CNS lesions of MS 
patients (128). IFNγ- and IL-17-secreting CD8+CD161+ T-cells 
were also found to be elevated in the peripheral blood of MS 
patients (129). Higher frequency of CD8+ T-cells expressing 
cytotoxic molecules like perforin has been shown to be present 
in MS patients, particularly during a relapse (130).

ReGULATORY ROLe FOR CD8+ T-CeLLS 
iN MS

In light of the present literature, it can be appreciated that CD8+ 
T-cells in MS and other autoimmune diseases are phenotypically 
and functionally diverse, and can potentially regulate the patho-
genic immune processes. Besides cytolytic molecules like perforin 
and granzyme, CD8+ T-cells are armed with immunosuppressive 
cytokines, such as IL-10, that can dampen the inflammatory 
response.

The evidence for CD8+ T-cell regulatory function in MS has 
existed for a long time and has been largely ignored by the field. 
CD8+ T-cells from the peripheral blood of MS patients displaying 
reduced levels of suppressor function was the first report that 
suggested a regulatory function for CD8+ T-cells in MS (131). 
This was followed by another study that demonstrated a similar 
defect in CD8+ T-cell-mediated suppression in patients with 
chronic progressive MS (132). Since then, mounting evidence 
has accumulated in the field of MS disease and others that 
collectively points toward a regulatory role for CD8+ T-cells in 
autoimmune diseases (50, 133, 134). More recently, our lab has 
provided direct evidence for CD8+ T-cell regulatory function 
in MS and has established clinical correlations with the disease 
activity (31).
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As in the mouse, phenotypic identification of human CD8+ 
Tregs has been challenging. Human CD8+CD28− T-cells have 
been shown to possess suppressor activity and are the most 
extensively studied population of CD8+ Tregs. In MS, they were 
found to be present at significantly reduced frequency in the 
blood of RRMS patients as compared to healthy donors (135). 
Although it is not a marker for CD8+ Tregs, FoxP3-expressing 
CD8+ T-cells are present in human blood. They possess regula-
tory activity (136), which is Foxp3-dependent (137), and are 
associated with autoimmune diseases such as IBD and MS (133, 
138). CD8+FoxP3+ cells are present at reduced levels in the CSF 
of MS patients during acute exacerbation (137). CD8+CXCR3+ 
T-cells are human counterparts of the well-known regulatory 
CD8+CD122+ T-cells found in mouse. Human CD8+CXCR3+ 
T-cells are suppressive in nature and their function is IL-10-
dependent (139). Although all of these CD8+ Treg subsets 
have potent immunosuppressive functions, so far their antigen 
specificity remains unknown.

Our lab showed for the first time that CNS-specific CD8+ 
T-cells have potent suppressor activity toward myelin antigen-
specific CD4+ T-cells (5). These CNS-specific CD8+ T-cells were 
reactive to several myelin antigens including MOG, PLP, MBP, 
MAG and others and are present in the peripheral blood of healthy 
donors and MS patients (6). Mechanistically, these CNS-specific 
CD8+ T-cells are MHC class I-restricted, and their suppressive 
function is IFNγ-and perforin-dependent (5, 68). Our findings 
lend credence to the hypothesis that CNS-specific CD8+ T-cells in 
the CNS would function to dampen the inflammatory response 
by targeting pathogenic CD4+ T-cells and APCs, rather than caus-
ing damage themselves. Phenotypically, these cells are CD8+CD2
7−CD28−CD45RO−CD62L−CD57+ or a terminally differentiated 
subset of CD8+ T-cells (68).

Similar to Qa1-restricted CD8+ T in murine models, HLA-E-
restricted CD8+ T-cells in humans perform a regulatory function 
and are involved in the maintenance of self-tolerance (140). The 
nature of NKG2 receptors present on CD8+ T-cells determines 
the functional outcome of their interaction with Qa1-expressing 
T-cell targets. For example, NKG2C-expressing CD8+ T-cells 
suppress Qa1-expressing target T-cells while NKG2A-expressing 
CD8+ T-cells get suppressed by these targets, and therefore 
cannot perform regulatory functions. A recent study showed 
reduced expression of FoxP3 and CD122 in NKG2C-expressing 
CD8+ T-cells from MS patients compared to healthy controls, 
suggesting a reduced regulatory potential of these cells in MS 
patients (41).

Although, there are only a handful of studies that report the 
phenotypic and functional significance of CD8+ T-cells in MS 
patients, one prominent feature that emerges from these studies 
is an underlying defect in the CD8+ Treg component. Of note, this 
defect is found specifically during MS relapses. Since a relapse 
represents the active phase of the disease, any significant differ-
ences in the phenotype and functions of immune cells between 
relapse and remission may be directly correlated with the immu-
nopathogenesis of MS. Interestingly, frequency of circulating 
CD8+FoxP3+ T-cells was found to be significantly lower in the 
peripheral blood of MS patients during relapse as compared to 

remission (138). Another study showed that CD8+CD25+CD28− 
T-cells harbored potent suppressive activity and were lower in MS 
patients during relapse when compared to healthy controls (141). 
Importantly, treatment with glucocorticoids leads to a significant 
increase in the frequency of these CD8+ Tregs in the blood of 
MS patients. This was an interesting observation, suggesting 
that recovery from relapse under glucocorticoid treatment 
might be mediated by the regulatory function of CD8+ T-cells. 
Furthermore, deficiency in CD8+ Treg function is not limited to 
the blood, as evidenced by the significantly reduced CD8+ T-cell 
cloning frequency in the CSF during MS relapse as compared 
to remission, suggesting loss of CD8+ Tregs in the CSF during 
relapse (142).

Our own studies show that the terminally differentiated CD8+ 
T-cell pool, which harbors the CNS-specific CD8+ Tregs, is sig-
nificantly reduced during MS relapse as compared to remission 
(68). Furthermore, relapses in MS are associated with significantly 
lower CNS-specific CD8+ T-cell suppressor ability, while this 
potential in MS patients during quiescence is similar to healthy 
donors, suggesting a role with disease activity (5). Of clinical 
significance, we showed that the CNS-specific CD8+ Treg sup-
pressive function is restored in MS patients during remission and 
this recovery in CD8+ Treg-mediated suppression correlated with 
the distance in time from an acute clinical episode. This suggests 
that the correction of the neuroantigen-specific CD8+ suppressor 
deficit would correlate with recovery from an acute relapse (5). 
One caveat to the study is that the quiescence samples could still 
potentially have pseudo relapses in the CNS in the absence of any 
clinical signs. Nonetheless, these findings raise the possibility that 
reduction in CNS-specific CD8+ T-cell suppression might be used 
as a marker to predict relapses in MS patients.

Although etiology of MS remains unknown, epidemiological 
studies suggest an association between Epstein–Barr virus (EBV) 
and MS (143). EBV-reactive CD8+ T-cells are present in the 
peripheral blood of MS patients (144). By using high throughput 
sequencing, a recent study demonstrated intrathecal enrichment 
of EBV-reactive CD8+ T-cells in MS patients (145). However, the 
function of these CD8+ T-cells in the CNS remains speculative. 
Interestingly, adoptive immunotherapy with in  vitro-expanded 
autologous EBV-specific CD8+ T-cells in secondary progres-
sive MS had no adverse effects and was associated with clinical 
improvement and reduced disease activity on MRI (146). This 
study suggests that the EBV-specific CD8+ T-cells in the CNS of 
MS patients might be playing a regulatory role by limiting EBV-
infected B-cells and antibody production.

The pathogenic function of CD8+ T-cells in MS is believed to 
be largely derived from its cytotoxic potential toward CNS tissues 
including glial cells and axons. However, there is a clear lack of 
evidence in this area in human MS. Interestingly, a recent study 
demonstrated that CD4+ but not CD8+ T-cells from peripheral 
blood of MS patients expressed NKG2C and had elevated levels of 
cytotoxic molecules FasL, granzyme B, and perforin. Intriguingly, 
these CD4+ T-cells were cytotoxic toward HLA-E-positive human 
ODCs in vitro (147). This study suggested a novel mechanism for 
CNS damage in MS which is, in contrast to the widely held view, 
potentially mediated by CD4+ T-cells.
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Although the pathogenic role of CD8+ T-cells in MS remains 
largely speculative, the studies discussed above strongly sug-
gest that there is now ample evidence for the regulatory role for 
CD8+ T-cell subsets in the disease process. Lack of their regu-
latory function specifically during relapses should be probed 
further, as this could be a major underlying factor leading to 
relapse in MS.

THeRAPeUTiC iNDUCTiON OF CD8+ 
Tregs

The majority of drugs used for the long-term management of MS 
are immunomodulatory in nature. The precise mechanisms by 
which these drugs act are under constant investigation. We have 
convincingly demonstrated that CD8+ Tregs not only exist physi-
ologically but can also be induced therapeutically by GA treat-
ment. Both, CD4+ and CD8+ T-cells reactive to GA are present 
in the peripheral blood of healthy donors and MS patients (7). 
Although CD4+ T-cell responses are comparable between the two 
groups, untreated MS patients have reduced GA-induced CD8+ 
T-cell responses and this deficiency is corrected after GA therapy 
(7). Functionally, these GA-reactive CD8+ T-cells are HLA-E-
restricted and have a strong suppressive potential against CD4+ 
T-cells (8). Interestingly, GA-reactive CD8+ T-cells obtained from 
untreated MS patients have reduced suppressor ability and GA 

therapy restores the CD8+ T-cell suppressive potential in MS 
patients (8). These were the pioneering findings that linked the 
regulatory function of CD8+ T-cells with the therapeutic action 
of the drug. The proof of principle came from our EAE studies 
discussed above where we showed that GA does not work in the 
absence of CD8+ T-cells in mice (64), suggesting that CD8+ T-cells 
are absolutely required for GA action and all the other reported 
immunomodulatory effects of GA might lie downstream to the 
induction of CD8+ Tregs by the drug. The idea is also supported by 
our surprising observation that GA reverses the CD4/CD8 T-cell 
ratio and increases CD8+ T-cell-mediated suppression as early as 
12 h after GA therapy initiation in humans (40). Similar to our 
findings, a 1-year follow-up study after IFNβ treatment showed 
expansion of regulatory CD8+ T-cell subsets (CD8+CD25+ and 
CD8+CD25+CD28−) in the responder cohort (148). Another 
study found a higher frequency of regulatory CXCR3+CD8+ 
T-cells 6  months after IFNβ therapy (149). Collectively, these 
studies suggest that therapeutic induction of CD8+ Tregs might be 
the underlying factor in other MS therapies as well. Natalizumab 
treatment results in a decreased CD4+/CD8+ ratio in the CSF 
and peripheral blood of MS patients (150). Fingolimod therapy 
is associated with altering the cytokine status of CD8+ T-cells in 
peripheral blood (151). However, detailed dissection of the role 
of CD8+ T-cells has not been performed in the setting of these 
treatments.

FiGURe 1 | Role of CD8+ T-cells in MS/eAe. While the antigenic specificity of pathogenic CD8+ T-cells remains unknown, their pathogenic function is mainly 
attributed to pro-inflammatory cytokine secretion (in the peripheral immune system and potentially in the CNS) as well as cytotoxicity toward oligodendrocytes in the 
CNS. On the other side, several lines of evidence indicate a regulatory role for CD8+ T-cells in both MS and EAE. Neuroantigen-specific autoregulatory T-cells are 
classically MHC Class I restricted, whereas there are also examples of HLA-E/Qa1-restricted regulatory T-cells that may be naturally occurring or induced through 
therapy. Mechanisms for CD8+ T-cell-mediated regulation include secretion of cytokines such as IL-10 and IFNγ, cytotoxicity toward pathogenic immune cells and 
modulation of APC functions, both in the periphery and possibly in the CNS.
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