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Introduction. Rate pressure product (the product of heart rate and systolic blood pressure) is a measure of cardiac workload. Resting
rate pressure product (rRPP) varies from one individual to the next, but its biochemical/cellular phenotype remains unknown. This
study determined the degree to which an individual’s biochemical/cellular profile as characterized by a standard blood panel is
predictive of rRPP, as well the importance of each blood biomarker in this prediction. Methods. We included data from 55,730
participants in this study with complete rRPP measurements and concurrently collected blood panel information from the
Health Management Centre at the Affiliated Hospital of Hangzhou Normal University. We used the XGBoost machine learning
algorithm to train a tree-based model and then assessed its accuracy on an independent portion of the dataset and then
compared its performance against a standard linear regression technique. We further determined the predictive importance of
each feature in the blood panel. Results. We found a fair positive correlation (Pearson r) of 0.377 (95% CI: 0.375-0.378) between
observed rRPP and rRPP predicted from blood biomarkers. By comparison, the performance for standard linear regression was
0.352 (95% CI: 0.351-0.354). The top three predictors in this model were glucose concentration, total protein concentration, and
neutrophil count. Discussion/Conclusion. Blood biomarkers predict resting RPP when modeled in combination with one
another; such models are valuable for studying the complex interrelations between resting cardiac workload and one’s
biochemical/cellular phenotype.

1. Introduction

The heart continually adjusts the amount of work it does to
pump blood throughout the body. This “cardiac workload”
is elegantly captured by an index called the rate pressure
product (RPP) [1-4], which is the product of heart rate
(HR) and systolic blood pressure (SBP) (Equation (1)). Given
the circadian nature of blood pressure and heart rate, resting
RPP (rRPP) exhibits a strong circadian pattern; it reaches its
maximum shortly after waking and remains fairly constant
throughout waking hours [5]. However, daytime rRPP varies
from one individual to the next. We know that robust
increases in RPP caused by exercise are associated with local

biochemical changes in the heart [1, 6-8] and elsewhere in
the body [9]. However, it has yet to be determined the degree
to which rRPP is associated with an individual’s biochemical
and cellular profile as reflected in the bloodstream, and which
aspects of this profile are most strongly related to rRPP. Such
knowledge would contribute to our understanding of human
physiology and pathophysiology.

Large clinical datasets and advanced machine learning
algorithms may finally make it possible to model and study
such complex, multifactorial relations. Large datasets provide
adequate statistical power for identifying subtle relations
among variables. Further, using routinely collected clinical
data ensures that models will generalize well to the general
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population. Advanced machine learning techniques are use-
ful because they can efliciently process large amounts of data
and model subtle, nonlinear relations between numerous
predictors without explicit programming [10].

This study will investigate the degree to which an individ-
ual’s rRPP is associated with their biochemical/cellular pro-
file overall, as well as how well specific blood biomarkers
explain differences in rRPP. We will do this by modeling
the complex relations between a comprehensive panel of
blood biomarkers and rRPP using an advanced machine
learning algorithm and then quantify the prediction accuracy
of this model on an independent portion of the dataset. We
will then compare the performance of this model against
standard linear regression to determine whether the machine
learning model provides an advantage. We will further calcu-
late the predictive importance of each blood biomarker in the
model to determine which blood biomarkers best explain
differences in rRPP.

2. Materials and Methods

2.1. Study Participants. Data for the present study was
obtained from adults 18 years of age and older who under-
went a physical examination at the Health Management
Centre at the Affiliated Hospital of Hangzhou Normal Uni-
versity. We included 55,730 unique adults (44% female;
mean age + SD: 46 + 13.8 years) with complete data for anal-
ysis. The use of human data in this study was approved by
Research Ethics Review Committee at the Affiliated Hospital
of Hangzhou Normal University, and subjects provided writ-
ten informed consent to have their data used in the study.

2.2. Data Collection. A medical professional measured each
participant’s resting pulse rate and systolic blood pressure
by auscultation using a stethoscope and sphygmomanome-
ter. Each was taken as the average of 3 measurements. Pulse
(bpm) and systolic blood pressure (mmHg) were multiplied
together to calculate rRPP (Equation (1)).

Resting Rate Pressure Product (rRPP) = Pulse x Systolic Blood Pressure.
(1)

Blood samples were then drawn into sample tubes and
sent to certified lab technicians at the hospital for the analysis
of 29 blood items: total protein concentration (g/L), albumin
concentration (g/L), globulin concentration (g/L), albumin-
globulin ratio, creatinine concentration (ymol/L), uric acid
concentration (¢mol/L), white blood cell count (10°/L), total
cholesterol concentration (mmol/L), glucose concentration
(mmol/L), neutrophil percentage (% of white blood cell
count), lymphocyte percentage (% of white blood cell count),
monocyte percentage (% of white blood cell count), eosino-
phil percentage (% of white blood cell count), basophil per-
centage (% of white blood cell count), absolute neutrophil
count (10°/L), absolute lymphocyte count (10°/L), absolute
monocyte count (10°/L), absolute eosinophil count (10°/L),
absolute basophil count (10°/L), red blood cell count
(10"2/L), hemoglobin concentration (g/L), mean red blood
cell volume (fl), mean corpuscular hemoglobin (hemoglobin
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FIGURE 1: Scatterplot of observed rRPP (z-score) versus predicted
rRPP (z-score). Observed rRPP was calculated from measured
pulse and blood pressure. This iteration was chosen at random
(out of 100 model iterations) to visualize prediction performance
over a range of observed rRPPs. Line represents linear line of best fit.

concentration (g/L) divided by red blood cell count (10'2/L),
expressed in picograms), mean corpuscular hemoglobin
concentration (hemoglobin concentration (g/L) divided by
hematocrit and expressed in g/L), red cell volume distribu-
tion width (distribution of individual red blood cell
volumes, %), platelet count (10°/L), mean platelet volume
(10°/L), platelet percentage (by blood volume), and platelet dis-
tribution width (distribution of individual platelet volumes, %).

2.3. Model Training and Validation. We prepared the data by
converting each variable to a z-score; this standardization
step allowed us to identify and subsequently remove outliers
from the data (defined as 3 standard deviations above or
below the mean). Next, we randomly allocated 80% of the
data for training, 10% for testing, and 10% as a holdout set
for validation.

We then proceeded to train a tree-based computational
model and standard linear regression model to predict rRPP
from the full set of blood biomarkers: total protein concen-
tration, albumin concentration, globulin concentration,
albumin-globulin ratio, creatinine concentration, uric acid
concentration, white blood cell count, total cholesterol
concentration, blood glucose concentration, neutrophil
percentage, lymphocyte percentage, monocyte percentage,
eosinophil percentage, basophil percentage, absolute neutro-
phil count, absolute lymphocyte count, absolute monocyte
count, absolute eosinophil count, absolute basophil count,
red blood cell count, hemoglobin concentration, mean red
blood cell volume, mean corpuscular hemoglobin, mean cor-
puscular hemoglobin concentration, red cell volume distri-
bution width, platelet count, mean platelet volume, platelet
percentage, and platelet distribution width. We did so using
the XGBoost machine learning algorithm and standard linear
regression implemented in the Python programming
language. The training and testing portions of the dataset
were used to train the model.
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FIGURE 2: Feature importance in rRPP prediction model. Importance of each z-scored feature was normalized against the importance of the
most important feature to provide a measure of relative importance (%).

Model accuracy was then calculated as explained vari-
ance (R?; coefficient of determination) on the independent
“holdout” portion of the dataset. The importance of each
feature was calculated internally by the XGBoost algorithm
as a function of the number of times that variable was
selected for splitting by the XGBoost algorithm and the
squared improvement to the model based on that split, with
the resulting value averaged across all trees in the model to
arrive at the importance [11]. This value was normalized
against the best-performing feature to obtain a relative
importance (%) for each feature. We further investigated
the ability of the top feature to predict rRPP on its own using
linear regression and LOESS regression.

This entire process (beginning with random participant
allocation into training, testing, and holdout portions of the
dataset) was repeated 100 times to generate statistical
estimates of model performance and normalized feature
importance. An overall Pearson correlation was calculated
by taking the square root of the mean explained variance
and its 95% confidence interval across all model iterations.
We also calculated the mean normalized importance and
its 95% confidence interval for each feature across all itera-
tions of the model. To visualize model performance across
a range of reference rRPP values, we chose one iteration at
random and plotted a scatter plot of reference versus
predicted rRPP values.

3. Results

3.1. Model Performance. We found a fair positive correlation
of 0.377 (95% CI: 0.375-0.378; Pearson r) between observed
rRPP (calculated from measured heart rate and systolic blood
pressure) and rRPP predicted from blood biomarkers across
100 model iterations. This was an improvement over the lin-
ear regression model, which had a correlation of 0.352 (95%
CIL: 0.351-0.354). A scatter plot depicting XGBoost model
performance across a range of reference rRPP values for
one model iteration taken at random is depicted in Figure 1.

3.2. Feature Importance. On average across 100 iterations,
glucose concentration was the most important predictor
(Figure 2). Other important predictors (e.g., those with 20%
normalized importance or greater) included total protein
concentration (mean +95% CI: 47.0 +1.2%), neutrophil
count (29.0+0.7%), and total cholesterol concentration
(23.4% + 0.6%).

Given that glucose concentration dominated this model,
we determined the degree to which glucose alone predicts
RPP using both linear (linear regression) and a nonlinear
(LOESS regression) modeling. We found that the Pearson r
was 0.247 (95% CI: 0.245-0.249) in the linear model and
0.245 (95% CI: 0.244-0.247) in the nonlinear model. Perfor-
mance was essentially equivalent with these two approaches



and inferior to the performance of the XGBoost model with
all predictors. Thus, the additional features above and
beyond glucose explain a lot of additional variance.

4. Discussion/Conclusion

In this study we determined that an individual’s biochem-
ical/cellular profile is indeed a fair predictor of rRPP and that
XGBoost-based models are superior to standard linear
regression in modeling such relations. Within this profile,
we identified several blood biomarkers that best predicted
an individual’s rRPP. The most important by far was glucose
concentration; other important blood biomarkers (e.g., those
with 20% normalized importance or greater) included total
protein concentration, neutrophil count, and total choles-
terol concentration. While blood glucose was highly impor-
tant on its own, correlation was greatly improved when the
tull set of predictors was considered.

To the best of our knowledge, our study was the first to
simultaneously model the relations between a comprehensive
panel of blood biomarkers and rRPP. Our combinatorial
machine learning-based modeling approach allowed for the
potential discovery and inclusion of subtle and yet-unknown
nonlinear interactions between two or more variables in the
model; the explicit discovery and inclusion of such interac-
tions among numerous predictors without the automaticity
of machine learning would have been impractical.

Our finding that blood glucose was a major predictor of
rRPP agrees with past studies showing the association of
blood glucose with heart rate [12] and blood pressure indi-
vidually. This effect is likely explained by the impact of blood
sugar on the autonomic nervous system [13]. While this
association with blood pressure has been demonstrated
across all blood pressure quantiles in men, in women, it has
only been detected in upper blood pressure quantiles (likely
due to the mitigating effect of estrogen on insulin resistance)
[13, 14]. We expect that our model considered this nonlinear
relation and gender-based interaction in predicting rRPP.
The link between blood glucose and resting cardiac workload
(rRPP) is important because elevated blood glucose (e.g., in
diabetics and prediabetics) is a risk factor for coronary artery
disease (CAD) [15, 16]. Prolonged elevated blood glucose
could trigger proatherogenic conditions of the vessels,
leading to endothelial dysfunction, oxidative stress [17],
increased vascular inflammation, vascular adhesion to
monocytes/macrophages [18], vascular permeability [19],
and secretion of prothrombotic factor (plasminogen activa-
tor inhibitor-1) [20]. This may in turn result in a higher
cardiac workload.

Our finding that hemoglobin was also a fair predictor of
rRPP is consistent with the fact that hemoglobin production
is upregulated under conditions of reduced oxygen delivery
to tissues (like rRPP). Continued poor oxygen delivery can
lead to additional compensatory processes such as arterial
remodeling (resulting in thickening of the myocardium)
and myocardial cell death [21]. In fact, elevated hemoglobin
has been associated with cardiovascular diseases [22].
Gaining a better understanding about the relations between
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various compensatory mechanisms could facilitate the earlier
identification of disease states.

Some limitations of our study are as follows. First, it was
based on participants from one specific hospital in China.
Further study is needed to determine how well these findings
will generalize to different regions in China (different socio-
cultural groups, e.g., urban vs. rural, north vs. south China)
and beyond, as well as genetically different (e.g., non-
Chinese or non-Asian) populations. Second, our study did
not consider medication and the presence of certain diseases;
further study is needed to determine whether specific dis-
eases or medications affect the prediction accuracy of the
model. Third, we have used the XGBoost machine learning
algorithm as a starting point. Future studies could investi-
gate different types of algorithms to determine whether they
can better model the relations between blood biomarkers
and rRPP.

In conclusion, we have demonstrated that an individual’s
biochemical/cellular profile predicts resting RPP and have
identified important blood biomarkers in this prediction.
We have also demonstrated that the XGBoost machine learn-
ing algorithm is a good method for modeling such predic-
tions. Future work could determine how well this model
generalizes to other populations and disease states, as well
as whether accuracy can be further improved. Such models
are valuable for understanding the relations between one’s
biochemical/cellular profile and cardiac workload (rRPP);
such an understanding could be helpful for better under-
standing various physiological and disease states.
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