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Abstract. Mitogen activated protein kinase phosphatase-1 
(MKP-1) has been revealed to be overexpressed in bladder 
cancer, particularly in non-muscle invasive bladder cancer. 
MKP-1 may also be associated with chemotherapy resistance. 
However, the underlying mechanism is yet to be elucidated. 
The current study investigated the expression of MKP-1 by 
performing immunohistochemistry in surgically resected 
specimens obtained from primary and recurrent patients with 
bladder cancer. The results revealed that MKP-1 expression 
increased in recurrent patients. Additionally, a 3D model of 
the human bladder cancer cell line, RT112, was established to 
determine the role of MKP-1 in drug resistance. The results 
demonstrated that MKP-1 overexpression protected bladder 
cancer cells against cell death. Contrarily, MKP-1 knock-
down was revealed to sensitize cells to death. In addition, the 
application of MAPK inhibitors effectively increased RT112 
cell sensitivity to pirarubicin. In conclusion, the results of 
the current study indicated that MKP-1 treatment resulted in 
bladder cancer cell chemoresistance via JNK, ERK and p38 

pathways. MKP-1 may also serve as a potential therapeutic 
target for chemoresistance in patients with bladder cancer.

Introduction

Globally, bladder cancer has the 9th highest and 14th highest 
rates of incidence and mortality of all types of cancer (1). 
Approximately 900,000 patients are newly diagnosed 
each year, with 250,000 deaths occurring in the same 
timeframe (2). Of all newly diagnosed cases of bladder cancer, 
~75% are non-muscle invasive (NMIBC) and ~25% are muscle 
invasive (MIBC). The transurethral resection of bladder 
tumors combined with intravesical instillation has become 
the first‑line treatment for high‑risk patients with NMIBC. 
Instillation therapy is usually applied with Pirarubicin (THP), 
Epirubicin and Mitomycin (3), with THP being the most 
commonly applied, clinically. It is generally accepted that 
THP kills tumor cells by inducing cell apoptosis. However, 
>30% of patients with NMIBC still exhibit recurrence or the 
development of MIBC within 5 years (4). Chemoresistance is 
a serious challenge to bladder tumor therapy. Therefore, it is 
necessary to identify more effective targets to better cope with 
chemotherapeutic resistance.

Fibroblast growth factor receptor 3 (FGFR3) is a member 
of the FGFR family and is implicated in various cellular activi-
ties, including proliferation, migration, survival and death (5). 
FGFR3 mutations are common in bladder cancer, occurring 
in ~75% of patients with NMIBC. FGFR3 is therefore an 
attractive target for the treatment of bladder cancer (6,7). It has 
been determined that FGFR3 mutations are correlated with 
FGFR3 overexpression (8). Further study has revealed that 
74% of patients with bladder cancer exhibiting a high expres-
sion of FGFR3 also possessed an FGFR3 mutation, indicating 
that FGFR3 expression is strongly associated with FGFR3 
mutation (9). Clinically, chemoresistance occurs frequently 
in patients with bladder cancer that exhibit an aberrant acti-
vation of FGFR3. It has been found that chemoresistance 
may be associated with FGFR3 mutations (10). It has also 
been demonstrated that FGFR3 expression is increased in 
metastatic tumors compared with primary bladder cancer (11). 
It can therefore be hypothesized that FGFR3 overexpression 
may be involved in chemoresistance. Furthermore, resistance 
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commonly occurs as a result of extensive phosphorylation, 
which is activated by FGFR3 downstream signaling. FGFR3 
activates multiple downstream signaling pathways, including 
MAPK, PI3K/AKT and STAT pathways (7,12,13).

MKP-1 is a member of the MKP family that negatively 
regulates the MAPK pathway (14). It also serves a significant 
role in proliferation, inflammation and apoptosis (15,16), and 
is involved in the MAPK pathway. Its dephosphorylation inac-
tivates JNK, ERK and p38 (17,18). MKP-1 is overexpressesed 
in various types of epithelial cancer at early stages, including 
gastric, bladder, prostate and colon carcinomas (19,20). 
However, MKP-1 expression also decreases as tumor grades 
and stages advance (21,22), indicating that MKP-1 is an 
essential factor for the determination of benign and malignant 
tumors. An increasing number of studies have revealed that 
MKP-1 correlates with drug resistance in lung cancer, ovarian 
cancer, breast cancer, osteosarcoma and lymphoma (23-26). 
MKP-1 has also been revealed to be overexpressed in NMIBC. 
However, whether MKP-1 is associated with chemoresistance 
in bladder cancer is yet to be fully elucidated. Furthermore, 
whether an association exists between FGFR3 and MKP-1 in 
the regulation of chemoresistance in bladder cancer is yet to be 
determined. The present study assessed FGFR3 and MKP-1 
in patients with primary and recurrent bladder cancer, and 
established a 3D model to determine the role of MKP-1 in 
chemoresistance. The results indicated that MKP-1 inhibited 
RT112 cell apoptosis, which served an important role in the 
chemotherapeutic resistance of bladder cancer.

Materials and methods

Tissue specimens. Bladder cancer tissues, which were 
resected by urologists, were obtained from patients (age range, 
47-83 years) between March 2018 and February 2019. A total 
of 10 specimens (5 primary and 5 recurrent urothelial carci-
noma specimens) were diagnosed as urothelial carcinoma in 
accordance with the histological criteria of the World Health 
Organization, and 5 recurrent patients all had a history of 
vesical chemotherapy instillation of pirarubicin. Following 
resection, samples were immediately and stored at ‑80˚C until 
further analysis. The clinical characteristics of the patients 
included in the current study are presented in Table I. The 
present study was approved by the Ethics Committee of The 
First Affiliated Hospital of Jiaxing University, and informed 
consent was obtained from each patient.

Cells, culture and reagents. The human bladder cancer cell 
line RT112 was purchased from the Leibniz Institute DSMZ 
and maintained in RPMI 1640 medium supplemented with 
10% fetal bovine serum at 37˚C in a humidified atmosphere 
containing of 5% CO2. Tissue culture media and serum were 
purchased from Hyclone (GE Healthcare Life Sciences). 3D 
Cell Culture Gel (cat. no. P720M-10) was purchased from 
Col-Tgel Med (http://www.101bio.com/P720_3D_cell_
culture_gel.php). Rabbit polyclonal antibodies against total 
and phosphorylated JNK, ERK1/2 and p38 were purchased 
from Cell Signaling Technology, Inc. The JNK inhibitor 
SP600125 (cat. no. T3109), the ERK inhibitor PD98059 (cat. 
no. T2623), the p38 inhibitor SB202190 (cat. no. T2301) and 
THP were purchased from Target Molecule Corp.

Small interfering RNA (siRNA) transfection. MKP-1 siRNA 
and scrambled siRNA were purchased from GE Healthcare 
Dharmacon, Inc. The sequences were as follows: MKP-1 
siRNA forward, 5'-CAC AAG GCA GAC ATC AGC TC-3' and 
reverse, 5'‑AGG TAA GCA AGG CAG ATG GT‑3'; scrambled 
siRNA forward, 5'-GGG TGT GAA CCA TGA GAA GT-3' and 
reverse, 5'-GAC TGT GGT CAT GAG TCC T-3'. RT112 cells 
were transiently transfected with 100 nM MKP-1 siRNA and 
scrambled siRNA in six-well plates treated with TurboFect 
reagent according to manufacturer's protocol. After 48 h, cells 
were harvested for subsequent experimentation.

Immunohistochemistry. Fixed tissues were dehydrated, 
embedded, sliced and dyed, and washed in triplicate. Tissue 
sections were subsequently autoclaved in sodium citrate 
buffer (pH 6.0) for 30 min, after which goat serum blocking 
solution was added and samples were incubated. Primary 
rabbit polyclonal anti-MKP-1 antibodies (dilution: 1:500, 
catlog: NBP2-67909, Novus Biologicals, LLC) were then 
added and incubated overnight at 4˚C. After being washed 
three times, samples were further incubated with biotinylated 
secondary antibodies (the Jackson laboratory, Bar Harbor, 
ME, USA) for 30 min at room temperature. Sections were then 
developed using Dimethyl benzidine for 2 min. Slides were 
counterstained with hematoxylin and examined using light 
microscopy. The labeled substance appeared yellow-brown 
under the microscope. Negative control sections were not 
incubated with primary antibodies. However, the remaining 
steps of the protocol were the same.

Reverse transcription‑quantitative PCR (RT‑qPCR). Cells 
were lysed and total RNA was isolated using TRIzol® reagent 
(Invitrogen; Thermo Fisher Scientific, Inc.) according to 
manufacturer's protocol. RNA was reverse transcribed using 
the M-MLV reverse transcription kit (Takara, Tokyo, Japan). 
Quantitative PCR was performed using a SYBR Premix Ex 
Taq kit (Roche, Basel, Switzerland). The sequences of the 
primers obtained from Sangon Biotech Co., Ltd. were as 
follows: MKP-1 forward, 5-CCT TTC TGT ACC TGG GCA 
GT‑3 and reverse, 5‑GGT TGG GAC AAT TGG CTG AG‑3; 
GAPDH forward, 5-GGG TGT GAA CCA TGA GAA GT-3 and 
reverse, 5-GAC TGT GGT CAT GAG TCC T-3. GAPDH was 
used as an internal control. The thermocycling conditions for 
qPCR were as follows: 94˚C for 2 min, followed by 40 cycles at 
94˚C for 15 sec, 60˚C for 1 min and 72˚C for 10 min. The 2-ΔΔCq 
analysis method was used to calculate relative expression.

Flow cytometry (FACS). Apoptosis was assessed using an 
Annexin V-APC kit (BD Biosciences) in accordance with 
the manufacturer's protocol. Treated cells were washed and 
centrifuged (1,000 rpm, 10 min, 4˚C). The supernatant was 
resuspended and 500 µl binding buffer, 2 µl Annexin V-APC 
and 5 µl propidium iodide was added. Cells were analyzed 
using a FACS Canto plus flow cytometer (BD Biosciences) 
after 15 min of incubation.

Western blot analysis. Western blot analysis was performed 
as previously described (27). Cells were harvested, washed 
and centrifuged (1,500 rpm, 5 min, 4˚C). An equal quantity 
of protein was loaded on 10 or 12% SDS-PAGE gels and 
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transferred onto nitrocellulose membranes. Membranes were 
subsequently blocked with 5% skimmed milk and then hybrid-
ized to primary antibodies overnight at 4˚C. Subsequently, 
samples were incubated with secondary antibodies for 1 h at 
room temperature. Bound antibodies was detected using an 
enhanced chemiluminescence reagent in accordance with the 
to manufacturer's protocol. GAPDH and actin were used as a 
loading control.

Cell viability assay. Cell viability was determined using a cell 
counting kit 8 (CCK8) assay. Freshly isolated cells (5x103/well) 
were seeded into 96-well plates. Cells were pretreated with 
SP600125 (20 µmol/l), PD98059 (20 µmol/l) and SB202190 
(25 µmol/l) for 1 h, after which THP (80 nmol/l) was added 
to each group. After 48 h, 10 µl CCK8 (Beyotime Institute 
of Biotechnology) was added to cells and the optical density 
of each well was measured at 450 nm using an ELISA 
reader (BioTek, Winooski, Vermont, USA) according to the 
manufacturer's protocol.

Statistical analysis. Statistical analysis was performed using 
the Statistical Package of Social Sciences (IBM Corp.; version 
20.0.). Statistical significance was determined using One‑way 
ANOVA and followed by Tukey post-hoc tests across the 
groups. Differences between the two groups were analyzed by 
Unpaired t-test. Data were expressed as the mean ± standard 
deviation and P<0.05 was considered to indicate a statistically 
significant difference.

Results

FGFR3 and MKP‑1 expression is increased in recurrent 
bladder cancer cells. FGFR3 mutations or its expres-
sion commonly occurs in low grade, superficial bladder 
tumors (8,28). FGFR3 also regulates cellular processes 
primarily via the MAPK pathway (13). MKP-1 has been proven 
to be associated with chemoresistance in many different types 
of tumor, and negatively regulates MAPKs. To determine if 
FGFR3 and MKP-1 are associated with chemoresistance in 
bladder cancer, the current study collected multiple specimens 

of primary and recurrent bladder cancer tissue. FGFR3 and 
MKP-1 expression were subsequently detected using immuno-
histochemistry (Fig. 1A). the results revealed that FGFR3 and 
MKP-1 expressions were increased in patients with recurrent 
cancer (Fig. 1B and C). Furthermore, MKP-1 mRNA levels 
(Fig. 1D) were increased in patients with recurrent bladder 
cancer. The results indicated that MKP-1 and FGFR3 expres-
sions were upregulated in recurrent tissue, leading to the 
hypothesis that FGFR3 and MKP-1 may be closely associated 
with chemoresistance in human bladder cancer. FGFR3 and 
MKP-1 may therefore serve as potential targets for resistance 
therapy in patients with bladder cancer.

Establishment of human 3D bladder cancer model and role of 
MKP‑1 in MAPK pathway. To better mimic the development 
of human bladder cancer, a novel 3D cellular model was estab-
lished in the current study using RT112 cells in accordance 
with a previously published method (29). To explore the effect 
of MKP-1 in bladder cancer, RT112 cells were transiently 
transfected with scrambled siRNA (siNC) and MKP-1 siRNA 
(siMKP-1). The results revealed that MKP-1 mRNA levels 
(Fig. 2A) were significantly decreased in the siMKP‑1 group, 
demonstrating that MKP-1 was effectively inhibited by MKP-1 
siRNA. RT112 cells of the 2D and 3D model appeared to have 
different morphological characteristics (Fig. 2B). Specifically, 
3D cells generated spheroids with a smooth surface and 
rounded shape. However, 2D cells appeared irregularly shaped 
with an obscure margin. The successful establishment of the 
3D model was used for the subsequent 3D culture of remaining 
experiments.

MKP-1 serves an important role in the regulation of MAPK 
signaling by inactivating JNK, ERK and p38 (30). Thus, the 
current study hypothesized that MKP-1 knockdown may acti-
vate MAPK. As presented in Fig. 2C, no significant differences 
were identified between total levels of JNK, ERK1/2 and p38. 
Furthermore, levels of JNK, ERK1/2 and p38 phosphorylation 
were markedly increased in the siMKP-1 group, indicating that 
MKP-1 inhibited the phosphorylation of JNK, ERK1/2 and p38. 
The results indicated that MKP-1 serves an essential role in the 
negative regulation of JNK, ERK1/2 and p38 in RT112 cells.

Table I. Characteristics of bladder cancer tissue samples from 10 Chinese patients.

   Histological  Primary or History of
Patient no. Sex Age, years typing WHO Grade recurrent chemotherapy

  1 Female 82 Urothelial carcinoma Low grade Primary No
  2 Male 68 Urothelial carcinoma Low grade Primary No
  3 Female 68 Urothelial carcinoma Low grade Primary No
  4 Male 77 Urothelial carcinoma Low grade Primary No
  5 Female 47 Urothelial carcinoma Low grade Primary No
  6 Female 69 Urothelial carcinoma Low grade Recurrent Pirarubicin
  7 Male 83 Urothelial carcinoma Low grade Recurrent Pirarubicin
  8 Female 81 Urothelial carcinoma Low grade Recurrent Pirarubicin
  9 Male 64 Urothelial carcinoma Low grade Recurrent Pirarubicin
10 Male 59 Urothelial carcinoma Low grade Recurrent Pirarubicin

WHO, World Health Organization.
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MKP‑1 affects drug susceptibility and protects RT112 cells 
from cell apoptosis. MKP-1 has been implicated in prolifera-
tion, survival, apoptosis and other cellular processes, and has 
also been correlated with chemoresistance (23). The current 
study aimed to establish the effects of MKP-1 knockdown on 
chemotherapeutics and to ascertain whether MKP-1 serves 
a role in bladder cancer drug resistance. The current study 
therefore treated siNC and siMKP-1 cells with gradually 
increasing doses of THP for 24 h (Fig. 3A). The results revealed 
that the viability of siMKP-1 cells was less than siNC cells, 
indicating that siMKP-1 cells were more sensitive to THP. As 

presented in Fig. 3A, the viability of siNC cells following THP 
(80 nmol/l) treatment was significantly higher when compared 
with siMKP-1 cells. Extensive exposure of THP for 48 and 
72 h (Fig. 3B) demonstrated that viability was visibly decreased 
in siMKP-1 cells. Two groups of cells were then selected and 
treated with 80 nmol/l THP for 48 h to detect cell apoptosis via 
FCAS. The results revealed that cell apoptosis sharply increased 
in siMKP-1 cells (Fig. 3C and D), indicating that MKP-1 
effectively inhibited RT112 cell apoptosis. Taken together, the 
results suggested that MKP-1 protected RT112 cells from cell 
apoptosis and served an important role in chemoresistance.

Figure 1. FGFR3 and MKP-1 expression levels are increased in recurrent bladder cancer tissue. (A) Immunohistochemical staining of primary and recur-
rent bladder cancer tissues was performed to detect FGFR3 and MKP-1 expression in representative patients. Scale bar, 100 µm. (B) Quantitative FGFR3 
expression was analyzed using the Image-pro Plus 6.0 system. Histograms represent the mean density of FGFR3. (C) Quantitative MKP-1 expression 
was analyzed using the Image-pro Plus 6.0 system. Histograms represent the mean density of MKP-1. (D) Relative MKP-1 expression was determined 
by reverse transcription-quantitative PCR. *P<0.05. FGFR3, fibroblast growth factor receptor 3; MKP‑1, mitogen activated protein kinase phosphatase‑1; 
IHC, immunohistochemistry.
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MKP‑1 is involved in chemoresistance via JNK, ERK and 
p38 pathways. MKP-1 knockdown induced cell apoptosis 
(Fig. 3C and D). However, the underlying mechanism of this 
process remains unclear. As aforementioned, the current 
study determined that JNK, ERK and p38 were upregulated 
in siMKP-1 cells (Fig. 2C), leading to the further hypothesis 
that JNK, ERK and p38 were responsible for cell apoptosis. To 
test this hypothesis, siNC and siMKP-1 groups were individu-
ally treated with JNK, ERK and p38 inhibitors (SP600125, 
PD98059 and SB202190, respectively). As presented in 
Fig. 4A, cell viability markedly increased in siMKP-1 cells 
treated with SP600125 and THP when compared with THP 
treatment alone. This indicated that SP600125 served a role 
in protecting siMKP-1 cells from cell death. PD98059 and 

SB202190 exerted similar effects following treatment with 
SP600125. The results also revealed that SP600125 treat-
ment inhibited JNK phosphorylation in siNC and siMKP-1 
cells (Fig. 4B). Treatment with ERK or p38 inhibitors exerted 
similar effects. The results of Fig. 4 indicated that JNK, 
ERK and p38 serve significant roles in RT112 cell death. In 
conclusion, the results suggested that MKP-1 may serve a role 
in chemoresistance through JNK, ERK and p38 pathways in 
bladder cancer.

Discussion

Chemotherapy is a primary treatment of bladder cancer, and 
patients exhibiting chemoresistance have high recurrence 

Figure 2. MKP-1 and MAPK expression in RT112 cells transfected with NC and MKP-1 siRNA. (A) Relative MKP-1 expression in the siNC and siMKP-1 
groups was examined using reverse transcription-quantitative PCR. **P<0.01. (B) Representative microscopic images of siNC and siMKP-1 treated cells 
captured in both 2D and 3D environments under a phase contrast microscope. (C) MKP-1 expression of the siNC and siMKP-1 groups, as determined via 
western blotting. GAPDH was used as the internal control. (D) Phosphorylated and total ERK1/2 protein expressions of the siNC and siMKP-1 group, as 
determined via western blotting. GAPDH was used as the internal control. (E) Phosphorylated and total p38 protein expressions of the siNC and siMKP-1 
group, as determined via western blotting. GAPDH was used as the internal control. (F) Phosphorylated and total JNK protein expression levels of the siNC 
and siMKP‑1 group, as determined via western blotting. GAPDH was used as the internal control. MKP‑1, mitogen activated protein kinase phosphatase‑1; 
NC, negative control; siMKP‑1, MKP‑1 small interfering RNA; siNC, small interfering negative control.
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Figure 4. Effect of MAPK inhibitors on cell death. (A) siNC and siMKP-1 groups were left untreated or pretreated with SP600125, PD98059 and SB202190. 
Subsequently, samples were treated with 80 nmol/l THP. Cell viability was determined via Cell Counting Kit-8 assays. *P<0.05 and **P<0.01. (B) Levels 
of phosphorylated and total JNK protein were determined via western blotting. Actin was used as the internal control. (C) Levels of phosphorylated and 
total p38 protein were determined via western blotting. Actin was used as the internal control. (D) Levels of phosphorylated and total ERK1/2 protein were 
determined via western blotting. Actin was used as the internal control. siNC, small interfering negative control; siMKP‑1, MKP‑1 small interfering RNA; 
THP, pirarubicin.

Figure 3. MKP-1 knockdown increases drug-susceptibility and induces cell apoptosis. Dose responses and the timed course of cell death in siNC and siMKP-1 
treated cells is presented. (A) Two groups of cells were treated with increasing concentrations (0, 5, 10, 20, 40, 80, 160 and 320 nmol/l) of THP for 24 h. (B) Two 
groups of cells were treated with 80 nmol/l THP and incubated for different durations (24, 48 and 72 h). Cell viability was determined via Cell Counting 
Kit-8 assays. *P<0.05 and **P<0.01. (C) Cell apoptosis of the two groups was measured via flow cytometry with or without 80 nmol/l THP treatment. (D) A 
comparison of apoptosis rates between the two groups is presented. **P<0.01. MKP‑1, mitogen activated protein kinase phosphatase‑1; siNC, small interfering 
negative control; siMKP‑1, MKP‑1 small interfering RNA; THP, pirarubicin.
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rates, making it a major challenge to the treatment and prog-
nosis of patients with bladder cancer (31). There are various 
mechanisms that have led to the emergence of chemoresis-
tance, which involve diverse cell signaling pathways that are 
often interconnected, hindering bladder cancer therapy. At 
present, more studies aiming to identify various molecular 
targets have been intitated to create more effective methods of 
treating bladder cancer chemoresistance.

Many cell-based resistance assays are performed using 
conventional 2D models (32). However, in vivo cells exist in 
a 3D environment, which comprises the extracellular matrix 
and other neighboring cells. 3D models also mimic natural 
cellular responses in vivo, supporting angiogenesis, slowing 
proliferation, enhancing metastatic potential and increasing 
chemotherapeutic resistance (33,34). Thus, the current study 
established a novel 3D bladder cancer cell model in vitro using 
gel-embedding methods.

FGFR3 is expressed on different cells and regulates biolog-
ical processes (5) by triggering multiple signal transduction 
pathways, including MAPK, PI3K/AKT and JAK/STAT 
pathways (5). It has been demonstrated that FGFR3 muta-
tions occur in myeloma, cervix and bladder cancer (35,36), 
and is the most frequently mutated oncogene in NMIBC, 
primarily occurring in exons 7, 10 and 15 (37). Further studies 
have elucidate the FGFR3 overexpression and mutations are 
correlated (8,9). It has been demonstrated that FGFR3 is 
highly expressed in patients with recurrent metastatic bladder 
cancer (11,38). Similar results were obtained in the current 
study, indicating that results may be associated with chemo-
resistance (39). The dysregulated activity of FGFR3 may also 
mediate chemoresistance via gene mutations (40).

MKP-1, negatively regulates MAPKs through threonine or 
tyrosine residues. It has been demonstrated that MKP-1 expres-
sion is increased in lung, ovarian and breast cancer (23-25) after 
chemotherapy, which indicates that MKP-1 is closely associ-
ated with chemoresistance. MKP-1 has been demonstrated 
to exert sustaining tamoxifen resistance in breast cancer (41) 
and may induce resistance by inhibiting cell apoptosis (26,42). 
FGFR3 is thought to regulate cell growth and survival by 
activating ERK (43), which in turn increases the expression 
of MKP-1 (44). MKP-1 is therefore regulated by FGFR3 to 
a certain extent. In the current study, it was determined that 
FGFR3 and MKP-1 expressions increased in patients with 
recurrent bladder cancer, and it was inferred that MKP-1 
may serve as a novel target for the treatment of patients with 
resistant bladder cancer with FGFR3 overexpression. We must 
confess that such a small sample size may become a potential 
limitation of the study, but more samples will be collected for 
verification later, and future research will be carried out.

MKP-1 regulates the MAPK pathway by inactivating JNK, 
ERK and p38. However, previous studies have revealed that 
p38 and JNK are preferred substrates during cellular responses 
to stress (45,46). A second study revealed that MKP-1 medi-
ates cisplatin-induced apoptosis via the JNK pathway in lung 
cancer, but not via ERK or p38 pathways. Therefore, JNK, 
ERK and p38 may be regulated by MKP-1 depending on the 
type of cell and stimulus. The present study determined that 
JNK, ERK and p38 expression were increased in siMKP-1 
cells, indicating that MKP-1 knockdown markedly activates 
JNK, ERK and p38 expression.

MKP-1 sensitizes RT112 cells to drugs and MKP-1 
knockdown enhances THP-susceptibility. The results of 
the current study indicated that MKP-1 protected RT112 
cells from apoptosis and that MKP-1 knockdown induced 
cell apoptosis, which indicated that MKP-1 was closely 
associated with chemoresistance. Corresponding JNK, 
ERK and p38 inhibitors were subsequently selected to block 
corresponding signal expression. The results revealed that 
JNK, ERK, p38 knockdown protects siMKP-1 cells from 
death, which strongly suggested that MKP-1 may inhibit 
RT112 cell death.

In conclusion, overexpression of MKP-1 protected cells 
from death and the knockdown of MKP-1 induced RT112 
cell death. It was further revealed that the activation of JNK, 
ERK and p38 serve important roles in the regulation of cell 
apoptosis. MKP-1 may be involved in chemoresistance by 
inactivating JNK, ERK and p38, and may therefore lead to the 
inhibition of apoptosis in bladder cancer. Therefore, MKP-1 
may serve as an effective therapeutic target for overcoming 
resistance in bladder cancer. However, further study is 
required to determine which upstream signaling pathways are 
involved and their specific roles in MAPK pathway, VEGFR 
and ROS (47) may become potential and great future research 
directions.
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