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Abstract

Background: HIV-1 viral protein Tat partially mediates the neural dysfunction and neuronal cell death associated with HIV-1
induced neurodegeneration and neurocognitive disorders. Soy isoflavones provide protection against various neurotoxic
insults to maintain neuronal function and thus help preserve neurocognitive capacity.

Methodology/Principal Findings: We demonstrate in primary cortical cell cultures that 17b-estradiol or isoflavones
(genistein or daidzein) attenuate Tat1–86-induced expression of apoptotic proteins and subsequent cell death. Exposure of
cultured neurons to the estrogen receptor antagonist ICI 182,780 abolished the anti-apoptotic actions of isoflavones. Use of
ERa or ERb specific antagonists determined the involvement of both ER isoforms in genistein and daidzein inhibition of
caspase activity; ERb selectively mediated downregulation of mitochondrial pro-apoptotic protein Bax. The findings suggest
soy isoflavones effectively diminished HIV-1 Tat-induced apoptotic signaling.

Conclusions/Significance: Collectively, our results suggest that soy isoflavones represent an adjunctive therapeutic option
with combination anti-retroviral therapy (cART) to preserve neuronal functioning and sustain neurocognitive abilities of HIV-
1 infected persons.
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Introduction

HIV-1 infection of the central nervous system (CNS) causes

several neurological disorders, known as HIV-associated neuro-

cognitive disorders (HAND) [1]. Although the incidence of severe

dementia has significantly decreased since the advent of combi-

nation anti-retroviral therapy (cART), cognitive and motor

impairments persist in up to 50% of HIV-1 positive patients due

to longer life expectancy, the lack of patient compliance with

cART therapy and the low penetrability of cART into the CNS

[2]. The continued prevalence of neurological dysfunction suggests

cART fails to provide complete protection from the development

of HAND [1,3,4] and there currently are no pharmacotherapies

targeted to HAND.

HIV-1 enters the brain early after infection and, although, HIV-

1 does not infect neurons, neuronal dysfunction is key in HIV

pathogenesis [5–7]. The early viral proteins such as Tat are

continually produced despite the presence of cART [7–10].

Accordingly, Tat is rapidly taken up by neuronal cells and has

been shown to have direct toxic effects on neurons though various

mechanisms. Studies have shown Tat to mediate excitotoxicity via

NMDA receptors [11–13], synaptic damage and dendritic pruning

[14], induce apoptotic cascades [15,16], calcium dysregulation

[17], oxidative stress [18], and dopaminergic system dysfunction

[19,20]. Tat exposure has been shown to negatively affect

cognitive processes in animal models [21,22]. The observations

that the viral regulatory protein Tat is actively secreted by infected

cells, and that Tat mRNA is elevated in patients with HIV-1

suggest a possible role of extracellular Tat in the progression of

HIV-1-induced neurodegeneration [23–25].

Phytoestrogens, such as the soy isoflavones genistein and

daidzein, mimic the neuroprotective actions and functions of

estrogen in the brain, as they bind to the estrogen receptor (ER)

and affect estrogen-mediated processes [26–29]. Several studies

have found that soy isoflavones can improve cognitive functions in

both humans and rats, but underlying mechanisms remain

unknown [30–35]. Additional studies have shown that isoflavones

have neuroprotective effects against various neurodegenerative

insults. Genistein and daidzein have demonstrated neuroprotective

efficacy against glutamate excitotoxicity and Ab25–35 induced loss

of cell viability, oxidative stress and initiation of apoptosis in

hippocampal neurons [36,37]. As the dopaminergic system is

sensitive to HIV in the brain, isoflavones, similar to estradiol, may

interact with dopamine to preserve motor and cognitive functions

[35,38–40].

Estrogen therapy is met with resistance due to its association

with reproductive and breast cancers [41,42]. However, dietary

consumption and supplementation with soy isoflavones is
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widespread. Consuming a typical Western diet yields low

nanomolar concentrations of circulating isoflavones [43,44]. In

people consuming modest amount of soy products yielding

,50 mg/day of total isoflavones, plasma levels of 50–800 ng/ml

have been achieved for daidzein and genistein [43], which is

comparable to concentrations observed in a traditional Japanese

diet [44]. However, consuming a western vegetarian diet and

taking supplements has been shown to achieve increased

isoflavone consumption comparable to or higher than Asian

levels [44–46]. Furthermore, human studies that have reported

improved cognitive function with soy isoflavone consumption

have used ,60–100 mg/day doses of isoflavones [31,34]. The

cognitive improvements seen with high doses of soy in vivo were

not associated with abnormalities in reproductive health of

humans, including men [31,47–49]. This broadens the use and

benefits of these estrogenic compounds to not only women but

also men.

Soy isoflavones preferentially binding to ERb is of significant

consideration in neuroprotection as this ER subtype is highly

expressed in the brain compared to ERa, which due to its high

expression in the reproductive tissue, has been associated with the

proliferative effects of estrogen. Elucidating whether isoflavone

protection is mediated by ER selectivity is a central focus in

developing neuroprotective strategies. In the current experiments,

we investigated whether treatment with soy isoflavones, genistein

or daidzein, could attenuate HIV-1 Tat-induced mitochondria

associated apoptosis in cortical cell cultures. Further, we explored

whether isoflavone neuroprotection against HIV-1 viral protein

Tat-induced neural toxicity involves ER-mediated attenuation of

apoptotic signaling. We demonstrated that isoflavones maintained

neuronal cell viability in the presence of prolonged Tat exposure.

We also observed that isoflavones prevented Tat-induced

upregulation of mitochondrial apoptotic cascade regulators.

Moreover, we determined that the protective actions of isoflavones

were mediated by estrogen receptors.

Results

Physiological Doses of Genistein and Daidzein Prevent
Cell Death Following Tat1–86 Exposure

We have previously shown that 17b-estradiol attenuated Tat-

induced cell death [50]. As shown in Figure 1, the cell viability

decrease (<25% of control) induced by prolonged (up to 5 days)

exposure to the toxic dose of Tat1–86 B was abrogated by 0.1–

10 nM of 17b-estradiol. Similar alleviation of Tat-induced

neuronal cell death was observed when isoflavones GEN or

DAI were used at doses 0.05, 0.2, and 1 mM (Figure 1). Our

levels of 50 nM to 1.0 mM of genistein and daidzein are within

the range of observed plasma levels of isoflavones following

consumption of soy products which reflect ,200 nM-3 mM.

Results indicate that physiologically relevant concentrations of

isoflavones are able to effectively protect cortical neurons against

Tat toxicity in vitro.

Genistein and Daidzein Attenuate Tat-induced Caspase
Activation in Primary Cortical Cell Cultures

In the present experiments, we evaluated if the protective

potential of GEN and DAI against Tat involves downregulation of

caspase activity. Figure 2A shows significant caspase 9 activation

following only 4 hr of Tat exposure (p#0.05). Preincubation with

10 nM 17b-estradiol or 1 mM of isoflavones (GEN or DAI)

prevented the increase in Tat-induced caspase 9 activation. Cultures

pretreated with GEN or DAI displayed caspase 9 activity similar to

that of estradiol treated cultures (p#0.05). Moreover, analysis

revealed that caspase 9 activity was not statistically different between

the 17b-estradiol, GEN and DAI pretreated cultures.

In regard to effector caspase 3 activity, a similar effect was

observed with phytoestrogen pretreatment prior to Tat exposure.

These results demonstrated a significant increase in caspase 3

activation in cortical cultures following 4 hr exposure to Tat

(p#0.05). The current experiments show that the addition of GEN

or DAI prior to incubation with 50 nM Tat significantly

attenuated the upregulation of active caspase 3 expression

(p#0.05, Figure 2B). The level of activation of caspase 3 in

GEN and DAI pretreatment groups was not significantly different

from that of vehicle-treated controls; furthermore, these levels

were very similar to that of the 17b-estradiol treated cultures.

These results indicate that isoflavones GEN and DAI downreg-

ulate Tat-induced caspase activation to a level comparable to that

of 17b-estradiol, suggesting that isoflavones and estradiol may

share a common neuroprotective mechanism.

Genistein and Daidzein Sustain Levels of Mitochondrial
Proteins Bax and Bcl-2 Expression Following Tat Exposure

The protection of cortical cell cultures with 17b-estradiol

against Tat toxicity is associated with regulating the effects of

apoptotic proteins linked to the mitochondrial apoptotic pathway

[50]. Therefore, we compared effects of neuroprotective concen-

trations of 17b-estradiol and isoflavones that completely eliminate

Tat-induced death of cortical cells on the alterations in Bcl-2 and

Bax protein levels. Results of the Bcl-2 ELISA presented in

Figure 3A demonstrate that, similar to estradiol (10 nM),

neuroprotective doses of GEN and DAI (1 mM) added to the cell

culture medium 24 hr in advance of 50 nM Tat significantly

(p#0.05) attenuated the increase of Bcl-2 expression; an effect

shown to occur within the first 16–24 hr of Tat exposure in

cortical cell cultures [50].

We also evaluated the efficacy of isoflavones against Tat-

induced Bax expression. Results of the Bax ELISA (Figure 3B)

demonstrate that pretreatment with 1 mM GEN or DAI, or

pretreatment with 10 nM estrogen, significantly (p#0.05) blocks

the induction of Bax expression in Tat-exposed cortical cells

(Figure 3B). Effects of all the compounds on Tat-induced changes

in Bcl-2/Bax protein expression were specific, since neither the

exposure to 10 nM 17b-estradiol, nor the exposure to 1 mM

isoflavones caused statistically significant changes in Bcl-2 or Bax

immunoreactivities compared to non-treated control cell cultures.

Estrogen Receptor Antagonists Block Anti-apoptotic
Actions of Soy Isoflavones

Plant isoflavones, such as GEN and DAI, are similar to 17b-

estradiol in chemical structure, which allows them to interact with

estrogen receptors (ER). Neuroprotective effects of 17b-estradiol

against Tat-induced apoptosis are mediated by two subtypes of

estrogen receptors, ERa and ERb. ER expression in primary

cortical neurons used in the current experiments demonstrates the

presence of both ER a and b immunoreactivity in our cultures

(data not shown). In the present experiments, we sought to

determine if the protective actions of isoflavones were ER-

mediated. The ER antagonist, ICI 182,780 (100 nM), was added

to cultures 1 hr prior to incubation with 17b-estradiol, GEN or

DAI. Following 24 hr pretreatment, 50 nM Tat was added to

cultures and its effects on the active caspase 3 (Figure 4A) and Bax

(Figure 4B) protein levels have been analyzed.

As shown in Figure 4A, ICI prevented the downregulation of

active caspase 3 by 17b-estradiol (10 nM), GEN or DAI (1 mM)

pretreatment. Consistent with our previous study, ICI 182,780

Isoflavones Reduce Tat-Induced Apoptosis
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averted estrogen-mediated activation of caspase 3 by Tat treatment

of cortical cultures. Activated caspase 3 immunoreactivity in

ICI+GEN+Tat-treated cultures was significantly higher than

GEN+Tat treated cortical cultures (p#0.05) and protein levels of

activated caspase 3 were similar to that in Tat-only treated cultures.

Similarly, the DAI effects on caspase 3 were sensitive to ICI

inhibition of ERs. There was a significant increase in active caspase 3

expression with the addition of ICI compared to DAI+Tat treated

cultures (p#0.05). Results of the experiments indicate that GEN and

DAI, similar to 17b-estradiol, inhibit the Tat-induced caspase 3

activation via an ER-mediated mechanism, as the addition of ICI

182,780 prior to estradiol returned caspase 3 activation levels to that

of Tat only treated cultures. Moreover, caspase 3 activity did not

differ statistically from that of Tat only treated cultures.

The results in Figure 4B show that GEN and DAI effects on Tat-

induced Bax expression in cortical cultures are ICI-sensitive. A

significant 25% increase in Bax expression was seen with ICI

treatment prior to incubation withGENorDAI (p#0.05) (Figure4B).

Although, GEN and DAI possess estrogen-like activity, their affinity

to ERa- orERb-subtypes is significantlydifferent from 17b-estradiol.

Therefore, we used specific antagonists of a or b ERs to evaluate

selectivity of the effects of 17b-estradiol, GEN and DAI on Tat-

induced changes inactivated caspase3 orBax protein levels.TheER-

subtype specific antagonists MPP (ERa) and PHTPP (ERb) (1 mM)

were added to cortical cultures prior to incubation with GEN or DAI

and subsequent exposure to 50 nM Tat.

Neither a- nor b-selective ER antagonists were able to

completely block the inhibitory effects of 10 nM 17b-estradiol

Figure 1. Soy isoflavones genistein and daidzein protect primary cortical cultures from Tat neurotoxicity. Primary cortical neurons
were exposed to estrogen (0.1, 2.0 and 10 nM), or isoflavones (0.05, 0.2 and 1 mM) 24 hr prior to the start of Tat1–86 B (50 nM) treatment. Cell viability
was assessed by Live/Dead assay. Live/Dead ratios were determined after 48 hr (A-C) or 5 days (D-F) of the continuous exposure to Tat or equal
volume of vehicle in cell culture groups that were treated or not treated with estrogen, GEN, or DAI. Data represents mean values 6 SEM, n of
cultures analyzed = 7–12 per each group. *- indicates significant (p#0.05) protective effects of the selected compounds against Tat neurotoxicity (cell
viability decrease) in cortical cell cultures. Repeated (2–3) trials using cell culture preparations from different litters were carried out to ensure the
reproducibility of the results.
doi:10.1371/journal.pone.0037540.g001
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(Figure 5A), or those of 1 mM GEN or DAI, on Tat-induced

caspase 3 activation (Figure 5B, C). Although the ER subtype

selective antagonists diminished the ability of all the compounds to

decrease active caspase 3 protein levels in Tat-treated cultures,

their effects were not statistically significant. Overall, selective

antagonists of ERa- or ERb-subtypes similarly affected the ability

of both 17b-estradiol and isoflavones to downregulate Tat-induced

caspase 3 activation.

The addition of ERa antagonist MPP did not significantly

attenuate 17b-estradiol effects on Bax expression (Figure 5D), but

was able to significantly decrease the effect of GEN and DAI. The

ERb-specific antagonist PHTPP completely blocked the effect of

17b-estradiol and GEN (Figure 5E, F). PHTPP also caused a

partial, but significant, decrease in the ability of DAI to inhibit the

Tat-dependent increase in Bax expression.

Discussion

Neurocognitive deficits associated with HIV infection persist

even with effective cART [51]. Targeting ERb function may be a

potential therapeutic option since it is highly expressed in the

brain, specifically in cortical regions responsible for executive

functions significantly affected in HIV-1 associated neurocognitive

disorders (HAND) [35,52–54]. In this study, we evaluated whether

soy isoflavones, acting as ER selective compounds, were able to

mimic the neuroprotective effects of estrogen in HIV-1 Tat1–86-

exposed primary neuronal cultures. GEN and DAI represent soy

isoflavones with ERa/b binding profiles showing much higher

binding selectivity for ERb than 17b-estradiol. Among soy

phytoestrogens, GEN exhibits maximum ERa/b binding affinity

with approximately 60-fold preference for ERb over ERa. DAI

has lower ERa/b binding affinity than GEN with 14-fold

selectivity for ERb binding. For comparison with these two soy

isoflavones, 17b-estradiol’s preference for the ERb binding is 0.78-

fold [55]. GEN and DAI have very close chemical structures and

are known to induce neuroprotective responses but at a much

lower magnitude than 17b-estradiol.

Studies have demonstrated that oxidative stress and mitochon-

drial dysfunction coincide with Tat activation of apoptotic

cascades [16,38,50,56]. Moreover, we have recently reported that

17b-estradiol attenuated Tat-induced apoptotic signaling in an

estrogen-receptor dependent manner [50]. We now demonstrate

that the soy isoflavones genistein and daidzein prevent the

Figure 2. Genistein and daidzein attenuate Tat-induced
caspase activation in primary cortical cultures. Cortical cultures
were treated with 1 mM GEN or DAI 24 hr prior to Tat exposure.
Expression of activated apoptotic proteins A. Caspase 9 (4 hr of Tat
exposure) and B. caspase 3 (4 hr Tat exposure) was assessed by ELISA
experiments. Data represents mean values 6 SEM, with experiments
performed in triplicate, *p#0.05 as compared to Tat-treated cultures.
doi:10.1371/journal.pone.0037540.g002

Figure 3. Isoflavones prevent Tat-induced expression of Bcl-2
and Bax protein levels. Cortical cultures were treated with 1 mM GEN
or DAI 24 hr prior to Tat exposure. Expression of apoptotic proteins A.
Bcl-2 (16 hr of Tat exposure) and B. Bax (4 hr Tat exposure) were
assessed by ELISA experiments. Data represents mean values 6 SEM,
with experiments performed in triplicate, *p#0.05 as compared to Tat-
treated cultures.
doi:10.1371/journal.pone.0037540.g003
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upregulation of caspase activity in Tat-exposed cultures. In

addition, upstream of caspase activation, we show that Tat

exposure significantly increased expression of pro- and anti-

apoptotic proteins Bax and Bcl-2 respectively, which regulate

mitochondrial membrane permeability and thus, the release of

apoptogenic substances. Our results indicate that treatment with

GEN or DAI also markedly reduces the expression of Bax and Bcl-

2 in Tat-exposed cortical cultures. A major finding of our study is

that both soy isoflavones GEN and DAI exhibited protective

effects similar to that exhibited by 17b-estradiol. GEN and DAI

increased cell viability and attenuated the upregulation of

apoptotic proteins in a manner comparable to that observed in

estradiol treated cultures. At low micromolar doses we observed

that isoflavones were able to maintain cell survival following

prolonged exposure to Tat. These results suggested a similar

neuroprotective action of isoflavones and 17b-estradiol involving

inhibition of apoptotic pathways. Our experiments also demon-

strated that selective ERb agonists induce an anti-apoptotic effect

in primary cultures exposed to HIV-1 Tat. Such observations

support the findings that isoflavones are protective against

oxidative stress-mediated apoptosis in HIV-1 infection.

Since isoflavones bind estrogen receptors (ERs), the neuropro-

tective actions of isoflavones may be produced through activation

of the ER. We found that the addition of the ER antagonist ICI

182,780, which blocks both the ERa and ERb subtypes, reversed

GEN and DAI downregulation of caspase 3 activity and Bax

expression with Tat exposure, suggesting that these effects of GEN

and DAI were ER-dependent. The addition of ICI 182,780 had a

more robust effect against genistein actions on caspase 3 activity,

and sustained caspase levels similar to cultures treated with Tat.

Furthermore, an isoflavone effect on Bax expression was also

shown to be ER-dependent, as ICI 182,780 blocked genistein and

daidzein inhibition of Tat-induced Bax expression. Collectively,

our results suggest that genistein and daidzein act as estrogen

receptor agonists in primary cortical neurons and activate

estrogenic neural defense mechanisms.

Another major finding is that isoflavone anti-apoptotic effects

are selective relative to estrogen receptor isoform. There are

conflicting reports of which ER subtype, ERa or ERb, specifically

mediates the protective actions of estrogen [57,58]. We observed

in our previous studies with estradiol [50], inhibition of ERs with

ICI 182,780 blocked the downregulation of apoptotic proteins in

cultures pretreated with isoflavones. Further experiments sought to

determine if these receptor-mediated effects were specific to a

particular ER-subtype. Cultures in the presence of ERa-specific

antagonist MPP or ERb-specific antagonist PHTPP did not show

specific attenuation of genistein and daidzein downregulation of

caspase 3 activity. Similar to previous results observed with

estradiol, both ER subtypes seem to play a role in genistein and

daidzein inhibition of Tat activation of caspase 3. However, a

more pronounced attenuation of genistein effects on Bax

expression was observed in the presence of ERb antagonist

PHTPP. Thus, genistein effects on Bax expression may be

preferential for ERb-mediated signaling. Our results also demon-

strated that the addition of both ER subtype antagonists

significantly inhibited daidzein actions on Bax expression,

suggesting involvement of both ERa and ERb in daidzein

downregulation of Bax. It is possible that daidzein’s lower binding

affinity for ERs compared to that of genistein and estradiol [55]

may explain the absence of the preferential mediation of a specific

ER subtype. Another point of consideration is that ERa and ERb
may act simultaneously and thus counteract the function of the

other receptor subtype [59,60]. Both genistein and daidzein were

shown to activate binding to ERb at nanomolar concentrations

(30 nM and 350 nM, respectively), which are easily achievable

levels in humans consuming soy products or supplements. At the

concentrations used in these experiments, it is plausible that both

receptor subtypes were activated and as such ER subtype specific

effects may be diminished.

Caspase 3 has a pivotal role in the apoptotic process.

Multiple pro-apoptotic pathways converge on caspase 3

activation in the cell death cascade. Caspase 3 activation may

occur through caspase 9 from the mitochondria or from death

receptor signaling via caspase 8 as well as through other pro-

apoptotic pathways [61–63]. More upstream in the apoptotic

cascade, the upregulation of Bax is associated with mitochon-

drial membrane permeabilization and release of pro-apoptotic

factors from mitochondria, leading to caspase activation. The

ERb specific effects on Bax may be related to the recent

discovery of ERb localization in mitochondria [64], suggesting a

direct estrogenic effect on mitochondria function via ERb
activation and signaling. The ER-mediated reduction of caspase

3 activity and Bax expression by estradiol and isoflavones

suggested that these compounds disrupt apoptotic signaling by

downregulating key pro-apoptotic factors in the cell death

cascade. As multiple apoptotic pathways converge on mito-

chondria functioning and caspase 3 activation, Bax and caspase

3 represent potential upstream and downstream receptor-

sensitive check points for estrogenic compounds to disrupt

apoptotic processing in response to neurodegenerative insults.

As isoflavones affect the viability of neurons and cognitive

function by acting as an estrogenic agonist, they can also utilize

differential distribution and regulation of the ER subtypes, ERa

Figure 4. Estrogen receptors mediate isoflavone effects on
Caspase 3 and Bax expression following Tat exposure. A. GEN
or DAI effects on caspase 3 expression were blocked in the presence of
ER antagonist, ICI 182,780. B. GEN or DAI effects on Tat-induced
expression of Bax were reversed by ICI 182,780, suggesting that
estrogenic actions on caspase 3 and Bax are ER mediated. Data
represents mean values 6 SEM, *p#0.05 vs. GEN/DAI+T treated
cultures.
doi:10.1371/journal.pone.0037540.g004
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and ERb in the brain. Microarray experiments have shown that

ERa and ERb regulate different genes [65,66]. Differences in

conformation that occur upon ER binding affects the recruit-

ment of coregulatory proteins, and thus produces differential

gene regulation in specific cell types. In addition to tissue or

region specific localization of ERs, intracellular localization of

ERs may contribute to some of their different mechanisms of

action. ERb has been localized to a greater extent at

extranuclear sites and in the cytoplasm for trafficking to the

plasma membrane [64,67,68]. The extranuclear and membrane

localization of ERb enables its interaction with intracellular

signaling cascades to integrate rapid signaling events and

classical transcriptional mechanisms [69,70]. Given the timing

of treatment in our studies, both genomic and nongenomic

molecular actions may be utilized by isoflavones to confer ER-

mediated neuroprotection against Tat.

Despite the success of cART on peripheral viral suppression,

protected viral reservoirs in the brain may allow continued

release and exposure to toxic viral proteins [10]. The inability of

anti-retroviral therapy to prevent the development of neurocog-

nitive dysfunction indicates the need for adjunctive therapies to

address the neurodegenerative and subsequent neurological

disturbances associated with HAND. Findings in the present

study demonstrate that soy isoflavones offer a similar protective

effect as endogenous estradiol via a selective estrogen receptor -

mediated mechanism against HIV-1 Tat-induced cell death.

Isoflavones, acting as selective ER agonists targeting the

neuroprotective effects associated with estradiol, may represent

a safe and viable neuroprotectant along with cART to improve

the neurological health of both men and women with HAND.

Materials and Methods

Ethics Statement
All of the experimental procedures using animals were

performed in accordance with the recommendations in the NIH

Guide for the Care and Use of Laboratory Animals. The relevant

animal use protocols were approved by the University of South

Carolina Animal Care and Use Committee under the auspices of

Animal Assurance Number A3049-01.

Primary Neuronal Cell Culture
Primary cultured cortical neurons were prepared from 18-day-

old Sprague-Dawley rat fetuses [50]. Rat cortices were dissected

and incubated for 15 min in a solution of 2 mg/mL trypsin in

Ca2+- and Mg2+-free Hanks’ balanced salt solution (HBSS)

Figure 5. ER subtype specific effects against caspase activity and Bax expression. Similar to 17b-estradiol (A), GEN (B) and DAI (C) effects
against Tat-induced caspase 3 activity were maintained in the presence of specific antagonists for ERa (MPP) and ERb (PHTPP). ER subtype
antagonists reveal that ERb signaling was preferential for GEN (E) effects on Bax. DAI (F) effects on Bax were blocked in the presence of both ER
subtype antagonists. Data represents mean values 6 SEM, *p#0.05 as compared to GEN/DAI+Tat treated cultures.
doi:10.1371/journal.pone.0037540.g005
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buffered with 10 mM HEPES (Invitrogen, Carlsbad, CA). The

tissue was then exposed for 2 min to soybean trypsin inhibitor

(1 mg/mL, in HBSS) and then rinsed 3 times in HBSS. Cells were

dissociated by trituration and distributed to poly-L-lysine coated

culture plates with wells containing DMEM/F12 medium (Invitro-

gen) supplemented with 100 mL/L fetal bovine serum (Sigma

Chemicals, St. Louis, MO). After a 24-hr period, the DMEM/F12

medium was replaced with 2% v/v B-27 Neurobasal medium

supplemented with 2 mM GlutaMAX and 0.5% w/v D-(+) glucose

(Invitrogen). Two-thirds of the neurobasal medium was replaced

with fresh medium of the same composition once a week. Cultures

were used for experiments after 12 days in culture in serum-free

medium and were .95% neuronal as observed by anti-MAP-2

immunostaining.

Tat1–86 Exposure and Experimental Treatment of Cultures
Recombinant Tat1–86 (LAI/Bru strain of HIV-1 clade B,

GenBank accession no. K02013, Diatheva, Fano, Italy) was added

to cell culture medium. Groups of cultures in 24-well plates were

exposed to 50 nM Tat. Cell cultures were treated with 17b-

estradiol (0.1 nM, 2 nM or10 nM, Sigma) or soy isoflavones

(0.05 mM, 0.2 mM or1 mM, genistein (GEN) or daidzein (DAI),

Indofine Chemical) for 24 hr prior to Tat exposure and remained

present in medium throughout experiments. 17b-estradiol was

dissolved in sterile water and diluted in D-PBS. Isoflavones were

dissolved in DMSO and diluted in D-PBS. To assess neurotoxicity,

the cultures were exposed to Tat for 4, 16, or 24 hr before

harvesting. After treatment, medium was removed, cells were

washed and lysates collected for ELISA experiments. Cells were

also treated with the estrogen receptor antagonist ICI 182,780, the

ERa specific antagonist, MPP dihydrocloride, or the ERb specific

antagonist PHTPP (100 nM, Tocris Cookson Inc, Ellisville, MO)

1 hr before estradiol or isoflavone treatment to determine if the

effects against Tat toxicity were receptor mediated.

Cell Viability Assay
Neuronal survival was determined using a Live/Dead viability/

cytotoxicity kit (Molecular Probes, Eugene, OR) in rat fetal

cortical cell cultures prepared in 96-well plates. In accordance with

the manufacturer’s protocol, neurons were exposed to cell-

permeate calcein AM (2 mM), which is hydrolyzed by intracellular

esterases, and to ethidium homodimer-1 (4 mM), which binds to

nucleic acids. The cleavage product of calcein AM produces a

green fluorescence (F530 nm) when exposed to 494-nm light and is

used to identify live cells. Bound ethidium homodimer-1 produces

a red fluorescence (F645 nm) when exposed to 528-nm light,

allowing the identification of dead cells. Fluorescence was

measured using a Bio-Tek Synergy HT microplate reader (Bio-

Tek Instruments, Inc., Winooski, VT). Each individual F530 nm

and F645 nm value on a plate was corrected for background

fluorescence (readings obtained from cell cultures (wells) that were

not exposed to calcein AM and ethidium bromide) by the

microplate reader KC4 software package (Bio-Tek Instruments,

Inc., Winooski, VT). For each individual cell culture (well) on a

plate, ratios between corrected green and red fluorescence (F530

nm/F645 nm, Live/Dead ratios) were calculated. All individual

relative numbers of live and dead cells were expressed in terms of

percentages of average maximum Live/Dead ratio determined for

the set of non-treated control cell cultures (8–16 wells) from the

same plate: (F530 nm/F645 nm)well n/(F530 nm/F645 nm)average max 6
100%.

Detection of Apoptotic Proteins (ELISA)
Expression of apoptotic signaling proteins in cell lysates was

determined by ELISA [16,50]. Cell lysates were prepared from

cultures grown in 24-well plates. At the time of harvesting,

medium was removed and cells were washed 3 times with

Dulbecco phosphate-buffered saline, D-PBS, (8 mM Na2HPO4,

1.5 mM KH2PO4, 0.137 M NaCl and 2.7 mM KCL at pH 7.4)

and lysed with CellLyticTM- M mammalian cell lysis buffer (Sigma

Chemicals) containing protease inhibitors (protease inhibitors

cocktail, Sigma Chemicals). All samples in a group (6 culture

wells) were pooled together and protein concentration was

determined by the BCA method (Pierce, Rockford, Ill.). Each

well of Costar 96-well ELISA plates (Corning Inc, PA) was coated

overnight at 4uC using 100 mL of 20 mM carbonate coating

buffer, pH 9.6. Cortical cell lysate samples were diluted 1:10 with

D-PBS and 20 mg of each sample were added to the plate wells.

After overnight incubation at 4uC, plates were rinsed 5 times with

PBST (0.05% Tween 20 in PBS, pH 7.4) and blocked with 1%

BSA in PBS for 2 hr at room temperature. After blocking, plates

were washed again, as described above, and primary anti-Bax,

anti-Bcl-2, anti- active Caspase 9 and anti- active Caspase 3

antibodies (all primary antibodies, Abcam, Cambridge, MA)

diluted 1:5000 or 1:7500 (caspase 3) in 0.1% BSA-PBST were

added to each well except for blanks and no-primary antibody

control wells. Plates were kept overnight at 4uC. When the

incubation with primary antibodies was completed, plates were

again washed 5 times with PBST and secondary antibodies [goat

anti-rabbit alkaline phosphatase conjugated, Sigma] diluted

1:2000 in 0.1% BSA-PBST were added to each well, except for

blank and no-secondary antibody control wells. After 2 hr of

incubation, the secondary antibody solution was removed, plates

were washed 5 times with PBST and 100 mL of BluePhos

phosphatase substrate mixture (KPL Research, Gaithersburg,

MD) was added to the plate wells. After 30 min of incubation, the

absorbance at 650 nm was determined using a Bio-Tek Synergy

HT microplate reader. Multiple readings were taken within a 1-hr

time period.

Statistical Analysis
Statistical comparisons were made using one-way ANOVA and

Tukey’s multiple comparison tests were used to determine specific

treatment effects. Significant differences were set at p#0.05. Data

represents mean values 6 standard error of the mean (SEM).
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