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Objective: Prostate cancer (PCa) is an epithelial malignancy of the prostate that currently
lacks effective treatment. Traditional Chinese medicine (TCM) can play an anticancer role
through regulating the immune system, anti-tumor angiogenesis, regulating tumor cell
apoptosis, autophagy dysfunction, and other mechanisms. This study attempted to
explore the active ingredients and potential mechanism of action of the
Astragalus–Scorpion (A–S) drug pair in PCa, in order to provide new insights into the
treatment of PCa.

Methods: Network pharmacology was used to analyze the A–S drug pair and PCa
targets. Bioinformatics analysis was used to analyze the LncRNAs with significant
differences in PCa. The expression of LC3 protein was detected by
immunofluorescence. CCK8 was used to detect cell proliferation. The expressions of
GDPD4-2, AC144450.1, LINC01513, AC004009.2, AL096869.1, AP005210.1, and
BX119924.1 were detected by RT-qPCR. The expression of the PI3K/AKT/mTOR
pathway and autophagy-related proteins were detected by western blot. LC-MS/MS
was used to identify the active components of Astragalus and Scorpion.

Results: A–S drug pair and PCa have a total of 163 targets, which were mainly related to
the prostate cancer and PI3K/AKT pathways. A–S drug pair inhibited the formation of PCa,
promoted the expression of LC3Ⅱ and Beclin1 proteins, and inhibited the expression of
P62 and PI3K–AKT pathway proteins in PCa mice. Astragaloside IV and polypeptide
extract from scorpion venom (PESV) were identified as the main active components of the
A–S drug pair. GDPD4-2 was involved in the treatment of PCa by Astragaloside IV-PESV.
Silencing GDPD4-2 reversed the therapeutic effects of Astragaloside IV-PESV by
regulating the PI3K/AKT/mTOR pathway.

Conclusion: Astragaloside IV-PESV is the main active components of A–S drug pair
treated PCa by regulating the GDPD4-2/PI3K–AKT/mTOR pathway and autophagy.
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INTRODUCTION

Prostate cancer (PCa) is one of the most common malignant
tumors in men, with high morbidity and mortality worldwide (de
Bono et al., 2020). In 2020, there are estimated to be more than
1,414,000 new cases of PCa worldwide (Gandaglia et al., 2021).
PCa causes deaths, mostly due to incurable metastatic diseases
(Buckup et al., 2021; Peng et al., 2021). Autophagy related genes
(ARGs) play an important role in many biological processes of
PCa (Hu et al., 2020). Within tumor masses, autophagy promotes
cell survival by increasing the tolerance of cancer cells to different
cellular stresses, such as hypoxia, starvation, or those triggered by
chemotherapy drugs (Cristofani et al., 2018). Of note, androgen
deprivation therapy, taxane-based chemotherapy, targeted kinase
inhibition, and nutritional restriction all cause significant cellular
distress and subsequent autophagy (Farrow et al., 2014).
Preclinical studies have shown that the pharmacological
inhibition of autophagy (e.g., metformin) can enhance the cell-
killing effects of cancer drugs (Ahn et al., 2020; Chen C. et al.,
2021). Therefore, exploring the pharmacology of autophagy
associated with PCa may contribute to the development of
new therapeutic strategies.

Network pharmacology and molecular docking techniques
suggested that Astragalus–Scorpion (A–S) drug pair has the
potential to treat PCa (Wu et al., 2021). Astragalus
polysaccharides, a traditional Chinese medicine (TCM), have
been proven to inhibit tumor genesis and lipid metabolism
through the miR-138-5p/SIRT1/SREBP1 pathway in PCa (Guo
et al., 2020). Astragalus membranaceus, Angelica gigas, and
Trichosanthes Kirilowii Maximowicz (1:1:1) extract induced
apoptosis of PCa cells by inhibiting ERK2-mediated signaling
(Choi et al., 2016). Scorpion is a TCM for animals with complex
main active ingredients. San’ao decoction with scorpion has been
shown to relieve asthma (Wang P. et al., 2021). It is well known
that scorpion venom is the leading cause of human poisoning and
even death by scorpion sting (So et al., 2021). Reports in recent
years indicate that scorpion venom may be the main active
ingredient in scorpion that exerts anticancer effects. For
example, Androctonus amoreuxi scorpion venom significantly
has cytotoxic and anti-proliferative effects on PCa cells (Akef
et al., 2017). Polypeptide extracted from scorpion venom (PESV)
induces the growth inhibition of PCa cells (Zhang et al., 2009).
However, the mechanism of action of the A–S drug pair in the
treatment of PCa remains unclear.

Phosphatidylinositol 3-kinase (PI3K)/AKT pathway was
associated with the development of PCa (Chen et al., 2016b).
PI3K can be used as a useful biomarker for the early diagnosis and
prognosis of biochemical recurrence of PCa after radical
prostatectomy (Torrealba et al., 2020). Recent findings
suggested that the complex crosstalk between the PI3K/AKT/
mTOR pathway and multiple interacting cellular signaling
cascades could further promote the progression of PCa and
influenced the sensitivity of PCa cells to PI3K/AKT/mTOR-
targeted therapies being explored clinically (Shorning et al.,
2020). Studies have demonstrated that salamycin-induced
apoptosis of PCa cells by regulating the PI3K/AKT/mTOR
signaling pathway, which was associated with ROS-mediated

autophagy (Kim et al., 2017). In addition, the inhibition of the
PI3K/AKT/mTOR/70S6K pathway could promote autophagy in
LNCaP cells (Butler et al., 2017; Dai et al., 2021).

It is well known that the PI3K/AKT/mTOR pathway, as a
canonical pathway of autophagy, is involved in PCa (Kim et al.,
2017). The long non-coding RNAs (lncRNAs) may affect PCa
development by regulating the PI3K pathway (Chen et al., 2020;
Liu et al., 2020; Peng et al., 2021; Sun et al., 2021; Yang et al.,
2021). Among them, SNHG1 and ADAMTS9-AS1 are closely
related to autophagy regulation (Chen et al., 2020; Yang et al.,
2021). In addition, the TCM, Jixuepaidu Tang-1, and
Astragaloside IV have also been confirmed to be involved in
the process of liver cancer and kidney injury by regulating ATB
(Li et al., 2018) and LOC498759 (Jin et al., 2019), respectively. It
was known that the treatment of flavanol glycoside icaridin, the
active ingredient of TCM, could inhibit the proliferation and
migration of human PCa cells and enhance autophagy by
regulating the PI3K/AKT/mTOR signaling pathway (Li S.
et al., 2020). However, the effects of the A–S drug pair on the
PI3K pathway, autophagy, and lncRNAs have never been studied
in PCa. Therefore, this study intends to explore the active
ingredients, predicted targets, and possible molecular
mechanism of the A–S drug pair through network
pharmacology (Hopkins, 2008) and explore the internal
molecular mechanism of the A–S drug pair in the treatment
of PCa, so as to provide a theoretical basis for the clinical
treatment of PCa with TCM.

MATERIALS AND METHODS

Network Pharmacology Analysis
The A–S drug pair active ingredients were retrieved through
TCMSP and TCMID databases. The component screening
conditions were OB ≥ 30% and DL ≥ 0.18. “Prostatic cancer”
as keywords in GeneCards database (https://www.genecards.org/
), NCBI databases (https://www.ncbi.nlm.nih.gov/), and OMIM
database (https://www.omim.org/) were retrieved for human
gene. The ImageGP platform was used to match and overlap
the targets corresponding to the active ingredients in the A–S
drug pair with those of PCa, and the Venn diagram was drawn to
obtain the key targets of the A–S drug pair active ingredients in
the treatment of PCa. The PPI network was constructed by
inputting the common targets of drug diseases into the String
database (https://string-db.org/cgi/input.pl), and the species was
set as “Homo sapiens” to obtain the PPI network. PPI network
was imported into Cystoscape 3.8.0 (Doncheva et al., 2019),
topology analysis was conducted by NetworkAnalyzer tool,
degree sequencing, and genes with scores greater than average
were selected as key targets. KEGG pathway enrichment analysis
was performed on the common targets of drug diseases, and the
items with a corrected p value <0.05 were screened by using the
String database. Using R 4.0.3, after installing and referencing the
clusterProfiler package, the bar and bubble charts are drawn. The
chemical structures of various screened active ingredient
monomers were analyzed (https://pubchem.ncbi.nlm.nih.gov/)
(Kim et al., 2021).
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A Mouse Model of PCa
All animal experiments were approved by the Experimental
Animal Ethics Committee of Guangzhou University of
Chinese Medicine (No. 20210224026). In this study, 110 male
BABL/c nude mice (4–6 weeks) were purchased from Hunan
Slacker Jingda Laboratory Animal Co., Ltd. Model construction
was described as follows (Li J. et al., 2020; Mehra et al., 2021): 2 ×
106 cells were resuspended in 100 µL serum-free RPMI
containing 50% Matrigel (356234, ThermoFisher) and injected
subcutaneously into the left side of an athymic mouse. The mice
were divided into groups 1 week after injection.

Sources of A–S Drug Pair
Astragalus was purchased from China Resources Sanjiu
Pharmaceutical Co., Ltd. (2101006c). Scorpion was obtained
from Yifang Pharmaceutical, Guangdong, China (1013451).
Astragalus and scorpion granules were dissolved in distilled
water for subsequent experiments.

Liquid Chromatograph-Mass Spectrometer
Analysis of Astragalus
A Shimadzu Prominence UPLC system (Nexera UHPLC LC-
30A, Kyoto, Japan) coupled with an AB SCIEX Triple TOF 5600 +
system (AB Sciex, Singapore) equipped with an ESI source was
used to analyze Astragalus. T3 column (2.1 × 100 mm with
1.7 μm particle size, Waters, Milford, MA, United States) was
utilized to separate samples (3 μL). The column temperature was
maintained at 40°C. Mobile phases include 0.1% formate in H2O
(mobile phase A) and acetonitrile (mobile phase B). The mass
spectrometer has both positive and negative ion modes. The
detailed instrument parameters are as follows. The source
temperature was 550°C. The ion source gas was 1 and 2 55
psi. The curtain gas was 35 psi. The ion spray voltage float was
5.5 kV in a positive mode and −4.5 kV in a negative mode. The
accumulation time for the full scan was 150 ms, and the
accumulation time for each IDA experiment was 45 ms. The
mass range was set to m/z 60 to m/z 1,250, and the collision
energy was set to 30 eV or −30 eV. Peaks for compounds with
intensities greater than 100 c.p.s. were selected for further analysis
after summing the signals from 10 rounds of IDA scans.

Component Analysis of Scorpion
The scorpion particles were derived from the whole body of Buthus
martensii Karsch (BMK), a scorpionidae animal, including
scorpion venom. PESV is a polypeptide extracted from scorpion
venom. Scorpion particles (0.1 g) were dissolved in 1 ml RIPA
lysate and then vortexed for 20min. The supernatant was
transferred to the new EP tube after ultrasonic extraction for
15 min and centrifugation for 5 min. The 20 μL supernatant was
taken and run on SDS-PAGE gel for 2 h. The gel was stained with
Coomassie bright blue solution for 2 h and decolorized overnight.
The albumin glue was cut off with a disposable surgical blade and
transferred to a new EP tube. The dyed strips were rinsed three
times by ddH2O and added into the decolorizing solution. After
decolorization, the rubber strip was washed 3–5 times until
completely transparent. The rubber strip was washed with 50%

acetonitrile and 100% acetonitrile to dehydrate the rubber until the
rubber block became white. To the rubber strip was added 50 μL
DTT solution (10 mM) and reduced for 30 min in a water bath at
56°C. When the temperature drops to room temperature, 50mM
IAA solution with equal volumewas added to avoid light alkylation
for 15 min. The rubber strip was washed with 50% acetonitrile and
100% acetonitrile twice in order to dehydrate the rubber until the
rubber block became white. To the rubber strip was added
15–20 μL proteome-grade trypsin (0.01 μg/μL) and put on ice to
absorb and become transparent. To the rubber strip was added
30–40 μL NH4HCO3 solution (50 mM) containing 10% ACN to
cover it. After digestion overnight in the water bath at 37°C, the
supernatant was transferred to another new EP tube. 100 µL of
extraction solution (67% acetonitrile, containing 2% formic acid)
was added to the remaining colloidal blocks and held for 30 min at
37°C. After centrifugation and drying, the enzyme-cut polypeptide
samples were re-dissolved in a nano-LC mobile phase A (0.1%
formic acid/water), bottled, and sampled for LC/MS analysis. LC/
MS analysis was performed by an Easy nLC 1200 Nano Liter liquid
phase system (ThermoFisher, United States) and a ThermoFisher
Q Exactive System (ThermoFisher, United States) combined Nano
liter spray Nano Flex ion source (ThermoFisher, United States).
The original RAW atlas files collected by mass spectrometry were
processed and retrieved using PEAKS Studio 8.5 (Bioinformatics
Solutions Inc. Waterloo, Canada) software. The database was the
target protein database downloaded by Uniprot. The retrieval
parameters were set as follows: trypsin enzymolysis, the mass
tolerance of primary mass spectrometry was 10 ppm, and the
secondary mass spectrometry was 0.05 Da.

Animal Experiment and Grouping
BABL/c nude male PCa mice constructed from LNCap cells were
randomly divided into seven groups. The group was set as the
model group (PCa), a low dose of the A–S drug pair group
(A–S–L, 1.17 g/kg/d A and 0.39 g/kg/d S), a middle dose of the
A–S drug pair group (A–S–M, 2.54 g/kg/d A and 0.585 g/kg/d S),
a high dose of the A–S drug pair group (A–S–H, 3.9 g/kg/d A and
0.78 g/kg/d S), Astragalus group (A, 3.9 g/kg/d), scorpion group
(S, 0.78 g/kg/d), and docetaxel (D107320, Aladdin) group
(10 mg/kg, once a week, intraperitoneal injection). The A–S
drug pair was administered orally by gavage, and the control
group was given the same volume of distilled water. Tumor
growth and metastasis in mice were monitored every 7 days
using small animal in vivo imaging system (IVIS).

BABL/c nude male PCa mice constructed from sh-GDPD4-
2 stable LNCaP cells were randomly divided into four groups.
The group was set as the sh-NC group, sh-GDPD4-2 group,
Astragaloside IV-PESV group, and Astragaloside IV-PESV +
sh-GDPD4-2 group. Astragaloside IV (84687-43-4, Aladdin)
was given 40 mg/kg by gavage (Nanding Wang et al., 2020).
PESV was an intraperitoneal injection of 1.2 mg/kg. PESV was
obtained from the Chinese Medicine Pharmacy of the First
Affiliated Hospital of Hunan University of Chinese Medicine.
The experiment lasted for 4 weeks, and drug administration
began 1 week after implantation. Changes in the tumor
volume and mortality of mice were detected by the IVIS
system.
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Cell Experiment and Grouping
Human normal prostate epithelial cells RWPE-1 cells (iCell-
h286, iCell) and human prostate cancer cell line LNCaP (CL-
0143, Procell) were purchased from iCell and Procell,
respectively. The LNCaP cells were randomly divided into
LNCaP group (control), LNCaP + Astragaloside IV group
(Astragaloside IV, 10μM, 24 h), LNCaP + PESV group (PESV,
40 mg/ml, 24 h), LNCaP + Astragaloside IV-PESV group
(Astragaloside IV-PESV), and LNCaP + rapamycin group
(rapamycin, 30 nM, 24 h). The sh-GDPD4-2 stable LNCaP
cells were randomly divided into negative control group (NC),
sh-GDPD4-2 group (sh-GDPD4-2), NC + Astragaloside IV-
PESV group (Astragaloside IV-PESV), and sh-GDPD4-2 +
Astragaloside IV-PESV group (sh-GDPD4-2 + Astragaloside
IV-PESV).

Bioinformatics Analysis
The original data set of GSE155056 was downloaded in the GEO
database, converted into expression matrix, and the grouping
information was obtained. The expression matrix was processed
with the R language Limma package, and the expression
difference was analyzed. According to the criteria (p value
<0.05, | log2FC | > 2.0), statistically significant genes were
screened, and the map of volcanic was masked. The clustering
heatmap showed the expression patterns of differentially
expressed lncRNAs in the data set.

Immunofluorescence
The cells were implanted with slides and fixed with 4%
paraformaldehyde for 30 min. Triton of 0.3% was added and
permeated at 37°C for 30 min, and 5% BSA was sealed at 37°C for
60 min, and the antibody was incubated after washing with PBS.
The tumor tissues of mice were fixed, dehydrated, and paraffin-
embedded. The tissue was cut into 5 μm slices. Sections were
dewaxed to water using gradient alcohol (75–100%). Sections
were immersed in 0.01 M citrate buffer (pH6.0) for the thermal
repair of antigen. Then, 1% periodate acid was added at room
temperature for 10 min to inactivate endogenous enzymes.
Sections were dropped with appropriately diluted anti-LC3
(14600-1-AP, 1:100, Proteintech, United States) at 4°C
overnight. Sections were added to 50–100 μL anti-HRP
polymer and incubated at 37°C for 30 min. DAB working
solution was used for incubation, hematoxylin restaining, and
gradient alcohol dehydration. Neutral gum was sealed and
observed under a microscope (BA410T, Motic).

Cell Counting Kit-8
The cells were digested and inoculated into 96-well plates at a
density of 5×103 cells/well, 100 μL per well. Then, 10 μL CCK8
(NU679, DOJINDO) solution was added to each well. Cells were
incubated at 37°C with 5% CO2 for 4 h. A Bio-tek microplate
analyzer (mb-530, huisong) was used to analyze the absorbance at
450 nm.

Quantitative Reverse Transcription PCR
Total RNA was extracted by TRIzol reagent (15596026, Thermo).
cDNA was synthesized using an mRNA reverse transcription kit

(CW2569, CWBIO). The sequences of target genes were searched
on NCBI, and primer 5 software was used to design primers. The
expression levels of target genes were analyzed by an UltraSYBR
Mixture (CW2601, CWBIO) and 2−ΔΔCT. Primer sequences are
shown in Table 1.

Western Blot
RIPA lysate was used to lysate cells or mouse tumor tissues to
extract total protein. The concentration of the extracted protein
was determined by the BCA protein quantitative kit. Protein
samples were separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE). The isolated
proteins were transferred to a polyvinylidene fluoride (PVDF)
membrane activated by methanol and sealed by 5% skim milk
and dried at room temperature for at least 1 h. Then, they were
incubated with anti-LC3B (14600-1-AP, 1:1000, Proteintech,
United States), anti-Beclin1 (ab210498, 1:1000, Abcam,
United Kingdom), anti-P62 (18420-1-AP, 1:5000, Proteintech,
United States), anti-p-PI3K (ab191606, 1:1000, Abcam,
United Kingdom), anti-PI3K (ab182651, 1:1000, Abcam,
United Kingdom), anti-p-AKT (66444-1-Ig, 1:2000,
ProteinTech, United States), anti-AKT (10176-2-AP, 1:2000,
Proteintech, United States), anti-p-mTOR (ab109268, 1: 2000,
Abcam, United Kingdom), anti-mTOR (ab2732, 1:500, Abcam,
United Kingdom), anti-β-actin (66009-1-Ig, 1:5000, Proteintech,
United States) overnight at 4°C. It was then incubated with
secondary anti-IgG (SA00001-1, 1:5000, Proteintech,
United States) and anti-IgG (SA00001-2, 1:6000, Proteintech,
United States) at 37°C for 90 min. Visualization was performed
using chemiluminescence, and imaging analysis was performed
using software (GE Healthcare, Life Sciences, United States).

Statistics and Analysis
Graphpad prism 8 was used for statistical analysis of the research
data. The measurement data were expressed as mean ± SD. First,
the test of normality and homogeneity of variance were carried
out. The test conforms to the normal distribution and
homogeneity of variance. The non-paired t-test was used

TABLE 1 | Primer sequences.

Gene Primer sequences Length (bp)

H-GDPD4-2 F ACCAGGATCCCATTCCTACCA 80
R GGTCACTGTCCACGCACAAA

H-AC144450.1 F GTGGTGTGACGACATCCTGT 163
R GGTAGCTCTGCGGTCAATCA

H-LINC01513 F GGAGACACCACCTCTTTGCT 75
R TGACTCTCCTCTTGTTCCAGAT

H-AC004009.2 F GGTCCTGACACGGGCATTC 178
R GGGCAAAAGCAACCTTTCAG

H-AL096869.1 F CACTGCTCTGGACCCTTGAG 149
R CCCTGTGTAGGCATGTCCAG

H-AP005210.1 F ATCTCCAGCCAATCAGTCACC 173
R AGACATGAAGAAAATCCGCCAT

H-BX119924.1 F GAACCCGTCTGCGTTTCTCC 85
R GCCACAAAGTACAAAGCGAGG

H-GAPDH F ACAGCCTCAAGATCATCAGC 104
R GGTCATGAGTCCTTCCACGAT
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between groups; the one-way ANOVA or ANOVA of repeated
measurement data was used for multi-group comparison, and
Tukey’s post test was carried out. p < 0.05 indicated that the
difference was statistically significant.

RESULTS

Network Pharmacologic Analysis of A–S
Drug Pair in Treating PCa
Venn diagram showed that the A–S drug pair and PCa had 163
targets (Figure 1A). There were 163 nodes in PPI network, and
the average degree value was 35 (Figure 1B). Key target analysis
showed that AKT1 was the target gene with the highest degree
value (Figure 1C). KEGG functional enrichment showed that a
total of 165 signaling pathways were enriched, among which the

prostate cancer and PI3K–AKT signaling pathway are
significantly enriched (Figure 1D). The chemical structures of
various screened active ingredient monomers in the A–S drug
pair are shown in Supplementary Figure S1. These results
suggested that the A–S drug pair may play a pharmacological
role in the treatment of PCa through the PI3K–AKT signaling
pathway.

A–S Drug Pair Inhibited the Development
of PCa
The A–S drug pair extract significantly inhibited the formation of
PCa, and the inhibition effect was better in the A–S–H group, as
well as in the tumor volume and tumor weight (Figure 2A). In
addition, the A–S–H drug pair extract was found to promote
LC3Ⅱ and Beclin1 protein expression in PCa tissues (Figures

FIGURE 1 | Potential effect mechanism of A–S for treating PCa based on network pharmacology analysis. (A) Venn diagrams of common targets in PCa and A–S.
(B) Construction of the PPI network in A–S in treating PCa by using the STRING database. (C) The top 20 core gene visualization was obtained by using R software
according to the relevance number of nodes. (D) KEGG pathway analysis of core targets and column plot for top 20 pathways.
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FIGURE 2 | A –S drug pair inhibited PCa development by inhibiting the PI3K–AKT/mTOR pathway. (A) LNCaP cells were injected subcutaneously into BABL/c
nude mice (n = 6), and the tumor volume and tumor weight were analyzed. (B) LC3 and DAPI immunofluorescence staining were performed to detect the LC3
expression. (C) The LC3, Beclin1, and P62 expression were determined by western blot. (D)The expression of the PI3K/AKT/mTOR pathway protein was analyzed by
western blot. *p < 0.05 vs. control group.
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FIGURE 3 | The main bio-active components in the herb pair A–S suppressed LNCaP cell proliferation and migration through the PI3K/AKT/mTOR pathway. (A)
LC–MS/MS chromatogram of the bio-active components in Astragalus. (B) The LC-MS/MS analysis of PESV in scorpion. (C) LC3 and DAPI immunofluorescence
staining were performed to detect autophagy. (D) The LC3, Beclin1, and P62 expression were determined by western blot. (E) The protein expression of the PI3K/AKT/
mTOR signaling pathway. (F) Cell activity was determined by the CCK8 assay. *p < 0.05 vs. control group, #p < 0.05 vs. Astragaloside IV or PESV groups.
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2B,C). Compared with the PCa group, the A–S–H drug pair
extract significantly inhibited the expression of P62 protein in
PCa mice (Figure 2C). Compared with the PCa group, the
A–S–H group significantly inhibited the expression of p-PI3K,
p-AKT, and p-mTOR proteins (Figure 2D). These results
suggested that the A–S drug pair extract inhibited tumor
formation in PCa mice, which may be related to the PI3K/
AKT pathway and autophagy.

Astragaloside IV and PESV as the Main
Active Components of A–S Drug Pair
Inhibited the Proliferation of LNCaP
The positive and negative profiles of the Astragalus showed that
Astragaloside IV was one of the main active components
(Figure 3A). In order to identify whether the scorpion
granules contain PESV, the scorpion granules were subjected
to SDS-PAGE electrophoresis gel and enzymatic hydrolysis to

separate the peptides and finally analyzed by LC-MS/MS. The
results showed that the scorpion peptides Bmk_AGAP and
BmK_AngM1 (unique active component present in the PESV
extract) existed in the whole scorpion, which might be the key
substance in the anticancer effect of the scorpion (Figure 3B).
Compared with the control group, the LC3 expression was
significantly increased in the Astragaloside IV and PESV
groups (Figure 3C). Astragaloside IV-PESV significantly
promoted LC3 and Beclin1 protein expression in LNCaP
compared to Astragaloside IV or PESV groups (Figures
3C,D). Astragaloside IV-PESV inhibited the expression of P62,
p-PI3K, p-AKT, and p-mTOR in LNCaP (Figures 3D,E). In
addition, compared with Astragaloside IV or PESV groups,
Astragaloside IV-PESV significantly inhibited the proliferation
of LNCaP (Figure 3F). These results suggested that Astragaloside
IV-PESV, as the main active components of the A–S drug pair,
inhibited LNCaP proliferation through PI3K/AKT and
autophagy pathways.

FIGURE 4 |GDPD4-2was up-regulated in PCa tissues and cells, whichwas related to the treatment of herb pair Astragalus IV -PESV. (A) Volcano plot showed the lncRNA
expression. (B) The differential lncRNA expression in RWPE-1 and LNCaP cells, *p < 0.05 vs. RWPE-1 group. (C) The differential lncRNA expressionwas analyzed by RT-qPCR in
LNCaP cells after treatment with Astragaloside IV-PESV. *p < 0.05 vs. control group, #p < 0.05 vs. Astragaloside IV group, &p < 0.05 vs. PESV group.
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Differential LncRNA Expression of PCa
Treated With Astragaloside IV-PESV
The volcano plot showed that GDPD4-2, AC144450.1, LINC01513,
AC004009.2, AL096869.1, AP005210.1, and BX119924.1 were
significantly underexpressed (Figure 4A). Compared with the
RWPE-1 cell, the GDPD4-2, AC144450.1, LINC01513,
AC004009.2, AL096869.1, AP005210.1, and BX119924.1 were
significantly decreased in LNCaP cell (Figure 4B). Compared
with the control group, the expression of GDPD4-2 was

significantly up-regulated in the Astragaloside IV-PESV group
(Figure 4C). These results demonstrated that GDPD4-2 was
involved in the treatment of PCa by Astragaloside IV-PESV.

Astragaloside IV-PESV Regulated the PI3K/
AKT/mTOR Signaling Pathway Through
GDPD4-2
Compared with the NC group, the expression of GDPD4-2 was
significantly decreased in the sh-GDPD4-2 group and significantly

FIGURE 5 | Astragaloside IV- PESV regulated PI3K/AKT/mTOR signaling via inhibiting GDPD4-2. (A) The expression level of GDPD4-2. (B) LC3 and DAPI
immunofluorescence staining were performed to detect autophagy. (C) The LC3, Beclin1, and P62 expression were determined by western blot. (D) The protein
expression of the PI3K/AKT/mTOR signaling pathway. (E) Cell activity was determined by the CCK8 assay. *p < 0.05 vs. NC group, #p < 0.05 vs. sh-GDPD4-2 group,
&p < 0.05 vs. Astragaloside IV-PESV group.
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increased in the Astragaloside IV-PESV group (Figure 5A). The
expression of GDPD4-2 was significantly decreased in the sh-
GDPD4-2 + Astragaloside IV-PESV group compared with that of
the Astragaloside IV-PESV group (Figure 5A). Silencing GDPD4-
2 inhibited the expression of LC3 and Beclin1 protein in LNCaP,
and Astragaloside IV-PESV promoted the expression of LC3 and
Beclin1 protein in LNCaP-silenced GDPD4-2 (Figures 5B,C).
Silencing GDPD4-2 promoted the expression of P62 protein in
LNCaP, while Astragaloside IV-PESV inhibited the expression of
P62 protein in LNCaP-silenced GDPD4-2 (Figure 5C). Compared
with the sh-GDPD4-2 group, the expression of p-PI3K, p-AKT,
and p-mTOR proteins was decreased in the sh-GDPD4-2 +
Astragaloside IV-PESV group (Figure 5D). Silencing GDPD4-2
promoted the proliferation of LNCaP, which was reversed by
Astragaloside IV-PESV intervention (Figure 5E). These results
demonstrated that Astragaloside IV-PESV regulated the PI3K/
AKT/mTOR signaling pathway of LNCaP via GDPD4-2.

In Vivo Experiments Demonstrated That
Silencing GDPD4-2 Reversed the Inhibitory
Effect of Astragaloside IV-PESV on PCa
Compared with the sh-NC group, the sh-GDPD4-2 group had an
increased tumor volume (Figures 6A,B). Astragaloside IV-PESV
inhibited tumor growth and volume compared with the sh-NC
group (Figures 6A,B). Compared with the sh-NC group, the tumor
weight of PCa mice was increased in the sh-GDPD4-2 group and
decreased in theAstragaloside IV-PESV group (Figure 6B). Compared
with the Astragaloside IV-PESV group, the tumor weight of PCa mice
in the Astragaloside IV-PESV + sh-GDPD4-2 group was increased
(Figure 6B). These results suggested that silencing GDPD4-2 reversed
the inhibitory effect of Astragaloside IV-PESV on PCa.

DISCUSSIONS

Animal and botanical TCM are a rich source of gene modulators that
can be used to prevent and treat cancer (Yang et al., 2014; Ma et al.,

2015; Hnit et al., 2021; Hwang et al., 2021). Astragalus-containing TCM
had a better anti-gastric cancer efficacy in patients with chemotherapy
(Cheng et al., 2021). Astragalus active extracts, including triterpene
saponins, flavonoids, polysaccharides, and other components, exert
various effects such as antioxidant, anti-inflammatory, and anti-tumor
by regulating autophagy (Shan et al., 2019). In particular, Astragaloside
IV, as one of the main components of triterpene saponins, has been
confirmed to be a key component of the Astragalus’ anticancer effect in
breast, lung, gastric, and other cancers (Chen T. et al., 2021). However,
studies on the effects of Astragaloside IV on PCa by regulating
autophagy are largely lacking. In recent years, scorpion has been
focused on scorpion venom in anti-tumor research (Dueñas-Cuellar
et al., 2020). Scorpion venom consists of complex bioactive peptides,
and PESV is extracted from scorpion venom. PESV has proven to be a
promising anticancer drug (Mikaelian et al., 2020). PESVmediated the
inhibition of hepatocellular carcinoma by up-regulating the NK cell
activity (Chen et al., 2016a). PESV Smp43 can regulate the PI3K/AKT/
mTOR pathway by inducing autophagy in liver cancer cells to exert an
anti-tumor effect (Chai et al., 2021). Our study firstly confirmed that the
A–S drug pair and their extracts (Astragaloside IV and PESV)
promoted the expression of LC3 protein in cancer tissues and
inhibited the expression of P62 and PI3K–AKT pathway proteins,
and then inhibited the formation of PCa in mice. The above studies
proved that the A–S drug pair extract could be used as a potential drug
for the treatment ofPCa, but the specificmechanismof action still needs
to be further studied.

LncRNAs are involved in the development of various cancers
including PCa. Some lncRNAs are overexpressed in PCa, and some
are under-expressed (Misawa et al., 2017). We found that GDPD4-2,
AC144450.1, LINC01513, AC004009.2, AL096869.1, AP005210.1,
and BX119924.1 were significantly underexpressed in PCa.
LINC01513 was underexpressed in nasopharyngeal carcinoma
(Wang J. et al., 2021). However, AC144450.1 has been found to
be highly expressed in the breast tissue relative to the adjacent tissue
(Hassani et al., 2021). This is because different cancer types and
causes may have different regulatory mechanisms (Xu et al., 2019).
Astragaloside IV has been reported to inhibit liver cancer by
regulating lncRNA ATB (Li et al., 2018). Similar to this report,

FIGURE 6 | Down-regulation of GDPD4-2 reversed the therapeutic effect of Astragaloside IV-PESV on PCa. (A) The tumor tissue of mice was observed. (B) The
tumor volume and tumor weight of mice were analyzed. *p < 0.05 vs. sh-NC group, #p < 0.05 vs. sh-GDPD4-2 group, &p < 0.05 vs. Astragaloside IV-PESV group.
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our study found that Astragaloside IV might inhibit PCa by up-
regulating GDPD4-2. Indeed, the regulatory function of PESV on
lncRNAs has not been reported yet. We found that PESV up-
regulates GDPD4-2, which is consistent with the multiple
regulatory mechanism of lncRNA-PCa.

Silence of GDPD4-2 cannot completely block the effect of
Astragaloside IV-PESV, suggesting that Astragaloside IV and
PESV might affect PCa progress through other pathways.
Astragaloside IV exerts anticancer effects, via the lncRNA
TRHDE-AS1, in breast cancer (Hu et al., 2021). Astragaloside
IV inhibits lung cancer progression through the MAPK pathway
(Xu et al., 2018). Astragaloside IV has potential therapeutic effects
on gastric cancer by regulating microRNA-195-5p (Liu et al.,
2021). AaTs-1 (a PESV) inhibits glioblastoma proliferation via
the p53 and FPRL-1 pathway (Aissaoui-Zid et al., 2021). Due to
time and funding reasons, we did not conduct in-depth research
on the above pathways. In future studies, we will continue to
investigate whether Astragaloside IV and PESV affect cancer
development by regulating other pathways.

Network pharmacology analysis (Bioinformatics tools) is an
auxiliary tool for the study of the mechanism of TCM, which can
easily and quickly screen out the active components and action
targets of TCM compounds (Zhang et al., 2019). However, the
application of network pharmacology analysis has many
limitations (Luo et al., 2020; Silverman et al., 2020). In the current
network pharmacology research, the chemical components found in
the composition of the compound are taken as the research object,
but themonomer of TCM is different from a chemical substancewith
a single chemical composition, and it is not a simple collection of a
group of chemical components. A TCM monomer often contains
multiple chemical components, and the same chemical component
may come from different TCM monomers. The scorpion venom is
mainly composed of lipids, organic acids, a small amount of free
amino acids, and PESV (Yu et al., 2020). In addition, the research on
scorpion is less than that on Astragalus, and the existing database of
scorpion is incomplete. Therefore, for the A–S drug pair, network
pharmacology analysis can assist in making some general predictions
and summaries, and its real firm and exact effects still depend on a
more accurate and comprehensive laboratory methodology.

A–S pair drugs include Astragalus and scorpion. Among them,
the scorpion particles were derived from the whole body of Buthus
martensii Karsch (BmK), a scorpionidae animal, including
scorpion venom. PESV is a polypeptide extracted from scorpion
venom. Scorpion is a TCM for animals with complex main active
ingredients. San’ao decoction with scorpion has been shown to
relieve asthma (Wang P. et al., 2021). It is well known that scorpion
venom is the leading cause of human poisoning and even death by
scorpion sting (So et al., 2021). Reports in recent years indicated
that scorpion venom might be the main active ingredient in
scorpion that exerts anticancer effects. For example,
Androctonus amoreuxi scorpion venom significantly had
cytotoxic and anti-proliferative effects on PCa cells (Akef et al.,
2017). Polypeptide extracted from scorpion venom (PESV)
induced growth inhibition of PCa cells (Zhang et al., 2009).
Therefore, PESV was selected as our research object.

Wu et al. used bioinformatics tools to identify potential targets
(PI3K/AKT pathway) for PCa from the main active components

contained in scorpion (stearin, 20-hexadecanoylingenol, cholesterol,
etc.) and Astragalus (bifendate, hederagenin, kaempferol, etc.) (Wu
et al., 2021). However, many articles have confirmed the anticancer
effects of Astragaloside IV and PESV by experimental methods (Chen
et al., 2016a; Chen T. et al., 2021). The HPLC results confirmed that
Astragaloside IV existed, and LC-MS/MS analysis also confirmed that
scorpion venom polypeptide unique amino acid sequences,
BmK_AGAP and BmK_AngM1, existed in scorpion. Therefore,
different from the study by Wu et al., Astragaloside IV and PESV
were selected as the focus of our subsequent cell and nude mouse
tumorigenic studies. Our study confirmed that Astragaloside IV-
PESV was the important active ingredient of A–S drug pair
extracts for inhibiting PCa. Of course, there may be other active
ingredients in the A–S drug pair, such as Astragalus polysaccharides
(Bamodu et al., 2019) and Astragalus II (Wang M. et al., 2017), that
have anticancer properties. Other components of the A–S pair have
not been studied for reasons of funding and time.We plan to continue
research further in a future research.

Network pharmacology and molecular docking techniques
suggested that the A–S drug pair has the potential to treat
PCa (Wu et al., 2021). However, no experimental studies on
active ingredients and mechanisms have been conducted.
Compared with previous studies (Wu et al., 2021), this study
further investigated A–S, Astragalus, and scorpion, which might
inhibit tumor development by activating autophagy and
inhibiting the PI3K/AKT/mTOR pathway based on network
pharmacology. There are many reports on the effects of
lncRNAs on PCa, such as PCAT19 (Hua et al., 2018), PCAT6
(Lang et al., 2021), OIP5-AS1 (Zhang et al., 2021), etc. However,
GDPD4-2 has never been reported to PCa. In vitro studies
showed that Astragaloside IV combined with PESV might
activate autophagy and inhibit the PI3K/AKT/mTOR pathway
by promoting the expression of GDPD4-2. Finally, the tumor
formation experiments in nude mice further confirmed that
Astragaloside IV combined with PESV may inhibit tumor
development through the GDPD4-2 pathway. In conclusion,
this study clarified that the A–S drug pair inhibited the
occurrence and development of PCa by regulating the
GDPD4-2/PI3K/AKT/mTOR pathway and autophagy. This
study provides a new reference idea for the study of the
combined effect of TCM and also lays a theoretical foundation
for the future combination of A–S drugs in the treatment of PCa.
In conclusion, the study is very innovative and meaningful.

BmK_AngM1 was the main active component of the PESV
extract (Wang QH. et al., 2017). However, BMK_AngM1 might not
be the unique active component present in the PESV extract. For
example, Chlorotoxin (CTX), HsTX1, and BmKAS have anticancer,
analgesic, and antiepileptic effects, respectively (Li et al., 2019). The
study found that BmK_AGAP was also presented in the scorpion.
On the one hand, BmK_AngM1 and BmK_AGAP were reported to
have significant analgesic effects (Wang QH. et al., 2017; Kampo
et al., 2019). On the other hand, the antiproliferative effect of
BmK_AGAP on the early stage of breast cancer has been
reported (Doudou et al., 2019; Richard et al., 2020). Our study
found that Astragaloside IV and PESV have anti-tumor effects in
PCa. We speculated that BmK_AngM1 and BmK_AGAP might be
the active components of PESV to inhibit PCa proliferation. The
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protein extracted from the scorpion was cut into small molecular
peptides by enzymes and then scanned by MS, and the procedure
was relatively complicated. The detection of small-molecule peptides
with only 8–30 amino acids is considered the best. Therefore, there
may be other small-molecule polypeptides in the scorpion that have
not been detected. Due to funding and time constraints, the content
of this section has not been studied. In the next study, we will further
identify themain anticancer active small-molecule peptides in PESV.

The gradual transformation of LC3 from the cytosol (LC3 I) form
to the membrane-bound lipidosis (LC3 II) form was used to measure
the occurrence of autophagy. Theoretically, in the representative
image of immunofluorescence, LC3 II will aggregate to the
autophagosome membrane and appear as bright spots, and LC3 II
will diffuse (Kabeya et al., 2000; Chen et al., 2019). However, in many
cases, the separation of LC3 I and LC3 II in immunofluorescence is
not significant (Cao et al., 2019; Rong et al., 2020). In our cell
experiments, some bright spots could be observed on the cells,
suggesting that LC3 I might be transformed into LC3 II after
Astragaloside IV and PESV treatment. After further experiments,
the results of western blot showed that theA–S drug pair and its active
components (Astragaloside IV and PESV) promoted the expression
of LC3 II and decreased the expression of LC3 I. In addition, the
changes of autophagy-related proteins (Becline 1 and P62) further
illustrated the effects of A–S drugs on autophagy. The above results
illustrated that the A–S drug pair and its active components
(Astragaloside IV and PESV) promoted autophagy.

Rapamycin is a macrolide that is originally developed as an
antifungal agent (Jiang et al., 2021). Rapamycin is useful in the
treatment of various cancers due to its inhibitory effect on the
PI3K/AKT/mTOR pathway (Alzahrani, 2019). Both AKT and
mTOR are downstream targets of PI3K, which stimulate protein
synthesis, cell growth, and proliferation. mTOR is an essential
component of this network and a PI3K-related serine–threonine
kinase (Alzahrani, 2019). mTOR regulates the balance of immune
responses by AKT phosphorylation (Cook et al., 2020). At present,
the research on rapamycin focuses on the research on the PI3K/
AKT/mTOR pathway as a whole, while the research on the
individual PI3K/AKT and its phosphorylation is less.
Additionally, we found that rapamycin inhibited retinoblastoma
cell proliferation by inhibiting the PI3K/AKT protein expression
(Yao et al., 2020). In renal failure studies, rapamycin has been
shown to inhibit the expression of p-PI3K/PI3K and p-AKT/AKT
(Jia et al., 2022). Similar to the above studies, our study found that
rapamycin could inhibit the expression of p-PI3K/PI3K and
p-AKT/AKT in PCa cells. Therefore, we speculated that there
might be a negative feedback regulation mechanism in the PI3K/
AKT/mTOR pathway. Rapamycin might inhibit mTOR, which, in
turn, inhibit AKT and finally inhibit the PI3K pathway. However,
the specific mechanism is not clear. In follow-up studies, it is
necessary to further explore the deeper regulatory mechanism of
the PI3K/AKT pathway from in vivo and in vitro experiments.

Considering the overall consistency of the entire study, the
LNCaP cell line was used for both in vitro and in vivo
experiments. Due to funding and time constraints, we were
unable to provide additional cell lines for this comparison and
other experimental studies. In future studies, more cell lines will
be further investigated. In addition, autophagy and apoptosis

often accompany each other in the process of regulating tumor
cells. Dietary phytochemicals regulate autophagy and apoptosis
in cancer (Patra et al., 2021). TCMmay exert anticancer effects by
regulating autophagy and apoptosis (Wang K. et al., 2021). Due to
time and funding constraints, we have not studied it for the time
being. In a future research, we will investigate further.

CONCLUSION

Therefore, the above study proved that Astragaloside IV-PESV is
the pharmacodynamic component of A–S against PCa, and its
mechanism may be related to the regulation of the GDPD4-2/
PI3K/AKT/mTOR pathway and autophagy. This study
preliminarily elucidates the potential mechanism of action of
the A–S drug pair in the treatment of PCa by Astragaloside IV-
PESV, with a view to developing new therapeutic strategies for PCa.
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