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Although composting has many advantages in treating organic waste, many problems and challenges 
are still associated with emissions, like NH3, CO and H2S, as well as greenhouse gases such as CO2. 
One promising approach to enhancing composting conditions is using novel analytical methods based 
on artificial intelligence. To predict and optimize the emissions (CO, CO2, H2S, NH3) during the early-
stage of composting process machine learning (ML) models were utilized. Data about emissions from 
laboratory composting with compost’s biochar with different incubation (50, 60, 70 °C) and biochar 
doses (0, 3, 6, 9, 12, 15% dry mass) were used for ML models selections and training. ML models 
such as acritical neural network (ANN, Bayesian Regularized Neural Network; R2 accuracy CO:0.71, 
CO2:0.81, NH3:0.95, H2S:0.72) and decision tree (DT, RPART; R2 accuracy CO:0.69, CO2:0.80, NH3:0.93, 
H2S:0.65) have demonstrated satisfactory results. The ML models to predict CO and H2S during 
composting were demonstrated for the first time. Utilizing emission data to predict other noxious 
gases presents a cost-effective and expeditious alternative to the empirical analysis of compost 
properties.
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Composting process is one of the most popular ways to manage biodegradable waste because it is 
highly effective, low-risk, and environmentally beneficial. Despite these advantages, composting process 
may cause emissions of hazardous odors and gases like NH3, H2S, CO and CO2 which is especially 
environmentally disadvantageous1–3. Furthermore, these gases pose a risk to the employees working in 
the composting plant. The monitoring of gas emissions, such as NH3, H2S, and CO, is often disregarded 
within the composting industry. However, existing data suggests that composting’s greenhouse gas (GHG) 
emissions are substantial, equating to 183 kg CO2e per ton of waste4. Furthermore, these emissions could 
harm employees when not monitored and predicted accurately. High concentrations e.g. CO5 in poorly 
ventilated areas could adversely affect people’s health and even death. Hence, it is imperative to ascertain 
the optimal composting process conditions for minimizing gaseous emissions, which can be achieved 
throught the adjustment of process parameters or by employing mathematical simulation. Currently, a 
popular solution used to reduce emissions of GHG is biochar, which can retain gaseous substances on 
its surface due to its physicochemical properties6–8. There is still a lack of research to determine the ideal 
parameters for biochar production, dosage and incubation temperature of the composted material. In 
addition, the relationships between these parameters are very complex and depends on human oversight, 
which complicates compost quality assessment and the composting process’s management. Therefore, 
the development of automated systems for controlling the emissions through composting with biochar is 
essential to enhance uniformity and effectiveness of the process.
Artificial intelligence (AI), such as machine learning (ML), is becoming increasingly common in 
optimizing multiple processes. With ML, it is possible to assess and improve response conditions and 
maximize operational efficiency by optimizing necessary parameters, especially in agricultural and 
environmental sciences9,10. ML methods widely used in waste management include models such 
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as artificial neural networks (ANN), support vector machines (SVM), decision trees (DT), K Nearest 
Neighbor (kNN), radial basis function (RBF) and various other ensemble learning techniques9,10.
ML was primarily used in the composting process to predict the quality11 and quantity12 of the resulting 
compost, as well as to monitor the process itself, e.g. controlling heat loss13. Ding et al. examined the 
possibilities of using ML models to optimize the maturity of kitchen waste composting. The study 
revealed that different stages of the composting process should be modeled using various parameters 
and the model-based system exhibited better maturity of the final material14. Despite the increasing use 
of machine learning in composting, there is a relative scarcity of research on adding biochar, particularly 
in relation to the prediction of greenhouse gas emissions. Predicting compost gas emissions, especially 
with biochar application, is more challenging. Li et al. developed Random Forest Algorithm to predict 
CO2

15. Artificial Neural Network (ANN) was utilized for predicting NH3 emissions during composting 
sewage sludge with straw13. However, the presented models necessitate costly and labor-intensive tests 
to assess substrate properties such as C/N, N-NH4, lignin content, and hemicellulose—the parameters 
facilitate emission prediction. In contrast, gas sensor-based GHG predictions presented in this study offer 
the advantage of complete automation and, most significantly, immediate online results from algorithms.

The present study aims to compare different machine learning (ML) models to predict the emissions (CO, 
CO2, H2S, NH3) during the first 10 days of composting with compost’s biochar addition. Data about everyday 
emissions for modeling were collected during laboratory composting with compost’s biochar with different 
incubation temperature. The use of ML for optimizations and limitations of the emissions during early-stage 
composting has good potential and can be used to improve the safety of the process. Utilizing emission data 
to predict other noxious gases presents a cost-effective and expeditious alternative to the empirical analysis of 
compost properties.

Results
Prediction of the gaseous emissions during composting with composts’ biochar (machine 
learning)
Ten kinds of classifiers, Linear Regression, Generalized Linear model, Random Forest, SVM with Linear Kernel, 
SVM with Radial Basis Function Kernel, k-Nearest Neighbours, Bayesian Regularized Neural Network, RPART, 
Generalized Boosted Regression Models and Extreme Gradient Boosting Tree were trained using collected data 
to evaluate the practicality of the classification model in predicting gaseous emissions output. Determination 
coefficients R2 and RMSE were used to determine the model’s effectiveness; the results are shown in Table 1. 
The best results (R2 ≥ 0.6) for each emission were observed for the Bayesian Regularized Neural Network. A 
comparable good performance was also characteristic of RPART. These models were also characterized by a 
low RMSE (CO < 380; CO2 < 120; H2S < 40 NH3 < 80), while its values are dependent on the measured emission 
value of the gas, hence the significant discrepancies between the observed results. In addition, the best accuracy 
was observed in NH3 emission, where R2 > 0.9. This demonstrates not only the good fit of the model to the results 
obtained during the tests but also the high potential for predicting emissions of this gas from the remaining input 
data. A high potential for predicting NH3 has also been observed in the literature. Xie et al. used models based on 
artificial neural networks, the Adaptive Neuro Fuzzy Inference System (ANFIS), to predict ammonia emissions 
from pig-fattening houses using various inputs. He contrasted the results with models, such as the Multiple 
Linear Regression Model and Backpropagation. With ANFIS, it was possible to obtain high R2 values (> 0.6) 
during both summertime and wintertime16. Küçüktopcu et al. used ANFIS and Multilayer Perception (MLP) 
models to model NH3 emissions on poultry farms. Modeling was performed using input data such as indoor 
air temperature, air humidity, air flow, NH3 emission concentrations, litter moisture, litter pH and litter surface 
temperatures. Input data were used for modeling in different configurations, while the best results were obtained 
for the ANFIS model with subtractive clustering (R2 = 0.910; RMSE = 0.919) in the input data configuration 
using litter moisture, air temperature and airflow17. Models also show high potential for CO2 prediction. Li et al. 
used the AdaBoost, Bagging, Gradient Boost, Random Forest, k-Nearest Neighbors and Decision Tree models. 
The k-Nearest Neighbors model achieved the highest prediction accuracy, with an RMSE of 54.9. However, the 

Model

CO CO2 NH3 H2S

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Linear regression 0.304 376.870 0.538 120.130 0.350 36.010 0.141 83.533

Random forest 0.463 331.256 0.741 89.841 0.918 12.791 0.567 59.277

SVM with linear Kernel 0.255 389.928 0.503 124.443 0.212 39.644 0.072 86.811

SVM with RBF Kernel 0.636 272.579 0.776 83.699 0.900 14.125 0.602 56.888

k-nearest neighbors 0.466 330.187 0.730 91.852 0.895 14.453 0.261 77.461

Bayesian regularized neural network 0.710 243.318 0.808 77.465 0.948 10.159 0.715 48.111

RPART 0.693 250.324 0.802 78.562 0.930 11.796 0.648 53.459

Generalized boosted regression models 0.595 287.527 0.764 79.493 0.899 14.163 0.584 58.104

Extreme gradient boosting tree 0.309 375.754 0.798 85.764 0.793 20.326 0.486 64.608

Partial least squares regression -– – 0.544 119.348 0.360 35.737 0.149 83.131

Table 1. Comparisons between particular models by values of R squared and RMSE.
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authors have pointed out that the regression model’s prediction granularity is too sensitive to changes in data 
distribution, resulting in less-than-ideal prediction performance15It needs to be underlined that the use of ML 
models to predict CO and H2S during composting was demonstrated for the first time with sufficient accuracy 
using a Bayesian Regularized Neural Network (CO R2:0.71, RMSE: 243.3; H2S R2:0.75, RMSE: 48.1).

Prediction of CO emission
Figure 1 presents the simulation performed with the chosen models: Generalized Boosted Regression Models, 
SVM with RBF Kernel, Recursive Partitioning and RPART and Bayesian Regularized Neural Network. These 
models were compared to empirical data, in that case, it was possible to specify individual models. The 
characteristic of each model was an increase in CO emissions relative to empirical data. For the empirical data 
(Fig. 1e), CO emissions were observed to be from 0 to 2126.51 µg CO·g d.m.−1 (Supplementary Materials Table 
S1). The lowest gas emission values of less than 1000 µg CO·g d.m.−1 were for materials incubated at 50 °C, in 

Fig. 1.  Predicted CO production (µg CO·g d.m.−1) based on biochar temperature production, incubation 
temperature and dose of biochar, using (a) generalized boosted regression models, (b) SVM with radial basis 
function Kernel, (c) recursive partitioning and regression trees, (d) Bayesian regularized neural network, (e) 
empirical data.
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which case the type of biochar did not significantly affect the increase in emissions. Equally low values were seen 
for material enriched with BC550, while incubated at 60 °C. The highest values, exceeding 2000 µg CO·g d.m.−1, 
were recorded for material with 6% BC550, incubated at 70 °C. High values also characterized the materials 
with 15% and 9% BC650, incubated at 60 °C and 70 °C, respectively. A characteristic of the models obtained 
was an overestimation of emissions in areas of missing data present in the empirical data, caused by device 
failure. The highest emission values were observed for the Bayesian Regularized Neural Network (Fig. 1d) for 
the material with 15% BC650 incubated at 70 °C (3104.68 µg CO·g d.m.−1) (Supplementary Materials Table S1); 
additionally, this was the model that predicted emission with the highest accuracy. For this model, adding 3 and 
6% biochar incubated at 50 °C was the most effective for reducing emissions, irrespective of the pyrolysis process 
temperature. The Generalized Boosted Regression Model and SVM were the least precise tools for predicting 
CO emissions (Fig. 1a, b). With this model, particularly for BC650 incubated at 60 °C and 70 °C and for BC600 
incubated at 60 °C, a significant overestimation of emissions was observed that was not present in the empirical 
data. Furthermore, it has been observed that certain models exhibited varying degrees of accuracy in predicting 
emissions. Additionally, it is essential to note that the selected models may not be suitable for extrapolating data 
beyond the time range during which measurements were taken.

Prediction of CO2 emission
Figure  2 shows approximated CO2 emissions (Fig.  2a−d) and empirical data (Fig.  2e) collected during the 
laboratory research. In the case of the empirical data, especially for materials with BC600 and BC650 and stored 
at 70 °C, there was a significant reduction in emissions relative to temperatures of 50 °C and 60 °C; in these cases, 
emissions reached values close to zero. This indicates that the higher temperatures of the pyrolysis process and 
the higher storage temperature of the material positively affect the adsorption of CO2 emissions. BC550 also 
significantly reduced gas emissions, but only at 6% and 12% doses. A dose of 15% BC650 incubated at 60 °C 
also effectively reduced CO2 emissions. The results of the empirical data were in the range 4.58-888.84 mg CO2·g 
d.m.−1 (Supplementary Materials Table S2), while the highest modeled emission fell for the Bayesian Regularized 
Neural Network (Fig. 2d) and was embedded in the range 0-620.61 mg CO2·g d.m.−1 (Supplementary Materials 
Table S2), at the same time, it was the model that performed best in approximating the results from the 
input data. Equally accurate results were obtained from the RPART model, while in this case there was also a 
significant underestimation of the predicted final values, as the maximum CO2 emission was 592.54 mg CO2·g 
d.m.−1 (Supplementary Materials Table S2) and was observed for material with a 6% dose of BC650 incubated at 
60 °C. Despite a relatively high R2 (> 0.7), the tool with the lowest modeling efficiency for gas emissions was the 
Generalized Boosted Regression Models model, which underestimated the actual CO2 production the most of 
all the models presented graphically.

Prediction of H2S emission
Figure 3a-d shows a graphical representation of the models predicting the average concentration of H2S emissions 
in the test material and contrasts them with the empirical data shown in Fig. 3e. The range of results within 
which the empirical data fell was from 0.03 µg H2S·g d.m.−1 to 659.44 µg H2S·g d.m.−1 (Supplementary Materials 
Table S3). The lowest emissions were observed for material incubated at 50 °C; the type of biochar (depending 
on the temperature of the pyrolysis process) did not have a particularly significant effect on H2S production. This 
suggests that H2S emissions reduction is influenced only by storage conditions, such as lower temperatures, and 
not by the dose or type of biochar used. The area on the heatmap with the highest gas emissions fell for the 15% 
BC650 additive stored at 70 °C. Again, the model with the highest performance was the Bayesian Regularized 
Neural Network, the nature of the prediction in this case was very close to the empirical data, as the range 
of results obtained was from 0.65 µg H2S·g d.m.−1 to 719.20 µg H2S·g d.m.−1 (Supplementary Materials Table 
S3), In addition, it was the only model for which R2 > 0.7 was observed. A model with a similar level of fit 
was RPART, while for the final approximation results a significant under-estimation of emissions was observed 
relative to the control sample and settled in the range from 11.14 µg H2S·g d.m.−1 to 414.96 µg H2S·g d.m.−1 
(Supplementary Materials Table S3). The lowest level of fit of the data to the model was observed for Generalized 
Boosted Regression Models. A possible reason for the low levels of model fit was the failure to include factors in 
the input data that directly affect H2S emissions.

Prediction of NH3 emission
Figure 4 depicts approximate CO2 emissions (Fig. 4a−d) and empirical data (Fig. 4e) obtained from laboratory 
research. The experimental data shown in Fig. 4e had a range from 0.04 µg NH3·g d.m.−1 to 215.58 µg NH3·g 
d.m.−1 (Supplementary Materials Table S4). The highest emissions were observed for the control sample and the 
material with 9% BC550 incubated at 60 °C. Material with 15% BC550 addition stored at 50 °C also achieved 
high emission values. The lowest NH3 emission values were recorded for BC650, as this type of biochar reduced 
the measured emissions in the material regardless of dose and storage temperature. Similarly to the other gas 
emissions, the Bayesian Regularized Neural Network was the most successful model, generating results ranging 
from 0.04  µg NH3·g d.m.−1 to 252.27  µg NH3·g d.m.−1 (Supplementary Materials Table S4). Despite a slight 
over-prediction, the model had the highest fit, as evidenced by high R2 values and low RMSE. RPART (Fig. 4c) 
was a model with a similar degree of fit; additionally, the approximated values were not as over-predicted as 
those of the Bayesian Regularized Neural Network (Fig. 4d). The highest emissions predicted by this model 
were observed for material enriched with doses of biochar 3, 6 and 9% BC550, incubated at 60 °C. A significant 
reduction in predicted NH3 emission was present for the SVM with the RBF Kernel model (Fig. 4e). For that 
model, the maximum approximated emission was less than 200  µg NH3·g d.m.−1 (Supplementary Materials 
Table S4). In addition, all models failed to cope with data extrapolation beyond the designated time interval. 
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The high R2 and RMSE values for each of the examined models presented graphically demonstrate the high 
applicability potential of using artificial intelligence to predict NH3 emissions during the composting process.

Discussion
Improving the efficiency and quality of composting is the primary issue for sustainable composting. Although 
composting has many advantages in treating organic waste, many problems and challenges are still associated 
with emissions. Various emissions like NH3, CO and H2S, as well as greenhouse gases such as CO2, and N2O are 
generated during the decomposition of organic compounds18. It is understood that emissions released during 
the composting process are influenced by both the feedstock’s characteristics and the process’s conditions. 
Effective management emissions techniques such as adsorption/optimizing C/N ratios19 (for CO2 reduction), 
minimizing N losses (for NH3 reduction)20, and improving pile oxygenation21 (for H2S and CO reduction) can 
help to control these emissions. One promising approach to enhancing composting conditions to reduce the 
listed emissions involves using compost’s biochar in small quantities22. These observations may explain can 

Fig. 2. Predicted CO2 production (mg CO2·g d.m.−1) based on biochar temperature production, incubation 
temperature and dose of biochar, using (a) generalized boosted regression models, (b) SVM with radial basis 
function Kernel, (c) recursive partitioning and regression trees, (d) Bayesian regularized neural network, (e) 
empirical data.
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observed correlations between the emissions and support the accuracy of emissions modeling based on other 
emissions used in this study.

The novel analytical methods based on machine learning (ML) models can explore the relationship between 
different parameters and draw universal conclusions, which was used to predict emissions during green 
waste composting. Using modeling techniques can significantly decrease costs and expedite implementing 
new composting practices, especially compared to laboratory and pilot-scale investigations. This makes it an 
attractive option for exploring innovative composting methods23.

Currently, ML’s research on aerobic composting is still in its early stages. ML models could enhance the initial 
mixture of biowaste streams and optimal amounts for composting and thereby help to accelerate the process24, 
and valuable tool for optimizing process performance in terms of costs, efficiency, and environmental impact by 
simulating and predicting the process outcome25. However mechanism-derived mathematical models may no 
longer be sufficient, what made the authors focus on predicting the composting process using ML.

Fig. 3. Predicted H2S production (µg H2S·g d.m.−1) based on biochar temperature production, incubation 
temperature and dose of biochar, using (a) generalized boosted regression models, (b) SVM with radial basis 
function Kernel, (c) recursive partitioning and regression trees, (d) Bayesian regularized neural network, (e) 
Empirical data.
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As shown so far, an ML in composting focuses mainly on predicting the compost maturity and compost 
properties i.e., pH, EC, GI, TN, TOC, etc., with only a few papers concerned with emissions26. The accuracy of 
ML models used in composting process prediction changed in the range of 0.56–0.99 for R2, but in most cases 
showed good fit > 0.7. Common ML models used in composting are as follows: Random Forest (RF), Artificial 
Neural Network (ANN), Support Vector Regression (SVR), Decision Tree, and Decision Support (DS) what it 
in line with in general biological when the most commonly employed ML algorithms are: ANNs and tree-based 
models (RF/DT/GBR)27. RF and ANN are observed to have the best prediction performance, and the accuracy 
of R2 was usually > 0.9. Compared to this study, the best ML models were also ANN (Bayesian Regularized 
Neural Network), and DT (RPART).

A limited number of authors concentrate on precise forecasts of CO2 or NH3 emissions from feedstock 
composting—furthermore, no research centers on the anticipation of CO or H2S during composting using 
machine learning techniques. Li. et al. used various ML models to predict CO2 emissions based on input variables 
such as TOC, TN, C/N ratio, cellulose, hemicellulose, and lignin, however those analysis are demanding, time 

Fig. 4. Predicted NH3 production (µg NH3·g d.m. −1) based on biochar temperature production, incubation 
temperature and dose of biochar, using (a) generalized boosted regression models, (b) SVM with radial basis 
function Kernel, (c) recursive partitioning and regression trees, (d) Bayesian regularized neural network, (e) 
empirical data.
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consuming and costly. The different models had varying levels of RMSE, with AdaBoost at 49.8, Bagging at 
80.6, Gradient Boost at 99.9, Random Forest at 83.0, KNN at 55.0, and Decision Tree at 101.8. These results 
are similar to those presented in this research, as shown in Table 1. Researchers found the highest R2 score of 
0.88 accuracy for Random Forest. Bayesian Regularized Neural Network had the best accuracy of 0.81 in the 
study, while RF achieved an R2 score of 0.74 for CO2 emissions production. This indicates that further research 
should explore the potential of this type of ML model. In another study for predicting NH3 emissions during 
composting sewage sludge with straw, Artificial Neural Network (ANN) was utilized. The ANN achieved an R2 
score of over 0.97 by using temperature, pH, EC, C/N, and N-NH4 as input parameters24. The latest study has 
also confirmed the efficacy of the XGB model in predicting NH3 emissions during composting, with an R2 value 
of 0.9664. The findings of this study suggest that controlling gaseous emissions from green waste composting 
with compost’s biochar can be achieved by monitoring the emissions of other gases e.g. CO2 output from 
composting is controllable by CO, H2S, and NH3 emissions. In real industrial composting, gas emissions can be 
accurately forecasted using real-time data from gas sensors with minimal inputs. Previous research indicates that 
a higher aeration rate can decrease H2S, NH3, and CO emissions but can lead to increased energy consumption 
for the business. Hence, to achieve compost maturity, it is possible to adjust the aeration rate at various stages 
to minimize NH3 emissions and enhance aeration efficiency. Additionally, other studies have also shown that 
the modeling observations are similar even when other input materials were used for the composting process 
(organic waste and kitchen waste)14. This requires confirmation and adjustment of the models, but gives a 
perspective for use in different types of composting.

It is important to note that the experimental data used in this study are based on the observations from 
previous publications and may not fully reflect the control of CO, CO2, H2S and NH3 emissions from composting. 
Nevertheless, this solution can provide valuable insights for future studies and practices with a larger dataset 
(especially collected in field study) and more sophisticated ML techniques.

The article underscores the potential of machine learning (ML) in predicting gas emissions. However, given 
the high level of innovation and complexity in the composting process, further research and development in 
this technology, particularly at an industrial scale, is essential. Firstly, it is crucial to compile a larger dataset 
of composting data to improve the reliability of prediction results. Secondly, additional ML models should be 
explore to forecast emissions based on specific composting feedstock characteristics. Finally, it is advisable to 
utilize practical composting data to train ML models for real-world applications and to enhance composting 
efficiency.

Conclusions
This study utilized machine learning (ML) models to predict the emissions (CO, CO2, H2S, NH3) during the 
first 10 days of composting with compost’s biochar addition. The ML models to predict CO and H2S during 
composting were demonstrated. ML models such as acritical neural network (ANN) and decision tree (DT) 
have demonstrated satisfactory results. A quality assessment of the developed ML models has shown that the 
best predictive capacity was reached for ANN (Bayesian Regularized Neural Network; R2 accuracy CO:0,71, 
CO2:0,81, NH3:0,95, H2S:0,72) and DT (RPART; R2 accuracy CO:0,69, CO2:0,80, NH3:0,93, H2S:0,65). 
The practical implications of the predictive model reveal that the estimated CO, CO2, H2S and NH3 values 
closely align with the actual values observed during real composting. The study confirms that the use of AI for 
optimizations of emissions during composting has good potential and can be used to improve the safety and 
effectiveness of the process.

Materials and methods
The experiment design and procedure
The machine learning model training (Sect.  "Data pre-processing" and "Selection ML model selection and 
training machine learning algorithms evaluation") relied on data from published sources22. The study centers 
on the influence of compost’s biochar (BC) addition to feedstock and how it impacts CO, CO2, H2S, and NH3 
emissions during the early stages of laboratory composting. The presence of these gases presents a potential 
hazard to the personnel employed at the composting facility, as well as a risk of environmental harm. The 
composting experiments used a feedstock mix of 90% green waste and 10% sewage sludge acquired from a 
composting plant (Best-Eko, Rybnik, Poland). The compost’s biochars (BC550; BC600; BC650), produced at 
different pyrolysis temperatures, were applied at doses of 0, 3, 6, 9, 12 and 15% d.m as shown in Fig. 5. The 
biochars were produced from fully mature certified compost - BEST-TERRA.The specific surface area of tested 
biochars reached: BC550: 6,1 m2·g–1, BC600: 29,3 m2·g–1 and BC650: 39,2 m2·g–1. The average biochars’ pore 
size decreased as the temperature of the pyrolysis process increased from 2,2 nm (BC550) to 1,4 nm (BC650). 
The appropriate biochar variant was added to the feedstock, placed in 1 L reactors, and kept at 50, 60, or 70 °C 
in a thermostatic cabinet for 10 days to simulate the early-stage composting process conditions. Due to the 
challenges of maintaining optimal temperature conditions for composting in a laboratory setting, the initial 
intensive phase of composting typically involves selecting from three commonly observed temperature ranges: 
50, 60, and 70 °C. Our previous study22 shows, the initial 10 days are critical in determining a substantial portion 
of the total emissions and can significantly impact emissions in the later stages of composting. Therefore, this 
study meticulously examines the emissions during this initial stage. The concentrations of CO, CO2, NH3 
and H2S were measured daily throughout the composting process and then used to calculate emissions. The 
comprehensive composting process protocol for this study was outlined in previous research22.

Scientific Reports |        (2024) 14:27299 8| https://doi.org/10.1038/s41598-024-79010-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Gas production monitoring
During the laboratory composting, everyday gas concentrations of CO, CO2, NH3 and H2S were done. A 
portable electrochemical gas analyzer was used for gas concentration measurements (Nanosens DP-28 BIO; 
Wysogotowo, Poland). Concentrations of CO, H2S, and NH3 were determined in ppm in the following ranges: 
CO 0–2000 ppm (± 20 ppm), H2S, NH3 0–1000 ppm (± 10 ppm). CO2 was specified in percentages in the range 
of 0–100% (± 2%). Each measurement lasted 45 s, followed by automatic cleaning of the analyzer. Equations 1 to 
4 show the calculation scheme used when calculating the conversion of gas concentrations to emissions:

• Concentration-to-volume conversion for H2S, CO and NH3 (ppm):

 
V =

1000 · M ·
(
1,66 · 10−24

)
· (( 2,68839 · 1022) · a)

1000000
 (1)

where: V – gas volume, m3,  M – molar mass, mol,  a – gas concentration, ppm.

• Concentration-to-volume conversion for CO2 (%):

 
V =

1000 · M ·
(
1,66 · 10−24

)
· (( 2,68839 · 1022) · a)

100
 (2)

• Emission (H2S, CO and NH3):

 
E =

V
d.m. · 1000

 (3)

where:  E – emission, µg·g s.m.−1,  d.m. – dry mass, g.

• Emission (CO2):

 
E =

V
d.m.

 (4)

Data pre-processing
Figure 6 depicts the data processing steps. Initially, 66,048 datasets (hourly measurement of CO, CO2, NH3 and 
H2S emission) were extracted from the selected references without missing data. Subsequently, the collected data 
was normalized from 0 to 1 using Z-Score normalization. Finally, the dataset was randomly divided into training 
and testing datasets to enhance prediction accuracy, as previously reported11. The data was split into training/
validation/test groups in a 70%/15%/15% proportion. For the fine-tuning process, k-fold cross-validation with 
grid search was employed. The training dataset assisted in adjusting the hyperparameters and enhancing the 
prediction abilities of the model, while the testing dataset was used to evaluate the model’s performance and 
select the appropriate model by comparing the RMSE and R2 values28.

 
R2 = 1−

[∑T
t=1(y∗t − yt)

2

∑T
t=1y∗t − yt2

]
 (5)

Fig. 5. Experiments configurations.
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RMSE =

√∑T
t=1(y∗t − yt)

2

T
 (6)

Selection ML model selection and training machine learning algorithms evaluation
In this study, ten learning algorithms were evaluated, including both machine set learning and non-set learning. 
To assess the viability of machine learning methods in the prediction of CO, CO2, NH3 and H2S emissions 
during the first stage of composting, various classes of methods were compared: Linear Models, Tree-Based 
Models (also part of Ensemble Methods), Support Vector Machines (SVM) and Neural Networks. Calculations 
were performed using R for Windows29 (ver 4.3.2, Vienna, Austria) with caret30 and h2o31 libraries. The data 
used for model training related to CO, CO2, NH3 and H2S emissions from composting were obtained from 
published studies. To predict each gas emission (CO, CO2, NH3 and H2S) individually, principal component 
analysis (PCA) was conducted to exclude irrelevant parameters. The PCA analysis indicated that observed 
emissions have a significant correlation. The use of other parameters is not justified. PCA (a linear dimensionality 
reduction algorithm) facilitated dimensions standardization and reduction of the initial complexity of the 
model. Moreover, it will be easier to apply the model in practice if the variables are limited to those that can 
be easily and cheaply implemented in composting i.e. gas emissions (Supplementary Materials Figure S1). In 
model training and prediction, the output and input of the model were the data about CO, CO2, NH3 and H2S 
emissions. During the training, the data about the other emissions were utilized as input when one gas emission 
was used as an output.

The top four models (Generalized Boosted Regression Models (GBM); SVM with Radial Basis Function 
(RBF) Kernel Nearest Neighbor Models; Bayesian Regularized Neural Network; Recursive Partitioning and 
Regression Trees) were depicted as heatmaps, revealing the impact of the four variables: biochar dose, biochar 
type, incubation temperature, and time on gas emission. Finally, the predicted emissions were compared to the 
actual emissions to determine the models’ accuracy.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files.
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