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Background: Alzheimer’s disease (AD) is the most common form of dementia. While
neuropathological changes pathognomonic for AD have been defined, early detection
of AD prior to cognitive impairment in the clinical setting is still lacking. Pioneer studies
applying machine learning to magnetic-resonance imaging (MRI) data to predict mild
cognitive impairment (MCI) or AD have yielded high accuracies, however, an algorithm
predicting neuropathological change is still lacking. The objective of this study was
to compute a prediction model supporting a more distinct diagnostic criterium for
AD compared to clinical presentation, allowing identification of hallmark changes even
before symptoms occur.

Methods: Autopsy verified neuropathological changes attributed to AD, as described
by a combined score for Aβ-peptides, neurofibrillary tangles and neuritic plaques issued
by the National Institute on Aging – Alzheimer’s Association (NIAA), the ABC score for
AD, were predicted from structural MRI data with RandomForest (RF). MRI scans were
performed at least 2 years prior to death. All subjects derive from the prospective Vienna
Trans-Danube Aging (VITA) study that targeted all 1750 inhabitants of the age of 75 in
the starting year of 2000 in two districts of Vienna and included irregular follow-ups until
death, irrespective of clinical symptoms or diagnoses. For 68 subjects MRI as well as
neuropathological data were available and 49 subjects (mean age at death: 82.8 ± 2.9,
29 female) with sufficient MRI data quality were enrolled for further statistical analysis
using nested cross-validation (CV). The decoding data of the inner loop was used for
variable selection and parameter optimization with a fivefold CV design, the new data
of the outer loop was used for model validation with optimal settings in a fivefold CV
design. The whole procedure was performed ten times and average accuracies with
standard deviations were reported.

Results: The most informative ROIs included caudal and rostral anterior cingulate gyrus,
entorhinal, fusiform and insular cortex and the subcortical ROIs anterior corpus callosum
and the left vessel, a ROI comprising lacunar alterations in inferior putamen and pallidum.
The resulting prediction models achieved an average accuracy for a three leveled NIAA
AD score of 0.62 within the decoding sets and of 0.61 for validation sets. Higher
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accuracies of 0.77 for both sets, respectively, were achieved when predicting presence
or absence of neuropathological change.

Conclusion: Computer-aided prediction of neuropathological change according to the
categorical NIAA score in AD, that currently can only be assessed post-mortem, may
facilitate a more distinct and definite categorization of AD dementia. Reliable detection
of neuropathological hallmarks of AD would enable risk stratification at an earlier level
than prediction of MCI or clinical AD symptoms and advance precision medicine in
neuropsychiatry.

Keywords: Alzheimer’s disease, machine learning, neuropathology, MRI, neuroimaging

INTRODUCTION

Alzheimer’s disease (AD) as the most common form of dementia
is estimated to affect over 30 million people worldwide,
making it one of the most burdensome diseases for individuals,
their relatives as well as society (Takizawa et al., 2015). The
clinical diagnosis of AD dementia requires the presence of
manifest symptoms such as progressive cognitive impairment.
Diagnosis based on cognitive testing and patients’ history or
even based on symptoms described by relatives is common
in clinical routine. However, lesions attributable to AD may
antecede these clinical symptoms by years. Furthermore, certain
neuropathological changes attributed as hallmark lesions of
AD have been specifically associated to AD dementia, while
clinical signs of dementia can be caused by several diseases
(Albert et al., 2011; McKhann et al., 2011). Autopsy and
neuropathologic examination are therefore considered the gold
standard of AD diagnostics and allow for assessment of AD
years to decades before clinical onset (Sperling et al., 2011).
An overhauled staging system for these changes has recently
by provided by the “National Institute on Aging – Alzheimer’s
Association” (NIAA), assessing the decisive neuropathologic
features of AD (Montine et al., 2012). This requires evaluation
of extracellular deposits of β-amyloid peptides (Aβ) or senile
plaques, neurofibrillary degeneration in the form of tangles
(NFTs) containing hyperphosphorylated tau protein, and scoring
of neuritic plaques, representing a subset of senile plaques
surrounded by tau-containing dystrophic neurites (Braak and
Braak, 1991; Tiraboschi et al., 2004). Intermediate or high
neuropathological change has been shown to sufficiently explain
clinical symptoms while low-grade changes might antecede
symptoms substantially.

Considering rising life expectancies together with increasing
prevalence rates of dementia, computer-aided methods for early
and reliable prediction of AD dementia have been asked for
to overcome the shortcomings of clinical diagnostics. Structural
magnetic resonance imaging (MRI) has emerged as a promising
tool for in vivo, non-invasive identification of AD-associated
brain alterations that could mark patients at risk of progression
to dementia early on. Acquisition of structural MRIs is rather
simple, widely available and no explicit design is required.
Multivariate pattern analysis and machine learning algorithms
show decisive advantages over conventional, univariate statistics
and allow classification of phenotypes based on MRI data.

Exploiting these new statistical approaches capable of processing
large amounts of data independently of predefined hypotheses,
several reports of high accuracies ranging from 0.75 to 0.96
emerged especially in the field of MRI (Fayed et al., 2016;
Ardekani et al., 2017; Beheshti et al., 2017; Long et al., 2017).
Thereby, research was focused on early detection of subjects at
high risk for clinical manifestation of AD dementia. These studies
suggested sufficient predictive power to distinguish healthy
elderly from mild cognitive impairment (MCI) or AD and predict
conversion from MCI to fully established AD dementia. Thereby,
voxel-based whole brain as well as region of interest (ROI) based
approaches have been applied with a broad range of algorithms
that usually depend on a training sample to allow prediction for a
test dataset. Several algorithms have successfully been deployed,
including RandomForest (RF) and Support Vector Machines
(SVM) (Aguilar et al., 2013). The corresponding predictors have
usually been based on feature intensity, tissue density or shape.

These recent results have advocated the potential of computer-
aided diagnostics and precision medicine by allowing detection
of patients at risk of developing AD dementia at a preclinical or
an early clinical level. Nevertheless, only one prediction model
for neuropathologically verified dementias has been proposed
yet (Harper et al., 2016). Considering that neuropathological
lesions are more distinct and definite than clinical symptoms,
as the latter can be caused by a variety of alterations unrelated
to AD, we conducted a machine learning investigation applying
RF to predict NIAA AD scores from structural MRI data
in a ROI based approach. The main goal was to establish a
computer-aided tool to support clinical risk-assessment and
diagnosis at an earlier and more distinct level than MRI-based
prediction of clinical symptoms of AD dementia. These data were
collected irrespectively of clinical symptoms in a sample deemed
representative for elderly in Austria and may therefore allow
precise stratification of subjects by neuropathological lesions,
resulting in earlier detection of patients at risk for developing AD
dementia.

MATERIALS AND METHODS

Subjects
All 68 subjects enrolled in this study derive from the prospective
Vienna Trans-Danube Aging (VITA) study that has been
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TABLE 1 | Baseline characteristics including the age of death and therefore
neuropathological examination, sex distribution as well as NIAA AD score.

Baseline characteristics (n = 49)

NIAA AD score No, low, and high
neuropathological change

16 / 15 / 18

Sex (female) 26

Age at death (±SD) 82.8 (±2.9)

This sample does not differ significantly from the subjects excluded due to poor
MRI quality (n = 19) regarding any of these variables. NIAA AD, National Institute on
Aging – Alzheimer’s Association Alzheimer’s disease score; SD, standard deviation.

described previously (Fischer et al., 2002; Kovacs et al., 2013).
The VITA study targeted all people born between May 1925 and
June 1926 in the 21st and 22nd districts of Vienna, irrespective of
clinical symptoms or diagnoses. Of 1750 registered inhabitants,
697 underwent baseline examination in the year 2000, being at
75–76 years of age. Subjects were subsequently invited to follow-
ups. Cranial MRI measurements were conducted for all eligible
subjects. Clinical investigations were performed, including
blood sampling, neuropsychological testing and psychiatric
examinations. Irrespective of neuropsychiatric impairment, all
subjects participating in the study that died in the Danube
Hospital of Vienna between 2001 and 2016 were brought to
neuropathological examination. All 68 subjects of whom MRI as
well as neuropathologic data were available have been allocated to
this investigation and 49 showed sufficient MRI data quality for
further statistical analysis.

All procedures have been approved by the local Ethics
Committee of the Medical University of Vienna. For details on
sex, age and AD neuropathological change, please also consider
Table 1.

Neuropathologic Examination
Neuropathologic examination has been described in detail
previously (Kovacs et al., 2013). To ensure data quality
and rule out bias, all cases were examined by at least two
certified neuropathologists using a multi-headed microscope.
For evaluation of neuropathology, formalin fixed, paraffin-
embedded tissue blocks of 2.5 × 2.0 cm were used. Samples of
frontal, cingular, temporal, parietal, occipital cortex and white
matter, anterior and posterior hippocampus, caudate nucleus,
accumbens nucleus, putamen, globus pallidus, thalamus,
mesencephalon, pons, medulla oblongata, cerebellar anterior
vermis and cerebellar hemisphere and dentate nucleus were
included in these blocks. Staining was performed with
hematoxylin, eosin, Luxol fast blue and nuclear fast red as
well as Bielschowsky and Gallyas. For immunohistochemistry,
monoclonal antibodies, including phospho-Tau, phospho-
TDP43, Aβ, α-synuclein, p62 and ubiquitin were applied; for a
detailed description see also (Kovacs et al., 2013).

Neuropathologic Variables
For the neuropathologic assessment of AD, the NIAA guidelines
were applied (Montine et al., 2012). Neuropathologic change was
classified according to the “ABC coding system” of the NIAA,
which comprises Aβ-peptides assessed with a modified version of

Thal phases (Thal et al., 2002), NFTs assessed with a condensed
version of the by Braak and Braak staging (Braak and Braak,
1991; Nagy et al., 1998; Braak et al., 2006), and neuritic plaques
assessed according to the “Consortium to Establish a Registry
for AD” (CERAD) protocol (Masliah et al., 1990, 1993). Three
groups were determined based on detection of (1) no (n = 16), (2)
low (n = 15), (3) intermediate or high (n = 18) neuropathologic
changes. Merging of subjects with intermediate and high changes
was necessary to ensure sufficient and comparable group sizes.
Considering that intermediate and high changes have been
implied to sufficiently explain clinical symptoms of cognitive
impairment while low changes might precede these by years,
the resulting three-leveled neuropathological outcome variable
was practicable for the study goals (Hyman et al., 2012). For a
schematic depiction of the NIAA score for AD and the three-
leveled adaption predicted in this analysis please also refer to
Figure 1.

MRI
All subjects featured in this analysis underwent one MRI
measurement at the age of 75–76 years. Considering the mean
age of death (83 ± 3), on average MRI scans were performed
7–8 years prior to death. Thereby, a 1.0-Tesla unit (Siemens
Impact Expert; Siemens Medical Systems, Inc., South Iselin, NJ)
and a circular polarized skull coil were used. Coronary T1-
weighted gradient echo MPRAGE sequence (matrix: 256 × 240,

FIGURE 1 | Illustration of the composite “National Institute on Aging –
Alzheimer’s Association” (NIAA) ABC score for neuropathological change of
Alzheimer’s disease (AD). The score comprises hallmark lesions attributed to
AD, (A) Aβ-peptides according to Thal phase, (B) neurofibrillary tangles
described by Braak and Braak stage and (C) neuritic plaques described by
the CERAD score. While the ABC score issued by the NIAA has four levels,
describing absence of (green color, n = 16) or presence of low (yellow color,
n = 15), intermediate (orange color) or high (red color) neuropathological
change, it was collapsed to three levels for this analysis to ensure sufficient
group sizes. Thereby, intermediate and high change were merged into one
group (n = 18).

Frontiers in Aging Neuroscience | www.frontiersin.org 3 December 2018 | Volume 10 | Article 406

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-10-00406 December 7, 2018 Time: 17:44 # 4

Kautzky et al. Prediction of Alzheimer’s Disease Neuropatholgy

voxel size: 1 × 1 mm, slice thickness: 1 mm, 200 slices), T2-
weighted Turbo Spin Echo, transverse proton density as well as
thin-section inversion recovery sequence in the olfactory region
were obtained for all subjects.

Nineteen patients had to be excluded from the subsequent
analyses as poor MRI data quality due to motion, poor contrast
or poor coverage prohibited reliable application of FreeSurfer
software. Hence, 49 patients could be included for the statistical
analyses.

Data Preprocessing: Surface- and
Volume Based Analysis
The standard procedure for the FreeSurfer software suite1

was used for cortical and subcortical assessment, as described
previously (Seiger et al., 2016). Recent work indicated excellent
performance of automated software like FreeSurfer for detection
of structural alterations in AD, making it secondary only to
post-mortem assessment (Seiger et al., 2018). In short, every
volume of a subject was registered to the Talairach atlas via
affine registration in the cortical based pipeline (Dale et al.,
1999; Fischl et al., 1999). Applying a deformable template model,
skull stripping was performed subsequent to bias field correction
(Segonne et al., 2004). Hemisphere separation as well as
cerebellum and brain stem removal were integrated in that step.
After white matter segmentation, white and pial surfaces were
estimated. For calculation of thickness of each cortical location,

1http://surfer.nmr.mgh.harvard.edu/, version 5.3.0

the distance between these surfaces was computed (Fischl and
Dale, 2000). While Talairach registration and bias field correction
were shared, different algorithms were used for labeling of
subcortical tissue classes, as published previously (Fischl et al.,
2002, 2004). To ensure high quality of segmentations, all the
cortical and subcortical volumes were visually inspected after the
automated streams. The data was subsequently partitioned to
134 ROIs according to the Desikan–Killiany atlas and the default
segmentation implemented in FreeSurfer. These consisted of 66
subcortical as well as 68 cortical ROIs (34 for each hemisphere)
(Desikan et al., 2006).

Statistics
The NIAA score for AD was predicted from structural MRI
data, also considering age of death and sex as predictors.
Primary analyses were performed using the machine learning
algorithm “RF” as provided by the synonymous package
for the statistical software “R” (Liaw and Wiener, 2002).
As there is no gold standard which classification algorithm
may be most useful for the dataset at hand and RF is
known for a risk to produce over-optimistic results, we
also computed a SVM model for prediction of NIAA AD
score.

Prediction was performed with nested cross-validation (CV)
design that is illustrated in Figure 2. Nested CV is regarded as the
gold-standard method if no independent dataset for validation
is available and prevents circular analysis and other information
leaks from the training to the validation models (Varoquaux et al.,

FIGURE 2 | Graphical representation of the nested cross-validation (CV) design, consisting of a inner and outer loop. The inner loop was performed for model
optimization with feature selection and setting of optimal parameters (“mtry”) for RandomForest (RF). For feature selection, fivefold CV was applied and all variables
selected more than once across the runs were included within 10-fold CV for “mtry” selection. The resulting model was then applied to the validation set, forming the
outer loop. This was repeated for all folds of the fivefold CV design for outer loop. Finally, the whole nested CV procedure was repeated 10 times and results were
averaged.
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2017). Thereby, data are first split into n-1 training sets and a
test set in a n-fold CV design. Here, fivefold CV was applied to
ensure sufficiently large test sets of 9–10 subjects. The training
data or decoding set, consistent of 80% of the full data set, was
used for model optimization, including hyperparameter tuning
and feature selection applying further CV within the decoding
set, also referred to as inner loops of the nested CV. After optimal
parameters were set, the decoding set with optimal parameters
was used for prediction in the test set, forming the outer loop of
the nested CV design. This procedure is repeated for every fold of
the outer loop, resulting in five different models with specific sets
of predictors and hyperparameters determined in the respective
inner loops. Accuracy is reported according to the predictive
outcome of these five models. To account for variability of these
models, the whole nested CV procedure was repeated ten times
and average accuracy with SD is reported.

Within the inner loop, the algorithm “vaeSelRF” was used for
feature selection as implemented in the eponymous package for
“R.” “varSelRF” performs backward variable elimination aimed
at detecting small sets of non-redundant variables to allow
optimal prediction performance. The most informative features
are selected by minimizing the out-of-bag prediction error by
subsequently deleting the least important of the 134 predictors.
Feature selection was performed in a fivefold CV design, with
10 runs with random starting seeds for each fold of the CV. The
set of predictors with optimal accuracy in the test data was then
retrieved and all features that were comprised in at least two of
the five optimal sets from all fivefolds were used for validation.
Applying this design, only predictors that show promising results
for generalizability and some constancy get selected.

Concerning the details for RF variable importance
measurement, the variables contributing most to accuracy
of prediction of the NIAA AD score show the highest importance
values measured by mean decrease in Gini index (MDG).
RF computes regression trees by applying rearranged values
for each variable in out-of-bag samples. The null hypothesis
(H0) is challenged whenever a rearranged predictor variable
decreases Gini values. Consequently, decrease in Gini therefore
displays the contribution of each predictor to the homogeneity
of branches and nodes of classification trees and values range
from 0 for complete homogeneity to 1 for heterogeneity. Finally,
summed and normalized changes for all nodes split up by a
specific predictor are expressed in MDG values. As an increase in
MDG signifies higher purity of the resulting nodes compared to
original nodes, high MDG is an indicator for the importance of a
specific feature for the prediction accuracy.

Concerning model parameters, the number of trees to
grow (“ntree”) was set at 3000 to enable multiple predictions
for all observations. While RF does not require tuning of
hyperparameters, optimizing the number of features available for
each split (“mtry”) can significantly increase model performance.
A higher number of features allowed at each node leads to higher
flexibility of the tree but also increases diversity of 3000 individual
trees. Finding the optimal balance is data-dependent and requires
tuning. For variable selection, the general standard of applying
the square root of the number of predictors was used for “mtry.”
After determination of the most informative features, 10-fold CV

was performed in the decoding sets to find optimal “mtry” values
for model validation with the “caret” package for “R.”

Finally, the optimal “mtry” and all variables selected by the
inner loops were applied for training in the decoding sample and
tested on the validation sample.

Concerning the alternative prediction model with SVM, the
same nested CV design was applied. After feature selection with
RF as described above, hyperparameters c and sigma were tuned
with the “caret” package for “R” (c ranging from 0.01 to 100,
sigma ranging from 0.01 to 0.9), similar in concept to “mtry”
tuning for RF.

There is no established method of power calculation for
RF. Research indicated stable predictive capabilities of RF
and comparable machine learning algorithms when enough
observations and no missing data are accounted for, regardless
of the number of variables surpassing that of observations (Chen
et al., 2011; Roetker et al., 2013). Therefore, RF can be expected
to handle a ratio of 49 observations to 134 predictors.

To compare the results produced by RF to conventional
multivariate statistics, the ten top scoring predictors of the
variable selection algorithm were also analyzed with a mixed
model as included in the “lmne” package of “R.” Subject served as
the random factor and NIAA AD score, ROI and their interaction
were included as fixed factors. Results were Bonferroni corrected
(for number main and interaction effects). To identify the
significant ROI, post hoc ANOVA was performed for each of the
ten ROI with an uncorrected p-value threshold of 0.05.

The datasets analyzed in this study are available from the
corresponding author on reasonable request.

RESULTS

Variable Selection
The feature selection algorithm mostly suggested five variables
as the most informative number of predictors (60% of optimal
feature sets), with a maximum of 49 suggested variables. The
average error for out-of-bag prediction with the optimal set of
predictors was at 0.33 (±0.06). A high agreement of features
selected at least twice was observed within the CV models of the
inner loops. Over the whole nested CV runs a higher number of
features selected at least twice was observed, ranging from 24 to
29 variables over the ten repeats.

Ten ROI were consistently selected and therefore were of
highest informative value among the 134 ROIs included. The
caudal anterior cingulate gyrus was always comprised in the
optimal feature sets. Furthermore, there was a high agreement
for the right rostral anterior cingulate and inferior parietal
gyrus, left entorhinal cortex, left nucelus accumbens, anterior
corpus callosum, left ventral diencephalon (DC), left vessel, left
precuneus as well as the “FreeSurfer” parameter “surface holes” as
the most valuable features for prediction of the NIAA AD score.
For comparison to the automated variable selection provided by
“VarSelRF,” the most influential predictors according to a random
call of the conventional importance function of RF were also
plotted for the whole data set, as presented in Figure 3. The
10 ROIs most frequently suggested by the automated function
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FIGURE 3 | Variable importance measurement from RF by mean decrease in Gini (MDG) for the total data set (n = 49). The 25% top scoring out of all 134 predictors
are portrayed and ordered by declining contribution to prediction quality to the RF model. Green coloring indicates that these predictors were selected among the
most effective predictors for the “National Institute on Aging-Alzheimer’s Association” score for neuropathological change by backward variable selection performed
with the “varSelRF” algorithm for the statistical software “R.” RF, RandomForest; MDG, mean decrease in Gini index; CC, corpus callosum; DC, diencephalon.

were all featured within the top 15 predictors of the conventional
importance measurement and 79% of the predictors repeatedly
suggested by the feature selection algorithms scored in the
upper quartile. Age at death and sex scored low in importance
measurement but were included in all models.

Mixed Model and MRI Results
Neither total gray matter, nor estimated total intracranial volume
differed significantly between groups according to NIAA AD
score (p > 0.05). The mixed model analysis revealed a significant
interaction effect of NIAA AD score and ROI (corrected
p = 0.039, F = 2.37) in addition to the expected main effect
of ROI. The post hoc ANOVA analyses produced significant
associations for the entorhinal thickness of the left hemisphere
(p = 0.040, F = 4.451), the caudal anterior cingulate of the
right hemisphere (p = 0.042, F = 4.383), the anterior corpus
callosum (p = 0.016, F = 6.311) and the left ventral diencephalon
(p = 0.027, F = 5.239), all of which were also selected among the
most discriminative variables by the feature selection algorithm.
Results of the conventional statistics are also reported in Table 2.

All these ROI showed a decline in mean cortical thickness with
increase of NIAA AD score, for details see also Table 3. For a
brain map showing average cortical thickness for all ROI for each
of the three groups according to NIAA AD score, please refer to
Figure 4.

Prediction Results
For the 10-fold CV models with optimal feature sets (inner
loop, “mtry optimization”), an average accuracy of 0.62 (±0.05)
could be achieved for prediction of the NIAA score. Optimal
“mtry” ranged from 2 to 19 across models. The sensitivity for
predicting any neuropathological change was at 0.88, while the
specificity was at 0.5. The resulting accuracy for detection of any
neuropathological change was at 0.77 (±0.03).

For model validation within the outer loop, the average
accuracy for classification of the NIAA score was at 0.61 (±0.02)
and 0.77 (±0.04) for detection of any neuropathological change.
For binomial evaluation, the positive predictive value (PPV) was
at 0.79, indicating the probability of correct prediction of present
neuropathological change. The negative predictive value (NPV)
was at 0.73.

Confusion matrices for the categorical models are displayed
in Table 4. For a detailed overview of binary prediction outcome
with all evaluation parameters for each model, please see Table 5.

The alternative prediction model computed with SVM
produced a lower accuracy of 0.51 (±0.04) for three-leveled
NIAA AD score and an accuracy of 0.74 (±0.05), almost
equivalent to the RF model, for prediction of absence or presence
of neuropathological change.

TABLE 2 | Mixed model results for the ten highest scoring ROI for classification of
NIAA AD score and post hoc ANOVA results for all associated ROI.

DF DF

(A) Predictor “numerator” “denominator” F-value p-value

NIAA AD score 1 47 1.590 n.s.

ROI 9 423 1175.085 <0.0001

ROI ∗ NIAA AD
score

32 1408 2.372 0.039

(B) Post hoc analyses F-value p-value

Anterior corpus callosum 6.311 0.016

Left ventral diencephalon 5.239 0.027

Entorhinal thickness LH 4.451 0.040

Caudal anterior cingulate thickness RH 4.383 0.042

Interaction effects are marked with∗, mixed model results were corrected for
multiple testing. ROI, Region of interest; AD, Alzheimer’s disease; NIAA, National
Institute on Aging – Alzheimer’s Association; DF, Degrees of Freedom; LH, Left
Hemisphere; RH, Right Hemisphere.
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TABLE 3 | Average critical thickness for all three groups according to the
NIAA ABC score for neuropathological change of AD for all significantly
associated ROI of the post hoc analyses as well as for total intracranial and gray
matter volume.

NIAA AD score
Intermediate

ROI No Low and high

Anterior corpus callosum 735.83 703.59 604.74

Left ventral diencephalon 3607.32 3451.11 3295.52

Entorhinal thickness LH 3.04 2.97 2.79

Caudal anterior cingulate
thickness RH

2.44 2.35 2.25

Estimated total intracranial
volume

1509229.23 1547219.74 1502761.30

Total gray matter volume 490399.48 504419.15 493171.61

Groups did not differ significantly in overall gray matter or intracranial volume. ROI,
Region of interest; AD, Alzheimer’s disease; NIAA, National Institute on Aging –
Alzheimer’s Association; DF, Degrees of Freedom; LH, Left Hemisphere; RH, Right
Hemisphere.

DISCUSSION

Various machine learning and multivariate data analysis
methods have been introduced to AD research within the last
decade. Usually they aimed at automated prediction of clinical
phenotypes based on disease-related data patterns. Mostly, the
goal has been discrimination of AD dementia patients or MCI
from healthy elderly and prospective prediction of patients
who show progression from MCI to AD dementia (Falahati
et al., 2014; Salvatore et al., 2016). While promising results
for prediction of clinical outcomes have been reported before,
no algorithm was established for classification of MRI data for
prediction of neuropathological AD scales. Exploiting machine
learning algorithms RF and SVM, we were able to generate a
model for successful prediction of AD neuropathological change
in 77% of cases.

Concerning separation of healthy elderly from AD dementia
patients, the strongest results have been obtained. Overall
decreased brain volumes in AD dementia patients compared

FIGURE 4 | Brain map for the cortical ROI used for the machine learning classification models. Average cortical thickness values for the three groups according to
NIAA AD score [(A) no change, (B) low change and (C) intermediate to high change] are portrayed for each hemisphere. According to machine learning and mixed
model results, discriminative patterns for the NIAA AD score may be driven primarily by thickness of the entorhinal cortex and caudal anterior cingulate cortex as well
subcortical ROI left ventral diencephalon and anterior corpus callosum, which are depicted schematically below the brain map. In the brain map, only cortical ROI are
shown.
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TABLE 4 | Categorical evaluation of RandomForest (RF) prediction models.

Confusion matrices for categorical evaluation

NIAA-AD score (three levels)

Decoding sets (n = 39) Validation sets (n = 49)

Predicted Predicted

Count No Low High Count No Low High

No 8 8 1 No 11 7 1

Low 1 4 5 Low 2 4 4

High 0 0 12 High 0 0 15

Acc. = 0.62 ± 0.05 Acc. = 0.61 ± 0.02

NIAA AD score equivalent to “no,” “low,” and “intermediate to high” change
was used for classification and confusion matrices are provided. Comparable
accuracies were computed for the prediction in the decoding and the validation
samples. The nested cross-validation (CV) procedure was repeated 10 times
and average accuracies with standard deviations are reported. For the matrices,
exemplary results with comparable accuracy are shown. NIAA AD, National Institute
on Aging – Alzheimer’s Association Alzheimer’s disease score.

to healthy controls enabled consistently accuracies above 0.90
(Kloppel et al., 2008; Casanova et al., 2011; Willette et al.,
2014; Zhou et al., 2014; Beheshti et al., 2016, 2017). While
multivariate or whole-brain approaches yielded best results,
especially alterations in the hippocampus, amygdala, cingulate
and entorhinal cortex as well as thalamus, putamen and pallidum
have been associated with AD (Scahill et al., 2002; Fox and Schott,
2004; Cho et al., 2014). Differences between MCI and healthy
controls on the other hand are less pronounced. Literature on
detection of MCI among healthy elderly supports accuracies
ranging from 0.71 to 0.91 and the hippocampus as well as
the amygdala were highlighted as distinctive ROIs (Fan et al.,
2008; Chupin et al., 2009). As some patients with MCI can be
considered stable and do not show a progression to clinically
manifest AD within a relevant timeframe (usually 18–36 month),
models for distinguishing between stable and progressive MCI
have been developed. Due to the more delicate differences
between these groups, lower accuracies between 0.67 and 0.88
could be obtained (Fan et al., 2008; Querbes et al., 2009; Lillemark
et al., 2014). Again, the hippocampus was especially predictive,
and models based on several cortical and subcortical ROIs labeled
via FreeSurfer showed advanced predictive capacity (Westman
et al., 2012; Aguilar et al., 2013). Among these models, a whole-
brain gray matter ROI deformation-based algorithm by Long
et al. (2017) showed the best prediction outcome.

Contrary to previous investigations, the focus of this study
was prospective detection of neuropathological change attributed
to AD. Autopsy is still regarded as the gold-standard and only
definite diagnostic tool for AD and hallmark lesions observable
by neuropathologic examinations have been demonstrated to
precede any clinical symptoms as cognitive impairment by years
(Sperling et al., 2011; Montine et al., 2012, 2016). Furthermore,
considering that most forms of dementia show mixed features
and are etiologically less distinct than commonly expected,
only neuropathological examination can rule out erroneous
attribution of clinical symptoms to AD (Kovacs et al., 2013).
These flaws of approaches implementing only clinical diagnosis
as outcome variable for machine learning analyses has recently
been criticized by a review on this topic (Salvatore et al.,
2016). In fact, only one study applied machine learning to
autopsy data, however, focused on speech changes in AD
rather than early detection (Rentoumi et al., 2014). On the
other hand, clinical symptoms divergent from neuropathology
have been reported and not all patients with neuropathological
change develop clinical symptoms. Consequently, an MRI-
imaging based prediction model can at best assist clinical
risk-assessment and diagnosis. Keeping this limitation in
mind, an MRI-based prediction tool for neuropathological
change may also be applicable to guide histopathological
analysis.

Based on the successful implementation of machine learning
algorithms in AD neuroimaging research, we expected a high
accuracy for our prediction model. However, we predicted three-
leveled categorical instead of the common binomial outcome,
which is more penalizing as a chance level of 0.33% instead
of the common 50% can be assumed. The rationale behind
this was that distinguishing between low and intermediate or
high neuropathological changes allows separation of potential
clinical phenotypes as only intermediate to high changes can
explain cognitive impairment in patients (Hyman et al., 2012;
Montine et al., 2012). The observed accuracies of approximately
0.6 are substantially lower than those reported for clinical
phenotypes, however, comparing just absence to presence of
neuropathological changes increased the accuracy to 0.77.
While these accuracies are still low for clinical application
and lower than those for MCI or manifest AD, classification
of neuropathological change allows even earlier and more
definite risk stratification. Considering that curative or effectively
arrestive treatment for AD is still lacking, detection of AD
neuropathologic change years before they could become clinically

TABLE 5 | Binary evaluation of RF prediction models.

Binomial Evaluation Change vs. No Change Sensitivity Specificity PPV NPV Accuracy

Decoding Sample (n = 39) 10-fold CV of the inner loop

averaged over 10 repeats 0.88 0.5 0.8 0.66 0.769 (±0.03)

Decoding Sample (n = 39) + Validation Sample (n = 10) fivefold CV of the outer loop

averaged over 10 repeats 0.91 0.5 0.79 0.73 0.774 (±0.04)

Neuropathological change was compared to no change and performance evaluators sensitivity, specificity, PPV, NPV, and accuracy are provided for the models of the
inner (decoding samples) and outer (validation samples) loop of the nested CV. Overall, comparable accuracies around 0.77 were reached across the models. All results
are averaged over 10 repeats of the whole nested CV procedure. PPV, positive predictive value; NPV, negative predictive value; CV, cross-validation; RF, RandomForest.
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relevant may facilitate effective prevention measures, e.g., by risk
factor management (Hsu and Marshall, 2017).

Regarding the predictive features for this model, ten ROIs
were selected consistently by variable importance measures
and backward variable elimination. Most of the structures
labeled by these ROIs have previously been associated with
AD. The entorhinal and rostral as well as caudal anterior
cingulate thickness ranked among the highest predictors and
have consistently been associated with AD (Falahati et al., 2014;
Salvatore et al., 2016). Both regions might be early markers for
AD and interestingly, the entorhinal thickness measured pre-
mortem by MRI has recently been associated with neurofibrillary
tangles in neuropathologically assessed post-mortem AD brains
(Thaker et al., 2017). The nucleus accumbens has also been
suggested to show decreased activation and structural lesions
in AD (Kazemifar et al., 2017; Lee et al., 2017). The FreeSurfer
ROI left vessel and left VDC do not label a specific region
but rather a conglomerate of structures that cannot be easily
distinguished by MRI (Fischl, 2012). Left vessel describes lacunar
alterations in putamen and pallidum, while the VDC is mostly
comprising the hypothalamus, basal ganglia with subthalamic
nuclei as well as geniculate nuclei, substantia nigra, red nucleus
and mammillary body. Alterations of the basal ganglia have
repeatedly been described for AD, however, these structures
did usually not show high information criteria for machine
learning (Serrano-Pozo et al., 2011; Risacher and Saykin, 2013;
Van Dam et al., 2016). White matter alterations as suggested
by selection of the anterior corpus callosum for classification,
have been linked to AD by some studies (Bejanin et al., 2017;
Lao et al., 2017). Reduced thickness of the anterior corpus
callosum was also reported by a study assessing post-mortem
brains affected by AD (Tomimoto et al., 2004). Finally, “surface
holes” is not an anatomical ROI but a quality control parameter
of FreeSurfer indicating the number of holes in the surface
that were corrected by the algorithm for each subject. The
selection of this marker was surprising and may be a false
positive finding owed to the rather small data set. The average
number of surface holes was about 20% higher in the groups with
neuropathological changes (161 vs. 191, respectively), implying
that subjects with AD hallmark lesions may be more difficult
to process for automated algorithms as FreeSurfer. Therefore,
surface holes may be a proxy marker for neuropathological
chance.

The study sample with 49 subjects is high for a
neuroimaging/neuropathology hybrid analysis, however, is low
for machine learning application. In order to warrant stable
performance and keep false positive findings low, we used a
nested CV design with feature selection and parameter tuning
in decoding sets. The confidence in our results is increased
by comparable prediction performance across the ten repeats
of nested CV. Furthermore, the overall similar outcomes for

prediction of presence or absence of neuropathological change
with SVM and RF models warrants some independency of
our results from the machine learning algorithm applied.
Nevertheless, validation in a bigger and independent sample is
mandatory to prove the value of this model outside of our data.
Another important limitation is the low quality of the MRI data
used for this analysis as these were collected between 2000 and
2001 with a now outdated 1 Tesla scanner. As advantages of
newer 3 or even 7 Tesla scanners are obvious, it is clear that the
classification model would profit from high resolution imaging.
On the other hand, FreeSurfer partly antagonizes the higher
resolutions provided by higher Tesla scanners by down sampling
all data to 1 mm. Furthermore, a comparative analysis did
not show resounding advantages of higher resolution scanners
(Seiger et al., 2015).

In synopsis, we successfully established a classification model
for early prediction of post-mortem neuropathological change
attributed to AD. Thereby, we addressed a clear shortcoming of
previous research that solely based their predictions on clinical
diagnosis of MCI or AD. Reaching an accuracy of 0.77 in our
validation sample, the performance of this model is not fit
for clinical application but represents a decisive step toward
precision medicine in AD.
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