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IntroductIon
As we age, our immune system undergoes a broad range of 
functional changes, including two hallmarks: (a) immunose-
nescence (i.e., functional decline), which especially affects 
the adaptive arm of immunity (Pawelec, 2008; Goronzy and 
Weyand, 2013; Goronzy et al., 2013) and (b) “inflamm-aging” 
(i.e., a persistent systemic inflammatory state; Franceschi et al., 
2000; Pawelec et al., 2014). These changes lead to diminished 
ability of the immune system to generate protective responses 
to immunological threats, predisposing older adults to infec-
tion and raising the risk of many chronic diseases (Dorshkind 
et al., 2009; Shaw et al., 2013; Tchkonia et al., 2013). Chro-
matin accessibility is emerging as an essential component of 
gene regulation and genome stability. Moreover, changes in 
chromatin accessibility patterns are thought to play a critical 
role in human diseases (Philip et al., 2017) and aging (Mos-
kowitz et al., 2017) by altering the accessibility of key proteins 
to regulatory regions of the genome. Despite this crucial role, 
assessment of chromatin accessibility in human immune cells 
lags behind other genome-wide measurements such as tran-
scription or DNA modifications.

Aging-associated changes in epigenomic patterns have 
been reported across diverse cell types and organisms (Rando 
and Chang, 2012; López-Otín et al., 2013; Benayoun et al., 
2015). In human immune cells, transcriptomic profiling of 
human PBMCs and purified immune cells revealed genes 
that are differentially expressed with aging (Cao et al., 2010; 
Harries et al., 2011; Reynolds et al., 2015). Moreover, DNA 
methylation studies demonstrated that human immune sys-
tem aging is associated with methylation changes at specific 
CpG sites (Rakyan et al., 2010; Martino et al., 2011; Horvath 
et al., 2012; Tserel et al., 2015; Yuan et al., 2015; Zheng et 
al., 2016). A recent study (Moskowitz et al., 2017) reported 
that CD8+ T cells go through significant chromatin changes 
with aging. However, whether these changes are restricted to 
the CD8+ T cell population and whether analysis of PBMCs 
rather than purified CD8+ T cells can be used to detect these 
changes remains to be determined.

The assay for transposase-accessible chromatin with 
sequencing (ATAC-seq; Buenrostro et al., 2013; Qu et al., 
2015) is a recent technology that enables genome-wide 
profiling of chromatin accessibility patterns at base pair res-
olution using limited cell numbers. This technology offers 
remarkable opportunity to define aging-associated disrup-
tions to transcriptional regulatory programs in human im-
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mune cells with increased precision, including changes in 
noncoding cis-acting sequences (e.g., enhancers) and tran-
scription factor (TF) activity. Studying chromatin accessibility 
in blood-derived human immune cells should provide the 
blueprint to better understand how transcriptional programs 
are disrupted in immune cells with aging and to develop po-
tential treatments for rejuvenation. Thus, herein we profiled 
and analyzed chromatin accessibility and transcriptome pro-
files in PBMCs and purified monocytes, B cells, and T cells 
from 77 healthy volunteers.

reSuLtS
An epigenomic signature of aging in PBMcs
PBMCs, a composite of immune cells, represent a tissue re-
source to assess and monitor an individual’s immune health 
and responses longitudinally. We have successfully applied 
PBMC profiling in earlier studies as a means of identify-
ing transcriptomic signatures of autoimmune diseases and 
of immune responses to infectious agents (Chaussabel et 
al., 2008; Berry et al., 2010; Banchereau et al., 2016). To ex-
amine aging-associated chromatin accessibility profiles, we 
collected blood and isolated PBMCs from 77 healthy, com-
munity-dwelling research volunteers: 51 healthy young (HY, 
22–40 yr) and 26 healthy old (HO, 65+ yr) subjects (Fig. 1 A 
and Table S1). As the changes captured in PBMC epigenomes 
could be attributable to both differences in the frequency of 
certain cell types and changes in genomic patterns that are in-
trinsic to specific cell subsets (Kowalczyk et al., 2015), we also 
examined the cell composition of PBMCs using flow cytom-
etry from a subset of these subjects (Table S2). Proportions of 
naive CD4+ T cells, naive CD8+ T cells, and CD19+ B cells 
significantly decreased with aging, consistent with age-related 
decline in thymus and bone marrow activity (Fig. S1, A–C). 
The most significant aging-associated decline was observed 
in the naive CD8+ T cell population (Fig. S1 C), where the 
percentage of naive CD8+ T cells in PBMCs decreased from 
∼7% to ∼3% with age (P = 1e−04, Wilcoxon rank-sum test).

ATAC-seq profiles were generated from 49 subjects 
(28 HY, 21 HO) by incubating the purified nuclei with Tn5 
transposase to cut and “tag” accessible chromatin and se-
quencing the resulting “tags” to identify genome-wide open 
chromatin patterns. This approach identified 140,172 open 
chromatin sites (i.e., peaks) associated with 22,124 genes 
based on their distance to transcription start sites (TSSs). 
Only high-quality samples passing quality control crite-
ria were used in downstream analyses (44 samples, 25 HY 
and 19 HO; Methods). Using a generalized linear model 
(GLM), 12,626 differentially accessible peaks (9% of those 
tested, false discovery rate [FDR] < 0.05) were identified 
between age groups. Of these, 6,977 showed a decrease and 
5,649 showed an increase in chromatin accessibility with 
aging, hereafter referred to as “closing” and “opening” peaks, 
respectively (Fig.  1  B). Principal component analysis and 
hierarchical clustering analyses confirmed that differential 
peaks discriminated between age groups with high accu-

racy, where a majority of samples (42 out of 44 in hierar-
chical clustering) clustered based on the age group alone 
(Fig. 1, C and D; Fig. S1 D).

The Roadmap Epigenomics Project (Roadmap Epi-
genomics Consortium et al., 2015) profiled reference PBMC 
samples and defined functional states such as promoters 
and enhancers in these cells. To determine the location of 
ATAC-seq open chromatin sites (e.g., promoters, enhancers) 
we annotated them using these Roadmap-defined (i.e., 
ChromHMM) chromatin states. As expected, the most acces-
sible peaks mostly overlapped with promoter and enhancer 
states (Fig. S1 E). In contrast, less accessible peaks were an-
notated with repressed or quiescent states (Fig. S1 E). For 
example, the most accessible 10% among all peaks (14,222) 
were mostly at promoters (55.6%) and enhancers (36.1%), 
whereas the least accessible 10% (14,199) were mostly at 
quiescent sites (61.3%). As shown in Fig.  1  E, there was a 
remarkable difference in the functional annotation of differ-
ential peaks, with closing peaks mostly found at promoters 
and enhancers and opening peaks mostly found at repressed 
and quiescent sites. Moreover, closing peaks were more acces-
sible (i.e., larger peaks) on average than opening peaks and all 
ATAC-seq peaks (Fig. S1 F).

Analysis of the frequency of differentially accessible 
chromatin regions across the cohort revealed that closing 
peaks consist of open chromatin sites that are common be-
tween subjects (i.e., high-frequency peaks), whereas opening 
peaks consist of low-frequency and often subject-specific 
peaks (Fig. 1 F). Thus, examination of chromatin accessibility 
led to the identification of an epigenomic signature of aging 
in PBMCs composed of (a) chromatin closing at the most 
accessible promoter/enhancer regions of the genome across 
the population and (b) a chromatin opening of less accessible 
regions of the genome in a subject-specific manner.

chromatin closing at promoters and enhancers with aging
Differential peaks were annotated to the nearest gene based 
on their distance to TSS, thereby linking 4,567 and 3,816 
genes to “closing” and “opening” peaks, respectively (see 
Table S3 for genes associated with differentially open peaks). 
Genes annotated to differentially accessible peaks were fur-
ther characterized using gene ontology (GO) terms, which 
revealed 622 and 379 immune-related genes that are closing 
and opening, respectively (Fig. 2 A). ClueGO (Bindea et al., 
2009) enrichment analyses revealed that chromatin closing is 
significantly associated with genes involved in T cell activa-
tion-related GO terms (n = 161 genes) and T cell receptor 
signaling pathway (n = 59 genes; Fig. 2 B, Fig. S2 A, and Table 
S4). In contrast, chromatin opening is associated significantly 
with genes involved in myeloid leukocyte (n = 48 genes) and 
osteoclast differentiation (n = 29 genes) processes (Fig. 2 B, 
Fig. S2 B, and Table S4).

To further interpret the immunological implications 
of these chromatin changes, we compared them against 
previously described gene sets from transcriptional profiles 



3125JEM Vol. 214, No. 10

Figure 1. epigenomic signature of aging in PBMcs. (A) Schema summarizing our study. (B) Plot representing log2 fold change (old-young) versus mean 
read count for ATAC-seq peaks. Peaks differentially opening (closing) with aging are represented in red (blue). (C) Heat map showing normalized (z scores) 
chromatin profiles for differentially closing/opening peaks across PBMC samples. (D) Plot of first two principal components (PCs) based on differential peaks 
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(Chaussabel et al., 2008), where each module represents a 
coordinately expressed gene set across many PBMC ex-
pression profiles. These modules are functionally charac-
terized and linked to pathways or cell types involved in 
immune processes, which enabled us to systematically de-
fine transcriptional fingerprints of diverse immune diseases 
and responses (Berry et al., 2010; Guiducci et al., 2010). We 
further characterized the modules with unknown func-
tionality using ClueGO (Bindea et al., 2009) annotations 
(Methods; Table S5) and calculated the mean fold change 
for immune module genes, where negative numbers rep-
resent chromatin closing with aging (Fig. 2 C, blue bars) 
and positive ones represent chromatin opening with aging 
(Fig. 2 C, red bars). This analysis revealed a systematic loss 
of chromatin accessibility at the promoters and enhancers 
of immune module genes. This loss was accompanied by 
a gain of chromatin accessibility around these genes at 
loci classified as repressed or quiescent by the Roadmap 
(Roadmap Epigenomics Consortium et al., 2015) profiles 
(Fig. 2 C), consistent with observed genome-wide patterns 
(Fig. 1 E). Modular analyses of the chromatin accessibil-
ity data revealed that the T cell module genes exhibit the 
most significant chromatin closing with aging (Fig.  2 C, 
first row). Fig.  2 D shows that at the subject level, most 
genes in the T cell module exhibited chromatin silencing 
with aging, resulting in a striking separation of subjects 
into their respective age groups based on the chromatin 
accessibility of these genes. Focusing on the genes within 
the inflammation I module revealed that aging has a dual 
effect on inflammation-related genes (Fig. 2 E). A set of in-
flammation-related genes are repressed via chromatin clos-
ing mostly at their enhancers, including hypoxia-inducible 
factor HIF1A, which modulates hypoxia responses in im-
mune cells (Palazon et al., 2014). Meanwhile, a mutually 
exclusive gene set was associated with chromatin opening 
mostly at quiescent sites, including DUSP10, a molecule 
that is known to play an essential role in local and systemic 
inflammation (Lang et al., 2006). A gain in chromatin ac-
cessibility was not detected around the IL-6 molecule, a 
key mediator of systemic inflammation (Ershler and Keller, 
2000), suggesting that age-associated increases in serum 
IL-6 levels might originate from cells other than PBMCs 
(Maggio et al., 2006). Thus, our analysis shows a wide-
spread chromatin closing at promoters and enhancers re-
lated to immune functions, especially T cell functions.

Aging-associated gene expression and 
chromatin accessibility changes
To link aging-associated chromatin changes to transcript lev-
els, RNA-seq profiles of PBMCs from 39 subjects (24 HY, 
15 HO) were generated to match the ATAC-seq samples. 
Fig.  3  A shows a significant positive correlation between 
age-related changes in gene expression levels and chroma-
tin accessibility at gene promoters (r = 0.34, P < 1e−16). We 
identified immune modules that undergo transcriptional, 
epigenetic, and concordant (i.e., transcription and chromatin 
accessibility are remodeled together in the same direction) 
changes with aging (Fig. 3 B). Analysis of genes showing con-
cordant remodeling (Fig. 3 B, third column) revealed the most 
significant chromatin closing with aging as well as declines 
in gene expression in the T cell module (Fig. S3, A and B). 
Many genes associated with T cell functions, including TFs 
involved in lymphocyte development and activation, such as 
LEF1 and TCF7, exhibited correlated decreases in chroma-
tin and expression profiles (Fig. 3 C and Fig. S3, C and D). 
Meanwhile, other immune modules, most notably cytotoxic 
cells, were activated both at the chromatin and gene expres-
sion levels with aging (Chaussabel et al., 2008; Fig. 3 B, red 
bars in third column). These included activation of granzymes 
(GZMH and GZMB) and granulysin (GNLY; Fig. 3, D and 
E) and might originate from natural killer cells (Hayhoe et al., 
2010); however, multiple other cell types can express GZMB, 
including plasmacytoid dendritic cells (Matsui et al., 2009), 
CD4+ T cells (Namekawa et al., 1998; Appay et al., 2002), and 
plasma cells (Xu et al., 2014).

Our analyses also revealed chromatin remodeling that 
was not accompanied by changes in gene expression (Fig. 
S3 E). For example, chromatin opening at genes associated 
with inflammation was not accompanied by changes in gene 
expression, suggesting that transcriptional activation of these 
genes might depend on additional stimuli. Thus, the com-
bined analyses of the epigenome and transcriptome increased 
the power of each assay and enabled us to identify immune 
effector molecules that are activated/inactivated with aging. 
Moreover, chromatin accessibility profiles provided more pre-
cise and genome-wide information than expression data alone, 
including epigenomic changes at promoters and enhancers.

epigenomic silencing of t cell signaling pathways with aging
IL7R, a gene critical for lymphocyte development and healthy 
immune responses (Schluns et al., 2000), was among the top 

confirms that PC1 accounts for the separation between age groups. Percentage of variation among differential peaks accounted for by each PC is shown in 
parentheses. PC1 from this analysis accounts for ∼7% of the variance in the complete data set. (E) Relative to all peaks tested, differentially closing peaks 
are enriched in promoters and enhancers, whereas opening peaks are enriched in quiescent and repressed sites. (F) Relationship between peak frequency 
(i.e., in how many samples/subjects a peak is called) and aging-related change in chromatin accessibility. (left) Differentially closing peaks (in blue) are 
commonly found across the cohort, whereas opening peaks (in red) tend to be rare or private (all pairwise comparisons between shown distributions are 
significant after Wilcoxon test, P < 0.01). (right) Log2 fold change (old-young) as a function of peak frequency. Significantly closing and opening peaks are 
shown in blue and red, respectively. Differential accessibility of ATAC-seq peaks was tested using a GLM based on read counts, with significance assessed at 
a 5% FDR threshold, after using Benjamini-Hochberg P value adjustment. Tests are based on n = 25 young and n = 19 elderly subjects.
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Figure 2. epigenomic signature of aging at immune-related genes. (A) Major GO category annotations of genes associated with differentially closing 
and opening peaks. (B) Significant GO terms (P < 0.05 after Bonferroni step-down correction) associated with immune-related genes enriched among genes 
annotated to differentially closing (n = 6,977; blue, left) and opening (n = 5,649; red, right) peaks. ClueGO was used for enrichment testing and annotation 
merging, and significance was based on adjusted P values of less than 0.05 after Bonferroni step-down correction. (C) Mean chromatin remodeling (log2 
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genes linked to multiple closing peaks (n = 12; Fig. 4 A; Fig. S4, 
A and B). The loss of chromatin accessibility around the IL7R 
locus was also accompanied by aging-associated decreases in 
IL7R expression (Fig. 4 B). Moreover, the IL7R expression 
and the chromatin accessibility of its promoter were signifi-
cantly correlated at the individual level (r = 0.59, P < 0.001; 
Fig. 4 C). Additional genes in the IL-7 signaling cascade, in-
cluding JAK1, JAK3, STAT5A, and STAT5B, also exhibited 
closing in aged individuals (Fig. 4, D and E), possibly explain-
ing the impaired signaling and responses to IL-7 in the elderly 
(Kim et al., 2006). Moreover, these results revealed IL7R and 
the members of the IL-7 signaling pathway as potential bio-
markers of healthy aging. WikiPathways enrichment analyses 
(Kelder et al., 2012) of genes annotated with differentially 
open peaks confirmed systematic and significant chromatin 
closing of IL-7 signaling pathway genes and other signaling 
pathways, including TCR, IL-2, and IL-9 signaling (Fig. 4 F, 
Fig. S4 C, and Table S4). In addition, 27 out of 70 genes in the 
“histone modifications” pathway were also associated with 
significant chromatin closing with aging (Fig. S4 C and Table 
S4). These included histone genes (e.g., HIST1H3D, HIS-
T1H3E, HIST4H4) as well as histone modifiers (e.g., EZH1, 
SETD7), in alignment with the known reduced expression 
of core histones and disruption of histone modification pat-
terns associated with cellular aging (Benayoun et al., 2015). 
Collectively, our results suggest that aging is associated with 
the chromatin closing of multiple pathways related to T cell 
signaling that might explain impaired T cell responses in the 
elderly. Moreover, these results establish IL7R and the mem-
bers of the IL-7 signaling pathway as potential biomarkers 
of healthy aging whose predictive ability as immune health 
indicators needs to be assessed in longitudinal studies.

cd8+ t cells account for the PBMc aging signature
Flow cytometry data from 23 subjects (12 HY and 11 HO) 
revealed that the age-related decrease in IL7R expression 
was limited to CD8+ T cells (Fig. 5, A and B; and Table S6), 
indicating that chromatin alterations captured in PBMCs 
were not equal across profiled T cell subsets. Furthermore, 
when we measured pSTAT5 induction upon IL-7 stimula-
tion, we noted major differences between CD4+ and CD8+ 
T cells. These data revealed a clear decline in IL-7 respon-
siveness with aging in CD8+ T cells (both percent and mag-
nitude) that was not observed in CD4+ T cells (Fig.  5 C). 
Flow cytometry analyses suggested that significant reductions 
in IL7R-expressing cells occur in both naive and memory 
CD8+ compartments, including central memory (CM) and 

effector memory RA (EMRA) subpopulations (Fig.  5  D). 
Based on these data, we profiled the chromatin accessibility of 
sorted naive and memory CD4+ and CD8+ T cells from eight 
donors (4 HY, 4 HO; Materials and methods). A similar num-
ber of open chromatin sites was captured in these four subsets 
(∼45,000–50,000 peaks). However, each subset exhibited dif-
ferent changes in its open chromatin sites with aging. CD4+ 
T cells showed minimal chromatin remodeling with aging: 
44 peaks in memory and 216 peaks in naive CD4+ T cells. In 
contrast, CD8+ T cells showed extensive chromatin remod-
eling with aging (Fig.  5  E). Specifically, memory CD8+ T 
cells displayed 8,503 (19.7% of those tested) differential peaks, 
whereas naive CD8+ T cells displayed 2,925 (6.4% of those 
tested) differential peaks. A recent study (Moskowitz et al., 
2017) reported aging-associated closing of chromatin accessi-
bility at gene promoters in CM and naive CD8+ T cells. Our 
data align with this observation and suggest that chromatin at 
gene promoters closes with aging in both memory and naive 
CD8+ T cells, although this pattern is more evident in mem-
ory CD8+ T cells. More specifically, functional state annota-
tions from Roadmap T cell data sets (Roadmap Epigenomics 
Consortium et al., 2015) revealed that chromatin closing in 
memory CD8+ T cells occurred mostly at promoters (>50%) 
and enhancers (>30%), whereas chromatin opening was asso-
ciated less with promoters (∼10%) and more with quiescent 
(∼30%) and enhancer sites (∼40%; Fig. 5 F), similar to the 
PBMC signature (Fig. 1 E). In naive CD8+ T cells, chroma-
tin remodeling was mostly observed at enhancers, including 
>75% of closing peaks and >50% of opening enhancer peaks.

Comparing aging-induced chromatin remodeling in 
T cell subsets to that of PBMCs indicated that chromatin 
remodeling in PBMCs correlates positively with the chro-
matin remodeling of CD8+ T cell subsets (Fig. S4 D). These 
results suggest that CD4+ and CD8+ T cell populations go 
through very different cellular changes with aging. Analysis 
of gene promoters known to be expressed in memory and 
naive CD4+ and CD8+ T cells revealed that the chroma-
tin closing of promoters of genes encoding certain surface 
(e.g., CD28, IL7R) and signaling (STAT4) molecules was 
more pronounced in memory CD8+ T cells (Fig. 5 G and 
Fig. S4 E). Moreover, chromatin closing in PBMCs around T 
cell signaling pathways, including the IL7 signaling pathway, 
mostly stemmed from memory CD8+ T cells (Fig. 5 H), in-
cluding the IL7R locus itself (Fig. 6 A). These results identify 
memory CD8+ T cells as the subpopulation with the most 
profound chromatin remodeling with aging. Moreover, the 
silencing of promoters and enhancers in PBMCs likely stems 

fold change) of genes listed in 28 immune coexpression modules, calculated based on all peaks (leftmost column) and separately using peaks annotated to 
specific chromHMM states. (D) Subject-specific normalized (z scores) chromatin accessibility patterns of peaks annotated to genes in the T cell coexpression 
module reveals concerted aging-related variation across the cohort. Warmer (cooler) hues represent increased (decreased) chromatin accessibility relative 
to the cohort mean. (E) Mean chromatin remodeling (log2 fold change) of peaks annotated to genes in the inflammation I module, calculated based on all 
peaks (top row) and separately with respect to specific chromHMM state annotations. The test for differential young (n = 25) versus old (n = 19) subject 
ATAC-seq peaks was based on a GLM, with significance assessed at a 5% Benjamini-Hochberg FDR.



3129JEM Vol. 214, No. 10

Figure 3. concordant transcriptional and epigenomic changes associated with aging in PBMcs. (A) Chromatin remodeling at gene promoters cor-
relates significantly with changes in expression of the colocated genes (Pearson r = 0.32, p-value <2.2 × 10−16). Dashed lines delineate the set of peaks (x 
axis) and genes (y axis) that are differentially accessible or expressed between young and old subjects with a p-value < 0.01 computed from 1,000 random 
permutations of subject labels. Shaded quadrants define sets of genes showing congruent aging-related shifts in chromatin accessibility and expression. 
(B) Enrichment level of immune modules among gene sets associated to differentially accessible peaks (left), differentially expressed genes (center), and 
congruent (concordant) chromatin and expression remodeling (right). Plots show −log10 of hypergeometric test P values, colored according to the direction 
of difference in accessibility or expression (blue for decrease and red for increase with age). Reference lines are drawn at the largest P value for which a 5% 
FDR is attained, computed using the Benjamini-Hochberg method. (C) Examples of concordantly remodeled genes from the T cell module. (C, top) Normal-
ized (z scores) for chromatin accessibility and gene expression correlate among subjects. (C, bottom) Both chromatin accessibility at promoters (in yellow) 
and gene expression (in green) decrease with aging. (D) Promoter chromatin accessibility (top) and gene expression (bottom) of genes in the cytotoxic 
cells module that show congruent increases in accessibility and expression with aging. Warmer (cooler) hues represent increased (decreased) chromatin 
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from CD8+ T cells, even though CD8+ T cells typically con-
stitute <10–15% of PBMCs.

We also profiled the chromatin accessibility of purified 
monocytes (n = 20) and naive B cells (n = 7) and found that 
these cell types do not display significant chromatin acces-
sibility changes with aging (Fig. S4 F), further confirming 
that aging differentially affects distinct immune cell subsets. 
Moreover, chromatin changes detected in purified immune 
subsets (i.e., memory and naive CD8+ T cells) suggest that 
the aging signature of PBMC is not merely a consequence of 
cell composition changes with aging, which is in agreement 
with similar observations based on single-cell transcriptomic 
profiling (Kowalczyk et al., 2015).

Potential regulators of IL7r are 
silenced in memory cd8+ t cells
Our data revealed that whereas chromatin closing around 
the IL7R locus (promoters and enhancers) was observed in 
CD8+ T cells, both memory and naive, chromatin closing at 
the IL7R promoter was specific to memory CD8+ T cells 
(Fig.  6  A, gray bar showing the IL7R promoter peak). To 
uncover potential regulators of these changes, we analyzed 
TF binding motifs located around the IL7R TSS (10 kb up-
stream, 1 kb downstream). After filtering out the TFs based 
on their expression in PBMCs, several TFs and TF fami-
lies emerged, including LEF1, ETS2, BACH1/2, JUN, the 
NF-κB family, and the STAT family (Fig. 6 B and Table S7). 
Among these, NF-κB, JUN, and STATs are known as rapid- 
acting factors, which can be present in an inactive state not re-
quiring protein synthesis to be activated. Enrichment of these 
TFs at the IL7R promoter suggests a role for these rapid- 
acting TFs in ensuring the rapid activation of IL7R and mod-
ulating IL-7 responsiveness in T cells. In fact, NF-κB directly 
controls the expression of the IL7R gene in T cells through 
an enhancer control region close to the promoter (Miller et 
al., 2014). Furthermore, the chromatin around the promot-
ers of these factors (e.g., NF-κB and STAT family mem-
bers) closed with aging, specifically in memory CD8+ T cells 
(Fig. 6, C–E). Our data and analyses suggest that these TFs 
are likely to play a role in regulating the activity of IL7R 
in T cells and lose their chromatin accessibility—and hence 
functionality—with aging, specifically in memory CD8+ 
T cells. In alignment with these findings, Moskowitz et al. 
(2017) also reported aging-related disruptions in TF binding 
patterns in CD8+ T cells.

To determine whether silencing of TF promoters might 
correspond to changes in TF binding activity, we conducted 
TF footprinting analyses using PBMCs and T cell ATAC-seq 
samples. After pooling the ATAC-seq samples by cell type and 
age group and normalizing with respect to the library depth, 

significant TF footprint calls were obtained using the PIQ 
algorithm (Sherwood et al., 2014). These analyses showed that 
several TFs with significant footprints around the IL7R pro-
moter, including RXRA, NFKB1, ETS1, and TCF7, lost their 
footprints with aging, specifically in memory CD8+ T cells 
(Fig. S5 A). Globally, there was also an aging-related decrease 
in TF footprinting calls for all TFs in memory CD8+ T cells 
(Fig.  6  F), including footprints for NF-κB factors, STATs, 
and TFs with important roles in T cell functions (Fig. 6 G 
and Table S8). Collectively, these results indicate that memory 
CD8+ T cells undergo aging-associated silencing of regula-
tory elements and interactions, as evident from the loss of 
chromatin accessibility at TF gene promoters and the decrease 
in TF binding estimates.

Aging-specific chromatin accessibility profiles 
are not linked with cMV
In chronic infections, most notably with CMV, CD8+ T cells 
enter an “exhausted” state of reduced functionality and stop 
responding to further stimulation (Wherry, 2011; Sansoni et 
al., 2014), and an aging-related increase in CMV seropos-
itivity is associated with increased mortality in the elderly 
(Fülöp et al., 2013; Savva et al., 2013). To study whether the 
observed aging-associated chromatin signature in PBMCs is 
attributable to CMV seropositivity, we measured CMV IgG 
antibody status in a subset of our cohort (n = 26, 17 HY, 9 
HO), of which n = 21 (12 HY, 9 HO) also had ATAC-seq 
profiles. As reported (Fülöp et al., 2013; Savva et al., 2013), 
we observed that more elderly subjects were CMV positive 
(70%) compared with young subjects (45%; Table S9). More-
over, there was a significant correlation between an individ-
ual’s age and his or her CMV antibody levels (correlation 
coefficient = 0.65, Fig.  7  A). Both aging and CMV status 
were correlated with changes in PBMC composition, most 
notably with changes involving CD8+ T cell subpopulations 
(Fig. S5, B–D). The decrease of the naive CD8+ T cell number 
is more dependent on aging than on the CMV status (Fig. 
S5, B–D), as observed earlier in large cohorts (Wertheimer 
et al., 2014). Differential chromatin accessibility analyses be-
tween CMV-positive and CMV-negative subjects revealed 
that CMV seropositivity by itself is not associated with signif-
icant chromatin remodeling (Fig. 7 B), even when differen-
tial analyses are stratified by age group (Fig. S5 E). Moreover, 
CMV-related and aging-related changes were not correlated 
(correlation coefficient = −0.02, Fig. 7 C). Principal variance 
component analysis (PVCA; Boedigheimer et al., 2008) con-
firmed that the variation in aging-associated ATAC-seq peaks 
cannot be explained by CMV status or sex, whereas age con-
tributed ∼30% of the variation in these data (Fig. S5 F). Thus, 
although elderly subjects are more likely to have higher CMV 

accessibility (expression) relative to the cohort mean; data shown as normalized (z scores) values. (E) Examples of concordantly remodeled genes from the 
cytotoxic cells module. (E, top) Chromatin accessibility and gene expression correlate among subjects. (E, bottom) Both chromatin accessibility (in yellow) 
and gene expression (in green) increase with aging.
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Figure 4. t cell signaling pathways are affected with aging. (A) Genome browser view of IL7R locus highlighting 8 differentially closing peaks (out of 
12 annotated to IL7R). Blue and red tracks represent open chromatin profiles of HY (n = 5) and HO (n = 5) samples, respectively. This region also includes 
the transcription end site (TES) of a nearby gene SPEF2 whose TSS is further away from these differential peaks than IL7R. (B) IL7R expression and chro-
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infection rates, CMV seropositivity is neither associated with 
significant chromatin accessibility changes nor with the epi-
genomic aging signature observed in PBMCs.

Aging-associated chromatin accessibility profiles 
are stable over seasons
Seasonal variation affects immune cell counts, gene expres-
sion patterns (Dopico et al., 2015), and immune responses 
(Aguirre-Gamboa et al., 2016; Ter Horst et al., 2016). PVCA 
analyses showed that the season is among the biggest fac-
tors introducing variation in the chromatin accessibility data 
(∼20% of the variation; Fig. S5 G); therefore, the season is 
used as a covariate in our models (Methods). We separately 
analyzed PBMC samples collected in June–November (“sum-
mer”) and December–May (“winter”). By using “season” as 
a blocking factor in the GLMs, we defined aging-associated 
chromatin accessibility changes in summer (10 HY, 7 HO) 
and winter samples (15 HY, 12 HO). This analysis resulted in 
8,744 ATAC-seq peaks that are differentially accessible be-
tween HY and HO in summer and winter samples (Fig. 7 D), 
87% of which were also captured as differential in the com-
bined cohort. Similar to the global signature, closing peaks are 
mostly found at promoters and enhancers, and opening peaks 
are at quiescent and repressed sites (Fig. S5 H). Fold changes 
between HY and HO samples that were obtained from two 
seasons correlated highly with the fold changes obtained from 
the whole cohort, although winter samples had a slightly 
higher correlation score (Fig.  7  E; r = 0.81 for summer,  
r = 0.86 for winter). These results indicate that the chromatin 
accessibility aging signature is robust and is not significantly 
affected by seasonal variation.

dIScuSSIon
This study integrates chromatin accessibility (ATAC-seq) and 
transcriptomes (RNA-seq) of blood-derived human immune 
cells and demonstrates, in healthy elderly individuals, an epig-
enomic alteration that is essentially borne by the memory 
CD8+T cell compartment. By applying systems immunology 
approaches, we defined for the first time a chromatin acces-
sibility signature of aging-related reduced immune responses 
in PBMCs and uncovered genes and proteins that can serve 
as potential biomarkers of immunodeficiency. The signature 
contained simultaneous chromatin closing at promoters and 
enhancers associated with T cell signaling and chromatin 
opening mostly found at quiescent and repressed sites. Re-

gions associated with chromatin opening were stochastically 
distributed across the cohort, where they were observed in 
a single subject or a small number of subjects. This chroma-
tin opening might be associated with the aging-related loss 
of histone proteins leaving short strands of DNA accessible 
to the Tn5 transposase (Pal and Tyler, 2016). However, the 
functional significance of this observation remains to be de-
termined. In contrast, a widespread loss of chromatin acces-
sibility at promoters and enhancers especially affecting T cell 
signaling pathways was observed across all subjects. Matching 
chromatin accessibility and gene expression by genomic re-
gion (i.e., promoter and transcript) and by subject helped us 
identify immune effector molecules that exhibit concordant 
alterations in their expression and chromatin accessibility lev-
els with aging. Among these molecules, a substantial number 
of genes related to T cell functions were silenced epigeno-
mically and transcriptionally, most notably the IL7R gene and 
other genes encoding the IL-7 signaling pathway.

Chromatin accessibility profiles of purified cells revealed 
that this aging-related signature in PBMCs stems from CD8+ 
T cells, which together account for 10–15% of PBMCs. We 
found that memory CD8+ T cells undergo a widespread si-
lencing of promoters with aging, whereas naive CD8+ T cells 
exhibit such a loss mostly at enhancers, a dichotomy that is 
not yet understood. Parallels between PBMCs and memory 
CD8+ T cells were particularly notable for genes in the T cell 
signaling pathways, including IL-7 signaling, where a strong 
chromatin closing around the promoters of these genes was 
observed in both PBMC and memory CD8+ T cells. The al-
teration of the IL-7 pathway might explain the loss of the 
homeostatic proliferation of CD8+ T cells (Briceño et al., 
2016) as well as their reduced antigen-driven proliferation, 
thus curtailing responses to infectious agents and cancer 
cells. Indeed, when compared with CD8+ T cells from HY 
adults, those from elderly individuals responded less well to 
IL-7, as measured by STAT5 phosphorylation. The defect in 
the response to IL-7 is specific to CD8+ T cells, as CD4+ 
T cells from elderly and young individuals responded simi-
larly to IL-7 stimulation.

A previous study established decreased expres-
sion of IL7R on naive (CD45RA+CCR7+) and EMRA 
(CD45RA+CCR7−) CD8+ T cells as one of the hallmarks of 
aging (Kim et al., 2006). However, the most dramatic impact 
of reduced IL7R levels, including BCL2 upregulation and 
STAT5 phosphorylation, was detected in the EMRA sub-

matin accessibility at its promoter decrease with aging. Box plots represent individuals in the age groups. (C) Promoter chromatin accessibility and gene 
expression are highly correlated among subjects. (D) Chromatin accessibility of peaks annotated to genes in the IL-7 signaling pathway. Color represents 
the fold change of the most significantly differential (i.e., lowest P value) peak annotated to this gene. Genes marked in gray are not associated with a sig-
nificantly closing or opening peak. (E) Subject-specific chromatin accessibility of peaks significantly closing with aging and annotated to genes in the IL-7 
signaling pathway. Warmer (cooler) hues represent increased (decreased) chromatin accessibility relative to the cohort mean; data shown as normalized (z 
scores) values. The test for differential ATAC-seq peaks was based on a GLM, with significance assessed at a 5% Benjamini-Hochberg FDR. (F) ClueGO figure 
representing the genes that are in T cell signaling pathways that annotate differentially closing peaks (closed circles for genes). Blue portions of pie charts 
represent the number of genes in the pathway that are associated with a closing peak.
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Figure 5. the PBMc aging signature stems mostly from memory cd8+ t cells. (A) Flow cytometry plots in representative young (right) and old (left) 
subjects illustrate the decrease in IL7R protein levels with aging in CD8+ T cells. (B) Flow cytometry results indicating that the aging-related decrease in 
IL7R levels is specific to CD8+ T cells. (C) Frequency of pSTAT5+ cells (left) and median fluorescence intensity (MFI) of pSTAT5 in IL-7 stimulated and control 
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population. This has important functional consequences, as 
signaling initiated by IL-7 plays a crucial role in the mainte-
nance and homeostasis of naive and memory T cells (Schluns 
et al., 2000). In CD8+ T cell subsets, IL-7 stimulation leads to 
a more homogenous response in terms of BCL2 upregulation 
and STAT5 phosphorylation in naive and CM subpopula-
tions, whereas the response is more heterogeneous in effector 
memory (EM) and EMRA subpopulations in both young and 
elderly subjects (Kim et al., 2006). Indeed, IL7R is an import-
ant marker of functional heterogeneity observed in mouse ef-
fector memory CD8+ T cells (Kaech et al., 2003). Epigenetic 
mechanisms have been implicated in regulating IL7R levels 
in human CD8+ T cells. For example, increased DNA meth-
ylation levels have been observed around the IL7R promoter 
in IL-7Ralow cells in comparison to IL-7Rahigh cells (Kim et 
al., 2007). A similar mechanism was identified in mouse cells 
where the IL7R expression in memory precursor CD8+ T 
cells was inhibited by HDAC1-mediated histone deacetyla-
tion of the gene promoter (Chandele et al., 2008).

Memory CD8+ T cells also exhibited an epigenomic 
silencing of TF promoters and a loss in TF footprints with 
aging. This aging-associated loss of TF footprints included 
fast-acting factors such as NF-κB and STATs, which might 
play a role in regulating rapid T cell responses. This loss in 
TF footprints was particularly noticeable around the IL7R 
locus. A recently published study (Moskowitz et al., 2017) 
similarly reported the aging-associated erosion of chromatin 
accessibility around gene promoters in naive and CM CD8+ 
T cells and showed that aging disrupts the TF binding pat-
terns in these cells. Similarly, chromatin accessibility changes 
in CD8+ T cells have been recently reported in cancer (Philip 
et al., 2017). By establishing a chromatin accessibility sig-
nature of aging-related immunodeficiency and delivering 
potential biomarkers in PBMCs (rather than in purified 
cells), our study addresses a significant gap and motivates fu-
ture longitudinal studies.

The epigenomic signature of aging in PBMCs described 
herein was robust and was associated with neither CMV se-
ropositivity nor seasonal variation. As part of this signature, 

IL7R emerged as a potential biomarker of reduced immune 
responses, where aging-associated loss of this molecule is ob-
served at the chromatin, transcriptome, and protein levels, es-
pecially in memory CD8+ T cells. Such biomarkers could be 
instrumental in identifying individuals who might benefit the 
most from therapies to rejuvenate declining immune func-
tions due to aging or diseases, such as HIV (Feinberg, 2007; 
Kennedy et al., 2014). Indeed, clinical studies of recombinant 
human IL-7 (rhIL-7) suggested a possible rejuvenation of the 
circulating T cell profile upon administration of rhIL-7, es-
pecially in individuals with limited naive T cells and dimin-
ished TCR repertoire diversity, as in the case of the elderly 
(Sportès et al., 2008, 2010). Chromatin accessibility profil-
ing of immune cells for individuals would also be helpful in 
quantifying whether rejuvenation therapies administrated to 
individuals, such as rhIL-7, are effective and can lead to mea-
surable genomic changes around relevant genes/pathways.

The demonstration that aging has a profound impact 
on the epigenomes of human CD8+ T cells as presented 
herein and in the study by Moskowitz et al. (2017) opens 
the door to profiling of chromatin accessibility in a clinical 
context. In this study, we show for the first time that mea-
suring chromatin accessibility from whole blood samples is 
sensitive enough to detect aging-associated changes, even if 
these changes stem from a subpopulation of cells. PBMCs 
are easy to obtain and profile; hence, this opens the door to 
the assessment of healthy immune system responses in diverse 
clinical conditions such as diseases or response to therapeu-
tic intervention, including vaccination. Our study is the first 
demonstration that leukocyte chromatin accessibility profil-
ing can serve as an integral and powerful immune monitoring 
tool for reduced immune responses.

MAterIALS And MethodS
human subjects
All studies were conducted after receiving approval by the 
Institutional Review Board (IRB) of the University of 
Connecticut Health Center (IRB 14-194J-3). After receiving 
informed consent, blood samples were obtained from 75 HY 

gated CD4+ and CD8+ T cell subpopulations in a sample of young (n = 4) and old (n = 4) subjects. A significant aging-related reduction in responsiveness 
is observed only in CD8+ T cells. (B and C) Error bars represent mean + one standard deviation based on all tested individuals. (D) Frequency of IL7R+ cells 
(left) and MFI of IL7R (right) on naive, CM, EM, and EMRA CD8+ T cells obtained using flow cytometry on freshly isolated PBMCs (n = 36 young, n = 23 old). 
P values were calculated using a one-sided Wilcoxon rank-sum test; only significant P values (P < 0.05) are shown. (E) Differential accessibility analyses in 
T cell subsets show that most significant aging-related remodeling occurs in CD8+ T cells, particularly in memory CD8+ T cells. Plots representing log2 fold 
change (old-young) versus mean read count for the corresponding ATAC-seq peaks in T cell subsets. Opening (closing) peaks are represented in red (blue). 
(F) Distribution of differential and all peaks classified by chromHMM state annotations (Roadmap T cell annotations) for memory and naive CD8+ T cells. 
Promoters and enhancers close with aging in memory CD8+ T cells, similar to PBMCs. Differential accessibility of ATAC-seq peaks was tested using GLMs 
based on read counts, with significance assessed at a 5% FDR threshold after using Benjamini-Hochberg P value adjustment. All tests based on n = 3 young 
and n = 4 elderly subjects. (G) Chromatin accessibility remodeling (median fold change) of promoters of selected functionally relevant signaling and surface 
molecules in naive and memory CD4+ and CD8+ T cells. Red and blue bars represent positive (i.e., opening with aging) and negative (i.e., closing with aging) 
median fold change, respectively, aggregated over all peaks overlapping promoters of the corresponding gene. (H) Chromatin remodeling of closing PBMC 
regions associated to genes in the IL-7 signaling pathway (left) and TCR signaling pathway (right) stems from the remodeling in memory CD8+ T cells. Box 
plots for PBMC and T cell subsets represent distribution of log2 fold changes of peaks annotated to genes that are associated to closing peaks in PBMCs. 
Boxes and whiskers represent 1× and 1.5× interquartile range of log fold change, respectively.
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Figure 6. tF activity is repressed specifically in memory cd8+ t cells. (A) Genome browser view of the IL7R locus. Genome browser tracks are gen-
erated after pooling three HY and four HO samples using the same individuals for all T cell subsets. (B) TF motifs found at the IL7R promoter (−10,000 bp 
upstream, +1,000 bp downstream) at a 20% FDR. TFs that are not expressed in PBMCs are filtered out. (C) Summary of TFs that belong to the NF-κB family in 
terms of expression changes in PBMCs and chromatin changes in PBMCs and CD8+ T cells. These TFs are specifically affected with aging in memory CD8+ T 
cells. (D) Summary of expression changes in PBMCs and chromatin changes in PBMCs and CD8+ T cells for TFs in the STAT family. Significance of chromatin 
accessibility and expression values computed using GLMs (5% FDR). These TFs are specifically affected with aging in memory CD8+ T cells. (E) Chromatin 
accessibility profiles at NF-κB and STAT TF loci in T cell subsets. These TFs lose the chromatin accessibility of their promoters, specifically in memory CD8+ 
T cells, with aging. Differential peaks (5% FDR) from PBMCs and naive and memory CD8+ T cells are indicated with black bars. (F) Total number of TF foot-
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(22–40 yr) and 26 HO (65+ yr) research volunteers residing 
in the Greater Hartford, CT, region using services from the 
University of Connecticut Center on Aging Recruitment 
and Community Outreach Research Cores (http ://health 
.uconn .edu /aging /research /research -cores /). Recruitment 
criteria were selected to identify individuals who are 
experiencing “healthy” aging and are thus representative 
of the mean or typical normal health status of the local 
population within the corresponding age groups (Robertson 
and Williams, 2009). Selecting this type of cohort increases 
the generalizability of our studies and the likelihood that 
these findings can be translated to the general population 
(Robertson and Williams, 2009).

Subjects were carefully screened to exclude potentially 
confounding diseases and medications as well as frailty. Indi-
viduals who reported chronic or recent (i.e., within 2 wk) 
infections were also excluded. Subjects were deemed ineli-
gible if they reported a history of diseases such as congestive 
heart failure, ischemic heart disease, myocarditis, congenital 
abnormalities, Paget’s disease, kidney disease, diabetes requir-
ing insulin, chronic obstructive lung disease, emphysema, or 
asthma. Subjects were also excluded if they were undergoing 
active cancer treatment, took prednisone above 10 mg day, 
took other immunosuppressive drugs, took any medications 
for rheumatoid arthritis other than NSA IDs, or had received 
antibiotics in the previous 6 mo.

In addition to these steps to exclude specific chronic 
conditions, we also undertook further additional efforts to 
exclude older adults with any significant frailty. Because de-
clines in self-reported physical performance are highly pre-
dictive of frailty, subsequent disability, and mortality (Hardy et 
al., 2011), all subjects were also questioned as to their ability 
to walk 1/4 mile (or two to three city blocks). For those 
who self-reported an inability to walk 1/4 mile (Hardy et al., 
2011), the “timed up and go” (TUG) test was performed and 
measured as the time taken to stand up from the sitting posi-
tion, walk 10 ft, and return to sitting in the chair (Podsiadlo 
and Richardson, 1991). A TUG score of >10 s was considered 
an indication of increased frailty and resulted in exclusion 
from the study (Rockwood et al., 2000).

Medication usage did increase with age. Nevertheless, 
these medications all reflected their use for common and 
controlled chronic conditions unlikely to influence our find-
ings, such as hypertension, hyperlipidemia, hypothyroidism, 
degenerative joint disease, seasonal allergies, headaches, atrial 
fibrillation, depression, anxiety, or attention deficit hyperac-
tivity disorder (ADHD). Finally, smoking history data are not 
typically collected in these studies—including ours—because 
smoking is a rare habit in the elderly population.

cell sorting and phenotypic analysis
PBMCs were isolated from fresh whole blood using Ficoll- 
Paque Plus (GE) density gradient centrifugation. For 
cell sortings, we used fluorochrome-labeled antibod-
ies specific for CD3 (UCHT1), CD27 (M-T271; Bioleg-
end); CD4 (RPA-T4), CD45RO (UCHL1), CD45RA 
(HI100), CD19 (HIB19), CD16 (B73.1), and IgD (IA6-
2); CD11c (S-HCL-3; BD Biosciences); and CD8 
(SCF121Thy2D3) and CD19 (J3-119; Beckman-Coulter). 
Naive CD4 (CD4+CD8−CD45RO−CD45RA+), naive 
CD8 (CD4−CD8+CD45RO−CD45RA+), memory CD4 
(CD4+CD8−CD45RO+CD45RA−), and memory CD8 
(CD4−CD8+CD45RO+CD45RA−) T cells were sorted 
from the CD19−CD16−CD11c− fraction (DUMP channel). 
Naive B cells (CD19+IgD+CD27−) were sorted from the 
CD3−CD16−CD11c−) fraction (DUMP channel). Cell sort-
ing was performed using FAC SAria Fusion (BD Biosciences). 
Monocytes were isolated from fresh PBMCs by positive se-
lection using magnetic CD14 microbeads (Miltenyi Biotech). 
For phenotypic analysis, PBMCs were stained with fluoro-
chrome-labeled antibodies specific for CD3 (UCHT1), CD4 
(RPA-T4), CD8 (SCF121Thy2D3), CD45RA (HI100), 
CD19 (HIB19), CD14 (MSE2), CCR7 (150503), and CD127  
(HIL-7R-M21). For the analysis of the frequencies of naive T 
cells (CD45RA+CCR7+), CM T cells (CD45RA−CCR7+), 
EM T cells (CD45RA−CCR7−), EMRA (CD45RA+CCR7−), 
B cells, and monocytes, PBMCs were stained with fluoro-
chrome-labeled antibodies specific for CD3 (UCHT1), CD4 
(RPA-T4), CD8 (SCF121Thy2D3), CD45RA (HI100), 
CD19 (HIB19), CD14 (MSE2), CCR7 (150503), and 
CD127 (HIL-7R-M21). The stained cells were acquired with 
BD Fortessa and analyzed with FlowJo software (Tree Star).

cMV seropositivity measurements
Anti-CMV IgG titers were determined in frozen sera by 
commercially available ELI SA (Genway Biotech Inc.) with 
an interassay coefficient of variance of 5.2%. A titer of 1.2 ELI 
SA units/ml or greater in a sample was predetermined by the 
manufacturer as CMV seropositive.

PBMc stimulation and phospho-StAt5 detection
Cryopreserved PBMCs isolated from HY and HO individu-
als were recovered and allowed to rest in complete media at 
37°C for 2 h. Then, cells were washed and incubated for 15 
min at 37°C in prewarmed complete culture medium sup-
plemented or not with 100 ng/ml IL-7 (PeproTech). After 
stimulation, cells were fixed for 10 min with prewarmed 
fixation buffer (BD Cytofix; BD Biosciences), washed, and 
perme abilized on ice for 30 min with ice-cold Phosphoflow 

printing calls obtained in PBMCs and T cell subsets from young (blue) and old (red) samples. All ATAC-seq samples are pooled and randomly downsampled 
to the same total read count before TF footprinting calls to eliminate potential biases due to depth of sequencing. The number of footprint calls decreases 
with aging in memory CD8+ T cells. (G) Proportion of ATAC-seq peaks with a footprint for selected TFs. The decrease with aging in the proportion of peaks 
carrying footprints is specific to memory CD8+ T cells for NF-κB and STAT factors as well as other TFs relevant for T cell functions.

http://health.uconn.edu/aging/research/research-cores/
http://health.uconn.edu/aging/research/research-cores/
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Figure 7. relevance of cMV seropositivity and seasonality as factors influencing aging signature of chromatin accessibility in PBMcs. (A) Cor-
relation between CMV antibody level and age. Note the positive and significant correlation between CMV seropositivity and aging. (B) Plot representing log2 
fold change (CMV+ vs. CMV−) versus mean read count for ATAC-seq peaks. No differential peaks were obtained at 5% FDR from this comparison. (C) Cor-
relation between peak-specific log fold changes in chromatin accessibility associated with aging and log fold changes associated with CMV seropositivity. 
Peaks that are closing or opening with aging are shown in red. Note the weak correlation (r = −0.02), suggesting that CMV seropositivity does not explain 
aging-associated chromatin changes. (D) Heat map showing normalized (z scores) chromatin accessibility profiles of differentially closing and opening 
peaks across PBMC samples obtained in two seasons. Shades of purple and green on the left represent fold changes in winter and summer samples, respec-
tively. (E) Correlation between peak-specific log fold changes in chromatin accessibility associated with aging for all samples and changes associated with 
aging for summer (left) and winter (right) samples. Season-specific chromatin changes associated with aging are highly correlated with global changes. 
Changes in winter are slightly more strongly correlated with the global signature (Pearson r = 0.86 vs. 0.81). Testing of differential chromatin accessibility 
was based on GLMs, with significance assessed at a 5% FDR threshold computed using Benjamini-Hochberg adjustment. CMV–aging comparisons based 
on n = 12 young and n = 9 elderly subjects (n = 11 CMV+, n = 10 CMV−). Season–aging comparisons based on n = 25 young and n = 19 elderly subjects  
(n = 17 summer, n = 27 winter samples).
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Perm Buffer III (BD Biosciences). Cells were washed, stained 
for 60 min with a cocktail containing fluorochrome-labeled  
antibodies specific for CD3 (UCHT1), CD4 (RPA-T4), 
CD8 (RPA-T8), and pSTAT5 (pY694; BD Biosciences), and 
analyzed by flow cytometry. The P value calculations on these 
values were conducted using a one-sided Wilcoxon test after 
the medium levels were subtracted from each subject.

AtAc-seq library generation and preprocessing
ATAC-seq was performed as previously described (Buenros-
tro et al., 2013). 50,000 unfixed nuclei were tagged using Tn5 
transposase (Nextera DNA sample prep kit; Illumina) for 30 
min at 37°C, and the resulting library fragments were puri-
fied using a Qiagen MinElute kit. Libraries were amplified 
by 10–12 PCR cycles, purified using a Qiagen PCR cleanup 
kit, and finally sequenced on an Illumina HiSeq 2500 with 
a minimum read length of 75 bp to a minimum depth of 
30 million reads per sample. At least two technical replicates 
(mean = 2.4 replicates) were processed per biological sample. 
Table S10 summarizes the depth, peak number, and fragments 
in reads (FrIP) scores for ATAC-seq samples.

ATAC-seq sequences were quality filtered using 
trimmomatic (Bolger et al., 2014), and trimmed reads were 
mapped to the GRCh37 (hg19) human reference sequence 
using bwa-mem (Li and Durbin, 2009). After alignment, 
technical replicates were merged and all further analyses were 
performed on these merged data. For peak calling, MACS2 
(Zhang et al., 2008) was used with no-model, 100-bp shift, 
200-bp extension, and broad peaks options. Only peaks called 
with a peak score (q-value) of 1% or better were kept from each 
sample, and the selected peaks were merged into a consensus 
peak set using the Bedtools multiinter tool (Quinlan and Hall, 
2010). Only peaks called on autosomal chromosomes were 
used in this study. We further filtered consensus peaks to avoid 
likely false positives by only including those peaks overlapping 
more than 20 short reads in at least one sample and peaks for 
which the maximum read count did not exceed 500 cpm 
to account for regions that are potential artifacts. Finally, we 
excluded peaks overlapping blacklisted regions as defined by 
the ENC ODE mappability criteria developed for DNase 
assays (July 2015 version; http ://hgdownload .cse .ucsc .edu /
goldenpath /hg19 /encodeDCC /wgEncodeMapability /).

An additional quality control step was developed to fil-
ter out samples with a consistently poor signal, consisting of 
an algorithm to discover and characterize a series of relatively 
invariant “benchmark peaks,” defined as a set of peaks ex-
pected to be called in all samples. Samples that consistently 
miss calls for a significant portion of these benchmark peaks 
are flagged as having poor quality. A benchmark peak is de-
fined based on three criteria: (a) that it remains approximately 
invariant between the two groups of interest (i.e., young and 
old samples); (b) that it captures a substantial number of reads; 
and (c) that it is called in most samples. For each peak, the 
absolute value of the log of the ratio of HO:HY mean nor-
malized read counts (log fold change [logFC]) was used to 

assess the first criteria, whereas the maximum read count over 
all samples (maxCt) was used to assess the second one. In this 
study, a peak was considered apt for benchmarking when (a) 
its absolute logFC was in the bottom decile of the distribu-
tion over all peaks; (b) its maxCt was in the top decile of the 
distribution over all peaks; and (c) the peak was called in at 
least 90% of the samples. Using these parameters, 273 (out of 
169,636) peaks were selected as a benchmark; only samples 
for which at least 95% of these peaks were called were se-
lected for analyses, which excluded five samples from further 
analyses. We examined the effects of each of these parameter 
choices and found that the same samples were consistently 
chosen as poor quality for a range of values chosen to assess 
the benchmark criteria. Before performing statistical analyses, 
ATAC-seq read counts were normalized to each sample’s ef-
fective library size (i.e., the sum of reads of overlapping peaks) 
using the trimmed mean of M-values normalization method 
(TMM; Robinson and Oshlack, 2010).

rnA-seq library generation and preprocessing
Total RNA was isolated from PBMCs using RNeasy (Qia-
gen) or Arcturus PicoPure (Life Technologies) kits following 
the manufacturer’s protocols. During RNA isolation, DNase 
treatment was additionally performed using the RNase-free 
DNase set (Qiagen). RNA quality was checked using an Ag-
ilent 2100 Expert bioanalyzer (Agilent Technologies). RNA 
quality was reported as a score from 1 to 10, and samples fall-
ing below the threshold of 8.0 were omitted from the study. 
cDNA libraries were prepared using a TruSeq Stranded Total 
RNA LT Sample Prep kit with Ribo-Zero Gold (Illumina), 
a Kapa Stranded mRNA-Seq Library Prep kit (Kapa Biosys-
tems), or NuGEN Ovation RNA-seq v2 (NuGEN) accord-
ing to the manufacturer’s instructions using 100 or 500 ng 
of total RNA. Final libraries were analyzed on a Bioanalyzer 
DNA 1000 chip (Agilent Technologies). Paired-end sequenc-
ing (2 × 75 bp or 2 × 100 bp) of stranded total RNA li-
braries was performed in an Illumina HiSeq2500 using SBS 
v3 sequencing reagents.

Quality control of the raw sequencing data was per-
formed using the FAS TQC tool, which computes read qual-
ity using a summary of per-base quality defined using the 
probability of an incorrect base call (Ewing et al., 1998). Ac-
cording to our quality criteria, reads with more than 30% 
of their nucleotides with a Phred score less than 30 were 
removed, whereas samples with more than 20% of such 
low-quality reads were dropped from analyses. None of the 
samples used in this study were dropped after quality con-
trol. Reads from samples that passed the quality criteria were 
quality trimmed and filtered using trimmomatic (Bolger et 
al., 2014). High-quality reads were then used to estimate tran-
script abundance using RSEM (Li and Dewey, 2011). Finally, 
to minimize the interference of nonmessenger RNA in our 
data, estimate read counts were renormalized to include only 
protein-coding genes. Table S10 summarizes the depth and 
alignment rate of our PBMC RNA-seq samples.

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/
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differential analysis
To identify differentially open chromatin regions from 
ATAC-seq and differentially expressed genes from RNA-
seq data, the R package edgeR was used to fit a GLM to 
test for the effect of aging between HY and HO samples. 
In addition to age group (old vs. young), our models in-
cluded sex and the season in which the sample was collected 
(summer vs. winter) as covariates (Robinson et al., 2010) 
because it was determined using PVCA (Boedigheimer et 
al., 2008) that these factors account for a sizeable fraction 
of the variance in read counts. Furthermore, we used surro-
gate variable analysis (SVA; Leek et al., 2012) to capture un-
known sources of variation (e.g., batch effects, subject-level 
heterogeneity, variation in library preparation techniques) 
statistically independent from age group assignments. SVA 
decomposes the variation that is not accounted for by 
known factors such as age group or sex into orthogonal 
vectors that can then be used as additional covariates when 
fitting a model to test for differential accessibility or expres-
sion. Using the built-in permutation-based procedure in the 
R package sva, we chose to retain three SVs to include as 
covariates in the GLM for PBMC ATAC-seq and RNA-seq 
data analyses (Qu et al., 2015). Further examination of the 
pattern of variation captured by SVs derived from ATAC-
seq data jointly seemed to capture anomalies in libraries 
with particularly large or small read counts and residual sea-
sonal variation. In the case of RNA-seq data, SVs seemed 
to capture both differences in library size and differences in 
library preparation methods.

GLMs were implemented using a negative binomial 
link function, including both genome-wide and peak-specific 
dispersion parameters, estimated using edgeR’s “common,” 
“trended,” and “tagwise” dispersion components, calculated 
using a robust estimation option. Benjamini-Hochberg P 
value correction was used to select differentially open peaks 
at an FDR of 5%. To generate a set of model-adjusted peak 
estimates of chromatin accessibility (i.e., sex-, season-, and 
SV-adjusted) for downstream analyses and visualization, we 
used edgeR to fit a “null” model excluding the age group 
factor and then subtracted the resulting fitted values from this 
model from the original TMM-normalized reads.

An equivalent approach was used to analyze the effects 
of CMV seropositivity and seasonal variation (i.e., winter- vs. 
summer-acquired samples) in PBMC data. For CMV analysis, 
the subset of samples for which this information was available 
(i.e., n = 21, 12 HY and 9 HO) was fit to a model including 
sex as a factor and CMV status (positive, negative) as a block-
ing factor. In this analysis, the season factor was not taken 
into consideration because all subjects for whom CMV status 
was available were collected in the same season. For seasonal 
analysis, we used season (summer, winter) as a blocking fac-
tor. In both analyses, we tested both separately and jointly 
for the significance of age group by CMV status or season. 
In addition, we fitted the converse models (CMV status or 
aging nested within age group) to test for and calculate fold 

change estimates for CMV+/CMV− and winter/summer 
stratified by age group.

Peak annotation and downstream analyses
Multiple data sources were used to annotate ATAC-seq 
peaks with regard to functional and positional information. 
HOM ER (Heinz et al., 2010) was used to annotate peaks as 
“promoter” (i.e., within 2 kb of known TSS), “intergenic,” 
“intronic,” and other positional categories. For functional 
annotation of peaks, we implemented a simplified version 
of the 18-state ChromHMM-derived chromatin states ob-
tained from Roadmap Epigenomics data for PBMC and 
T cell subsets (Roadmap Epigenomics Consortium et al., 
2015). We first intersected the Roadmap-generated states 
with our set of consensus peaks and solved conflicting cases 
where multiple chromatin states overlap the same ATAC-
seq peak so that each peak was assigned a single annotation, 
according to the following priority rules: Active TSS > Ac-
tive Enhancer 1 > Active Enhancer 2 > Genic Enhancer 1 > 
Genic Enhancer 2 > Weak Enhancer > Strong Transcription 
> Flanking Active TSS > Flanking Upstream Active TSS > 
Flanking Downstream Active TSS > Weak Transcription > 
Bivalent Poised TSS > Bivalent Enhancer > Weakly Re-
pressed Polycomb > Repressed Polycomb > ZNF Genes 
and Repeats > Heterochromatin > Quiescent/Low Signal. 
Then, to facilitate interpretation and visualization, we sim-
plified the set of 18 chromatin states to a scheme with six 
pooled meta-states: (a) TSS, collecting active, flanking, and 
bivalent TSS states; (b) Enhancer, pooling active, weak, and 
bivalent enhancer states; (c) Repressed Polycomb, combin-
ing both weak and strong Polycomb states; (d) Transcrip-
tion, including both weak and strong transcription states; (e) 
the quiescent chromHMM state; and (f ) other states (ZNF, 
heterochromatin) combined.

For gene-based analyses, HOM ER was used to assign 
each ATAC-seq peak to the nearest TSS, as measured from 
the peak center. To improve confidence on these annota-
tions, gene-based analyses were further restricted to include 
only peaks located within 50 kb of their corresponding TSS. 
ATAC-seq peaks were also annotated using gene sets pro-
vided by curated immune function–related coexpression 
modules (Chaussabel et al., 2008). These gene sets comprise 
28 modules defined from multiple compiled transcriptomic 
data sets, which were originally annotated based on expert 
knowledge of representative functions of the gene ensemble 
in each module. In this study, we have preserved and used 
these annotations to test for enrichment of these modules 
in gene sets of interest, such as the set of genes associated to 
chromatin peaks gaining or losing accessibility with aging. 
We assessed enrichment using the hypergeometric test fol-
lowed by Benjamini-Hochberg FDR adjustment for P val-
ues. In addition, we summarized the representation of GO 
terms among gene annotations for all peaks after solving for 
multiple GO annotations for the same gene by prioritizing 
terms according to the following order: Immunity > Meta-
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bolic > Transcription, Translation > Migration > Mitochon-
dria > Axon > Development.

Further functional enrichment analyses were performed 
using ClueGO (Bindea et al., 2009) to test for overrepresenta-
tion of GO :Immune System Process terms using GO term 
fusion option and WikiPathways pathways (Kelder et al., 
2012) among genes associated to differentially open peaks. In 
addition to testing for enriched gene sets, ClueGO combines 
GO terms and pathways into functionally relevant meta-sets 
based on the rate of shared genes among terms, allowing for 
an efficient assessment of enriched categories as well as their 
potential interactions, as inferred from sets of shared genes. 
We applied these methods separately to peaks significantly 
closing and opening between age groups to investigate the 
degree to which these two sets of peaks were associated to 
unique signatures. We only listed terms that are significant at 
a P value of 0.05 after Bonferroni step-down correction. In 
addition, we used ClueGO to annotate the aforementioned 
immunological coexpression modules that were originally 
associated to unknown function. The most salient enriched 
functional categories for these modules are listed in Table 
S5. Visualization of signaling pathways were generated using 
ClueGO and PathVisio (Kutmon et al., 2015) tools.

congruence between chromatin 
accessibility and transcription data
Gene expression (mRNA-seq, see above) data were gener-
ated for a subset of subjects with ATAC-seq profiles (n = 
39, 24 HY and 15 HO). These data were normalized to 
protein-coding transcripts and annotated to ENS EMBL 
GRCh37 gene symbols. Genes for which at least three 
normalized reads per million were obtained in at least two 
samples were considered as expressed, and all others were 
removed before analysis. This resulted in a total estimate of 
11,311 expressed genes in PBMCs.

We built a data set comprising paired ATAC-seq and 
RNA-seq samples by matching promoter peaks to the near-
est gene (TSS) annotations. First, we retrieved the complete 
list of refSeq TSS coordinates for the hg19 genome reference 
(n = 34,783) and defined promoters as the regions within 
1,000-bp flanks of each TSS. The final set of promoters was 
defined by merging overlapping flanked TSS regions anno-
tated to the same gene (n = 34,700). We then selected ATAC-
seq peaks overlapping these promoters and annotated them to 
the corresponding gene. Only the peak closest to the TSS was 
kept. Finally, the resulting data set was filtered to only include 
promoter peaks for genes that were transcribed, as defined 
above. Whenever multiple expressed genes were matched to 
the same promoter peak, all of them were retained for analysis.

To study the concordance between promoter accessi-
bility and gene expression, we subdivided the space defined 
by aging-related fold changes derived from ATAC-seq and 
RNA-seq data into gene sets defined by the direction and 
magnitude of change along both dimensions, such as genes 
with both upregulated expression and increasing accessibility 

in elderly subjects or genes for which expression is upregu-
lated but accessibility remains unchanged with aging. To cap-
ture enough genes to enable functional enrichment analysis 
of these gene sets, fold changes between HO and HY subjects 
for matching promoter peaks and transcripts were estimated 
empirically as the difference between the mean normalized 
values of each group and plotted against each other (Fig. 3 A). 
Specifically, we defined a gene or promoter as being signifi-
cantly “up” or “down” if the empirical log fold change of the 
HO mean relative to the HY mean was above or below zero, 
respectively, and if the adjusted empirical p-value was <0.01 
for that gene. Empirical P values were computed by randomly 
permuting the HO and HY sample labels 1,000 times for 
each promoter peak and gene. Genes for which P < 0.01 
were considered significantly different between age groups, 
whereas all others were considered to have “stable” expres-
sion and/or accessibility relative to aging. Here, we focus on 
a subset of the combined accessibility–expression gene sets 
generated by this method: (a) genes with both increased or 
(b) both decreased promoter accessibility and expression with 
aging and (c) genes with increased or (d) decreased promoter 
accessibility but stable aging-related expression. For each 
gene set, we tested for enrichment in immune modules and 
WikiPathways pathways using the hypergeometric test against 
a background defined by the set of genes that are expressed, 
as determined by RNA-seq data, or potentially expressed, as 
given by promoter accessibility, in PBMCs. We used the Ben-
jamini-Hochberg FDR multiple test correction to assess the 
significance of hypergeometric P values.

tF motif and footprinting analysis
ATAC-seq data from PBMCs and T cells were scanned for 
TF footprints using the PIQ algorithm (Sherwood et al., 
2014). This method integrates genome-wide TF motifs 
(i.e., position weight matrices [PWMs]) with chromatin 
accessibility estimates profiled at base pair resolution to 
generate a list of possible footprint matches for a motif. 
The method also produces a probability estimate for each 
footprint’s reproducibility, called the “purity score.” Here, we 
compiled a set of 1,273 distinct motifs comprising the curated 
(CORE) list available in the JAS PAR 2016 database (n = 
466, http ://jaspar .genereg .net) in addition to the complete 
set of HT-SEL EX motifs made available in Jolma et al. (2013) 
(n = 819). Altogether, these motifs represent binding sites 
for 381 distinct TFs. Before footprint calling, we merged 
samples belonging to the same cell type and age group to 
maximize our ability to find highly reproducible footprints. 
In addition, we used SAMtools v. 0.1.19 (Li and Durbin, 
2009) to randomly downsample aligned reads from each 
merged data set to approximately match the mapped library 
depth of the least deeply sequenced sample (i.e., 113 Mb). 
This normalization step is included to minimize the impact 
of the high correlation observed between library depth and 
footprint purity scores. Only footprints with a purity score 
of 90% or more were retained for further analysis. Finally, 

http://jaspar.genereg.net
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footprint calls were further filtered to include in analyses 
only those associated to TFs determined that are expressed 
in immune cells. Footprinting analyses are conducted by 
pooling young and old samples from each cell type and using 
random read resampling to ensure that these pooled old and 
young data have approximately the same sequencing depth 
(∼113 million reads). Pooling individual samples from a group 
(i.e., CD8+ memory T cell samples from young subjects) 
increases the effective library depth; this therefore allows for 
more controlled and robust footprinting calls and leads to an 
unbiased starting point for comparative analyses (no impact 
due to the differences in sequencing depth).

To examine the regulatory landscape of IL7R, a poten-
tial aging biomarker, we focused on footprints called on the 
promoter region (±1 kb from TSS) of this gene separately by 
age group and cell type. To complement this set of footprints, 
we also performed de novo motif discovery using HOM ER 
by searching for motifs enriched in peaks annotated to IL7R 
relative to all peaks in PBMCs and T cell subsets. Each en-
riched motif was annotated to the best-fitting known TF, as 
found by HOM ER, with the added requirement that the an-
notated TF should be expressed in the appropriate cell type. 
We then used the PIQ algorithm to call footprints of the 
enriched motifs and combined those overlapping IL7R pro-
moters with the previously selected footprints. Finally, in ad-
dition to footprint and motif enrichment analyses, known TF 
motifs were retrieved for the region around IL7R TSS (−10 
kb upstream, +1 kb downstream) using the MotifMap tool 
(Daily et al., 2011) at a 20% FDR.

data availability
All sequence data (RNA-seq and ATAC-seq) have been de-
posited in the European Genome-phenome Archive (EGA), 
which is hosted by the EBI and the CRG, under accession 
number EGAS00001002605. 

online supplemental material
Fig. S1 shows cell composition data and changes in these with 
aging. Fig. S2 shows GO enrichment results for genes asso-
ciated to closing/opening peaks in PBMCs. Fig. S3 shows 
chromatin accessibility and gene expression changes associ-
ated with aging for genes in immune modules. Fig. S4 shows 
chromatin accessibility changes associated with aging in im-
mune cell subsets. Fig. S5 shows aging-associated changes in 
TF footprints as well as CMV- and season-related epigenomic 
changes. Tables S1–S10 are provided as Excel files. Table S1 
summarizes cohort details. Table S2 tabulates cell composi-
tions of PBMC samples. Table S3 shows the genes associated 
with differentially closing and opening ATAC-seq peaks in 
PBMCs. Table S4 lists GO and pathway enrichment results 
for opening/closing peaks. Table S5 lists functional enrich-
ments for immune modules with unknown functions. Table 
S6 represents IL7R+ protein levels in different cell subsets. 
Table S7 lists the TF motifs near the IL7R gene promoter. 
Table S8 lists TF footprint call rates in different cell types. 

Table S9 tabulates CMV measurements. Table S10 shows the 
data quality metrics for ATAC-seq and RNA-seq samples.
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