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ABSTRACT
Due to the high variance in response rates concerning anti-PD1 immunotherapy (IT), there is an unmet 
need to discover innovative biomarkers to predict immune checkpoint inhibitor (ICI)-efficacy. Our study 
included 62 Caucasian advanced-stage non-small cell lung cancer (NSCLC) patients treated with anti-PD1 
ICI. Gut bacterial signatures were evaluated by metagenomic sequencing and correlated with progres-
sion-free survival (PFS), PD-L1 expression and other clinicopathological parameters. We confirmed the 
predictive role of PFS-related key bacteria with multivariate statistical models (Lasso- and Cox-regression) 
and validated on an additional patient cohort (n = 60). We find that alpha-diversity showed no significant 
difference in any comparison. However, there was a significant difference in beta-diversity between 
patients with long- (>6 months) vs. short (≤6 months) PFS and between chemotherapy (CHT)-treated vs. 
CHT-naive cases. Short PFS was associated with increased abundance of Firmicutes (F) and Actinobacteria 
phyla, whereas elevated abundance of Euryarchaeota was specific for low PD-L1 expression. F/Bacteroides 
(F/B) ratio was significantly increased in patients with short PFS. Multivariate analysis revealed an 
association between Alistipes shahii, Alistipes finegoldii, Barnesiella visceriola, and long PFS. In contrast, 
Streptococcus salivarius, Streptococcus vestibularis, and Bifidobacterium breve were associated with short 
PFS. Using Random Forest machine learning approach, we find that taxonomic profiles performed 
superiorly in predicting PFS (AUC = 0.74), while metabolic pathways including Amino Acid Synthesis 
and Fermentation were better predictors of PD-L1 expression (AUC = 0.87). We conclude that specific 
metagenomic features of the gut microbiome, including bacterial taxonomy and metabolic pathways 
might be suggestive of ICI efficacy and PD-L1 expression in NSCLC patients.
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Introduction

The combination of anti-PD1 immune checkpoint inhibitor- 
(ICI) and chemotherapy (CHT) represents the backbone for 
current combination strategies in the front-line setting of 
advanced-stage non-small cell lung cancer (NSCLC) patients. 
Nevertheless, even today, only about 20% of all NSCLC patients 
exhibit stable disease or respond properly to immunotherapy 
(IT), and only a limited number of patients experience durable 
benefits1,2. In recent years, multiple studies have shown that the 
gut microbiome might influence ICI efficacy, and CHT might 
modulate the gut flora. CHT enhances IT efficacy and acts 
through cancer neoantigen production that T-cells might 
recognize3. Antigens of commensal microbiota can pass through 
the intestinal barrier and result in T-cell priming, cytokine and 
interferon production stimulation, and Toll-like receptor 

activation through the gut-lung axis4,5. This phenomenon is 
called molecular mimicry, where epitopes produced by micro-
bial species in the gut as part of their natural gene expression 
programs can resemble tumor neoantigens promoting “auto-
reactive” T-cells and potent anti-tumor immunity6.

Others identified recently a key role for Bacteroidales in the 
immunostimulation associated with ICI7,8 Others showed 
a connection between the composition of the gut microbiome 
and ICI efficacy in malignant melanoma9–12, kidney-13, color-
ectal and gastrointestinal cancers14,15, and NSCLC16,17, or in 
syngeneic mouse models18,19. In a large-scale, multi-cancer 
cohort of epithelial malignancies, fecal microbiota transplanta-
tion (FMT) was also shown to increase ICI efficacy in experi-
mental animals20.

PD-L1 signaling affects gut mucosa tolerance21. However, it 
is still unclear if there is a direct linkage between the host 
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microbiome and tumor PD-L1 expression. Jang and colleagues 
hypothesize that through the microbiome-gut-lung axis meta-
genomic signatures might interact with the tumor and its 
immune microenvironment22. Despite the well-established 
positive predictive value of tumor PD-L1 immunohistochem-
istry (IHC) expression in NSCLC23, clinical evidence shows 
that more than 50% of PD-L1 high-expressing patients might 
not respond to PD-1/PD-L1 blockade24. Altered gut micro-
biome was also associated with ICI toxicity25 and other treat-
ments, such as antibiotics26, steroids27, or proton-pump 
inhibitors (PPI)28. Others reported that the administration of 
CHT profoundly disrupts the gut microbiome and affects 
adverse event frequency, progression-free- (PFS), and overall 
survival (OS) of cancer patients29,30.

Given the high variance in response rates concerning 
immunotherapy, there is an unmet need to discover innovative 
biomarkers to efficiently select patients for ICI treatments. Our 
study analyzed the gut microbiome of 62 immunotherapy- 
treated NSCLC patients using shotgun metagenomics. In this 
study, we have evaluated the gut bacterial diversity, taxonomy, 
and metagenome pathways according to PFS, PD-L1 expres-
sion, and other clinicopathological parameters, and the effects 
of antibiotic-, antacid- and steroid therapy. To our knowledge, 
this is the most comprehensive fecal metagenome analysis of 
Caucasian lung cancer patients treated with anti-PD ICI.

Methods

Study population and treatments

We enrolled consecutive patients with histologically confirmed 
adenocarcinoma (ADC), squamous cell carcinoma, and 
NSCLC not otherwise specified (NSCLC-NOS). All patients 
were diagnosed with advanced-stage NSCLC (stage IIIB/IV). 
The clinical TNM (Tumor, Node, Metastasis) stage was deter-
mined according to the Union for International Cancer 
Control (8th edition) at the time of diagnosis. 
Clinicopathological data included age at the time of diagnosis, 
gender, smoking pack year (PY), line of immunotherapy (first- 
line (CHT-naïve) vs. subsequent line (CHT-treated)), the 
administration of thoracic radiotherapy (RT), tumor PD-L1 
expression (IHC, <50% vs.≥50%), the occurrence of treatment- 
related adverse events (trAEs, toxicity) and PFS (STable 1a and 
b). The detailed inclusion and exclusion criteria of our study 
cohorts are shown in the Supplemental Methods.

For irAEs the Common Terminology Criteria for Adverse 
Events (CTCAE) v5.0 was applied. In line with others17, ICI- 
treated patients with complete response (CR), partial response 
(PR), or stable disease (SD) lasting for at least six months were 
classified as long PFS (>6 months). Likewise, patients who 
experienced progressive disease within six months of treatment 
initiation were classified as short PFS (≤6 months). Of note, 
this classification estimates better the long-term benefits and is 
more accurate and rigorous in estimating disease progression 
for a subset of patients who suffer pseudo-progression. PFS was 
defined as the elapsed time from the commencement of ICI 
therapy to disease progression according to the aforemen-
tioned RECIST 1.1 criteria. The date of the last follow-up 
included in this analysis was 1st of December, 2021. 

Treatments across all centers were conducted under the cur-
rent National Comprehensive Cancer Network guidelines. 
Treatments including antibiotics, steroids, and antacids such 
as proton pump inhibitors and histamine-blocker administra-
tion (PPI/H-blocker) were also included. Antibiotic (AB) use, 
steroid, and PPI/H-blocker treatments prior to the initiation 
ICI therapy (60 days before) were also recorded. All patients 
were assessed with 0–1 ECOG performance status at the initia-
tion of IT. After signing informed consent, patients with base-
line stool samples defined as collected within seven days, either 
before or after the first iv dose of ICI administration were 
included. On the collection day, all samples were placed in 
the −80°C freezer until microbiome isolation and sequencing 
was initiated.

STable 2a and b show the systemic therapy that patients 
received at the time of sampling for the Discovery and 
Validation cohorts, respectively, approved by the Institutional 
Oncology Teams between 2017 and 2019 at the National 
Koranyi Institute of Pulmonology, Budapest, Hungary, and at 
the County Hospital of Pulmonology, Torokbalint, Hungary. 
STable 2c shows the comparison of clinicopathological para-
meters according to the type of IT drug in the Discovery 
cohort. STable 3 compares first-line (CHT-naïve) versus sub-
sequent-line (CHT-treated) patients in the Discovery cohort. 
A total of n = 9 patients received Chemotherapy- 
Immunotherapy combination (CHT+IO) treatment, and 
a total of n = 4 received Chemoradiation-followed by 
Immunotherapy combination (CRT+IO) treatment, listed in 
STable 2a-b. Patients treated with PD-1 inhibitors durvalumab 
(n = 7) and atezolizumab (n = 4) participated in phase III clin-
ical trials included in this cohort. The sample collection is not 
a therapeutic intervention and does not require listing on 
clinicaltrials.gov.

Taxonomic assignment

The reads were adaptor-trimmed and quality-filtered for 
a minimum mean Q-score of 30. Quality check was performed 
using fastQC, to remove the adapter regions, low-quality reads, 
and human DNA contaminations (bwa (version 0.7.4-r385) 
passing per sequence quality score, per base N content, and 
adapter content31.

Kraken2 was used (version 2.0.8)32 with the MiniKraken2 
database for the taxonomic assignment. The result files were 
merged into a data matrix with KrakenTools (v1.2) combi-
ne_kreports.py script. The read counts were normalized by 
rarefaction using the smallest sample as minimum depth with 
inclusion criteria of min. 1 read in min. 1 sample per taxa. 
A significant proportion of the reads had fallen in the unclas-
sified bin (mean = 0.58, SD = 0.086). Taxa stratified the results 
for statistical analysis. In further analyses, only taxa within the 
domains of Bacteria and Archaea were included; we excluded 
all viral and eukaryotic taxonomic units. Rare (present max-
imum 10% in all samples) and low abundance (support of less 
than 0.01% abundance) taxa were discarded from the subse-
quent analysis. After filtering, a Bayesian-Multiplicative repla-
cement of zeros was carried out using the z Composition 
R package, followed by central log-ratio (CLR) transformation 
of count and ratio values as implemented in scikit-bio. In CLR- 
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transformation, sample vectors undergo a transformation 
based on the logarithm of the ratio between the individual 
elements and the geometric mean of the vector. The Shannon 
index was used to measure alpha diversities, which quantifies 
the entropy of the distributions of taxa and functional 
proportions.

Statistical analyses

The visualization of the microbiome’s taxonomic and pathway 
composition (beta-diversity) was carried out with Uniform 
Manifold Approximation and Projection (UMAP) using the 
CLR values as input matrix (scikit-learn v0.24)33. The compo-
sitional similarities between different groups were investigated 
with permutational analysis of variance (PERMANOVA), and 
the differential abundance testing was done using the 
Wilcoxon rank-sum test. The associations between CLR- 
normalized abundances of taxa were investigated with 
Spearman’s rank correlation for network analyses. Survival 
analysis was carried out using Kaplan-Meier (KM) curves, 
and survival curves were compared using the log-rank test. 
Cut-offs for KM curves and specificity/sensitivity values for 
taxa were defined by Receiver Operating Characteristic (ROC) 
curve analysis using the binary outcomes of short vs. long PFS.

The least absolute shrinkage and selection operator (Lasso) 
regression was used to select the most predictive markers from 
our high-dimensional data and reduce the interaction between 
markers to avoid overfitting. When fitting the generalized linear 
model, Lasso regression is distinguished by variable selection 
and complexity regularization. The optimal hyperparameters 
were selected via a 5-fold cross-validation procedure using ROC- 
AUC as the target metric. To identify relevant predictor factors, 
Cox-proportional hazard regression was performed. The analy-
sis was two-sided, with a significance threshold of = 0.05. The 
backwards elimination method was used in multivariate Cox 
regression, where parameters (p < 0.1) were included. Harrel’s 
C-index was calculated to assess the fit quality of our multi-
variate model that performed above 0.7 (fair) in all analyses.

Processing of fecal samples, DNA extraction, sequencing 
steps, and the methodology of metagenome pathway assess-
ment, PD-L1 IHC, and machine learning approach are 
described in Supplemental Methods.

Results

A total of n = 62 consecutive advanced-stage NSCLC patients 
treated with ICI were enrolled in our Discovery cohort. (STable 
1a). There were 46 patients with long- and 16 with short PFS. 30 
patients received first-line IT (CHT-naïve), and 32 patients 
received ICIs in a subsequent-line (CHT-treated) (STable 3). 
We also analyzed an ICI-treated Validation cohort of advanced- 
stage NSCLC patients treated between 2017 and 2018 at the same 
institutions with the same treatments and guidelines to validate 
the relative abundance of key bacterial species associated with 
long- or short PFS (n = 60, STable 1b). STable 4 shows the 
comparison in clinical parameters between the Discovery and 
Validation cohorts, where the proportion of PD-L1 low IHC 
expressing patients (p = 0.001) and CHT-treated patients (p <  
0.001) were significantly higher compared to the Discovery 

cohort. SFig 1A shows the study design on a flow chart. In the 
Discovery cohort, CHT-naive and PD-L1-high patients showed 
significantly better PFS compared to CHT-treated (p = 0.0016) 
and PD-L1-low patients (p = 0.0041), respectively (SFig 1C-D). 
No significant difference was detected in PFS according to 
gender (p = 0.055, SFig 1B), toxicity (p = 0.872, SFig 1E), anti-
biotic treatment (p = 0.247, SFig 1F), antacid medication 
(p = 0.88, SFig 1 G) and steroid treatment (p = 0.0894, SFig 1  
H). STable 5a-b shows uni- and multivariate Cox hazard regres-
sion with the baseline clinical parameters, where PD-L1 status 
(high vs. low) was the only significant predictor in the multi-
variate analysis (p = 0.005, HR: [3.861]).

The composition of bacterial communities differs 
significantly according to progression-free survival and 
chemotherapy treatment.

First, alpha-diversity was assessed in fecal samples accord-
ing to PFS, PD-L1 expression, and CHT treatment for all 
major phylogenetic levels, including phylum, class, genus, 
and species. Shannon index showed no significant differ-
ences in any comparisons (Figure 1A-C). UMAP plot and 
beta-diversity analyses showed that short PFS patients 
represent a significantly different bacterial composition 
compared to long PFS patients (p < 0.001, Figure 1D), 
whereas patient groups do not differ significantly according 
to PD-L1 expression (p = 0.508, Figure 1E). Interestingly, 
front-line CHT-treated patients exhibit a significantly dif-
ferent bacterial community than CHT-naive patients (p =  
0.015, Figure 1F).

Firmicutes and Actinobacteria phyla are more abundant in 
patients with short PFS, along with an increased F/B ratio.

Figure 2A shows phylum composition for every patient, 
where all phyla with CLR≥-1 were included. For further 
analysis, we removed all non-bacterial taxonomic units 
such as fungi (Ascomycota), protozoa (Apicomplexa), 
viruses, chordata (human host), and plants (Streptophyta). 
Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, 
and Verrucomicrobia represent high abundance phyla 
(CLR≥0). In contrast, low abundance phyla (0>CLR≥-1) 
included Euryarchaeota, Cyanobacteria, Spirochetes, and 
Tenericutes in the gut microbiome of our patient cohort 
(Figure 2B). Firmicutes (p = 0.011, Figure 2C) and 
Actinobacteria (p = 0.004, Figure 2D) were significantly 
more abundant in patients with short PFS. Euryarchaeota 
were significantly more abundant in PD-L1-low patients 
than in PD-L1 high expressors (p = 0.001, SFig 2A), and 
Cyanobacteria were significantly more abundant in CHT- 
naive patients (compared to CHT-treated, p = 0.029, SFig 
2B). An increased Firmicutes/Bacteroidetes (F/B) ratio was 
associated with short PFS (p = 0.013, Figure 2E). 
Furthermore, we detected an increased Actinobacteria to 
Proteobacteria ratio (A/P ratio) in patients with short PFS 
(p = 0.011, Figure 2F).
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Multiple genera and species are differentially abundant in 
patients with long- vs. short progression-free survival

We performed Wilcoxon rank-sum test for all detected genera 
and species (high abundance: CLR≥0; low abundance 
0>CLR≥-1) and 11 genera and 26 species showed 
a significant difference in abundance according to PFS 
(Figure 3A,B). We labeled these taxa as key genera and species. 
High-abundance genera Streptococcus (p = 0.017), 
Bifidobacterium (p = 0.002), Collinsella (p = 0.024), and 
Lactobacillus (p = 0.043) were more abundant in patients with 
short PFS, whereas Alistipes (p = 0.018), Paraprevotella (p =  
0.031) and Barnesiella (p = 0.001) were more abundant in 
patients with long PFS. Among low-abundance genera, 
Spiroplasma (p = 0.034), Helicobacter (p = 0.033), and 
Buchnera (p = 0.021) were rather associated with long PFS, 
while Methanospaera (p = 0.02) was more associated with 
short PFS (Figure 3A). Multiple species showed increased 
abundance in patients with long PFS (Figure 3B), from which 
the most significant taxa included Alistipes shahii (p < 0.001), 
Barnesiella visceriola (p < 0.001), Butyricimonas faecalis (p =  
0.001), Bacteroides sp. A1C1 (p = 0.003) and Alistipes finegol-
dii (p = 0.004). Patients with short PFS patients were associated 

with a significantly increased abundance of variety of 
Streptococcus species, such as S. salivarius (p = 0.002), 
S. vestibularis (p = 0.005), and S. parasanguinis (p = 0.01); 
Bifidobacteria, such as B. longum (p = 0.017), B. adolescentis 
(p = 0.006) and B. breve (p = 0.007). Moreover, there was an 
increased abundance of Collinsella aerofaciens (p = 0.004) and 
low-abundance Streptococci in short PFS patients (Figure 3B).

Significant taxonomical associations with PD-L1 expression 
and front-line CHT treatment were revealed using the previous 
methodology, where multiple genera and species showed 
a significant difference in PD-L1 expression (SFig 3A). SFig 
3B show Receiver Operator Characteristic (ROC) curves and 
a table for genera with the highest AUC to predict in patients 
PD-L1 high vs. low expression. Methanobrevibacter smithii 
showed the best AUC to predict PD-L1 phenotype among 
species (SFig 3B). Differentially abundant genera and species 
in CHT-treated vs. CHT-naive patients are shown in SFig 3C 
and D.

CHT-treated patients exhibit a significantly different taxo-
nomic composition from CHT-naive (Figure 1F) patients; there-
fore we evaluated differential abundance between patients with 
short vs. long PFS in CHT-treated patients (STable 6). A. shahii, 

Figure 1. Alpha diversity and composition of bacterial communities (beta diversity). Shannon diversity index was calculated at phylum, class, genus and species 
taxonomy level according to long vs short PFS (cutoff 6 months), PD-L1 expression (≥50% high, <50% low) and front-line chemotherapy (CHT)-treatment prior to ICI. 
There was no significant difference in Shannon diversity index regarding PFS (A), PD-L1 expression (B) and CHT-treatment (C) using either taxonomic level. Diversity 
(Shannon and Simpson) indices and p-values for all alpha-diversity comparisons are listed in STable 3. Ordination plot using UMAP was generated from normalized, CLR- 
transformed bacterial abundances in the same comparisons. Permanova analysis was used to assess significant differences between the composition of bacterial 
communities. There was a significant difference between long- vs short PFS patients (F = 3.379, p = 0.0006, D) and between CHT-treated vs CHT-naive patients (F =  
2.139, p = 0.0156, F), whereas no significant difference was detected between PD-L1 high vs PD-L1 low patients (F = 0.916, p = 0.0156, D) regarding the composition of 
bacterial species. Metric data are shown as mean and corresponding standard deviation (SD). Statistical significance *P < 0.05; **P < 0.01, ***P<.001. N/A: data not 
available.
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S. salivarius, S. vestibularis, and B. adolescentis still showed differ-
ential abundance between patients with long- vs. short PFS. 
Interestingly, in this selected CHT-treated population, 
Escherichia coli showed significantly increased abundance in 
patients with long PFS and Ruminococcus bicirculans in patients 
with short PFS but not in the whole cohort.

Next, a heatmap was generated to reveal clusters formed 
by key bacterial species and patients. Bacteria were clustered 
into four groups labeled with Greek letters (Figure 3B). 
Cluster α constitutes high-abundance Bacteroides, including 
B. uniformis, B. sp. A1C1, and B. ovatus. Cluster β includes 
B. breve and a variety of Streptococci. Cluster γ represents 
a heterogeneous microbial community with bacteria benefi-
cial for PFS, including Bacteroides, Alistipes, and 
Butyricimonas species. Short PFS-associated species 
B. adolescentis, B. longum, C. aerofaciens, and S. salivarius 
comprise Cluster δ. Bacterial clusters and their representa-
tion among patients are described in STable 7. Of note, we 
observed that at least two bacterial clusters are altered in 
patients with short PFS, compared to patients with long 
PFS, including underrepresentation of beneficial (cluster α, 
γ), or overrepresentation of detrimental bacteria (clusters β). 
Underrepresentation of a singular beneficial- or overrepre-
sentation of a singular detrimental bacterial cluster was not 
essentially associated with short PFS. Characteristics and 
statistical comparison of sub-clusters derived from patients 
relative to PFS, PD-L1 expression, and CHT are shown in 
Figure 3C. Altogether, patients with long PFS are signifi-
cantly overrepresented in cluster A, and patients with short 
PFS patients in cluster B (Figure 3C).

Networks of bacterial communities are significantly 
different in patients with long vs. short PFS.

Interaction networks were generated using Spearman’s coef-
ficients among bacterial taxa, including all samples (n = 62), 
and only samples of patients with long (n = 46) or short PFS 
(n = 16). Figure 4A shows legends for network diagrams. In 
the whole cohort, Actinobacteria vs. Firmicutes showed 
a moderate positive correlation (r = 0.406), whereas there 
was a moderate negative correlation between Euryarchaeota 
vs. Firmicutes (r = −0.522), Euryarchaeota vs. Bacteroidetes 
(r = −0.412) and Bacteroidetes vs. Actinobacteria (r =  
−0.409) phyla. Proteobacteria and Verrucomicrobia exhib-
ited no significant associations with other phyla (Figure 4B). 
We also compared bacterial correlations in patients with 
short vs. long PFS. According to differential analysis, 
where the long PFS group was set as reference, 
Verrucomicrobia’s correlation has decreased with 
Firmicutes and increased with Bacteroidetes. Bacteroidetes’ 
correlation has decreased, and Euryarchaeota’s has increased 
with Actinobacteria (Figure 4C). Figure 4D and E show 
a network of critical genera in the whole cohort (D) and 
on the Tiffany diagram (E). Interestingly, Actinobacteria, 
such as Bifidobacterium, Actinomyces, and Collinsella, cor-
relate positively with Firmicutes, such as Lactobacillus and 
Streptococcus. In contrast, Bacteroidetes Butyricimonas, 
Barnesiella, and Alistipes negatively correlate with key 
Firmicutes and Actinobacteria genera (Figure 4D). The con-
nectivity network and differential network for all genera 
(CLR>0) are shown in SFig 4A-B.

Figure 2. Differentially abundant phyla and outcomes. Phylum composition (fraction of total reads) of all patients in the Discovery cohort value is shown in the stacked 
bar chart (A). After removing phyla with minimal abundance (Clr<-1) and excluding non-Bacteria and non-Archaea taxa, Wilcoxon rank-sum tests were performed to 
compare their abundance in patients with long- vs short PFS (B). Firmicutes and Actinobacteria are significantly more abundant in patients with short PFS vs long PFS 
(4.704 vs 3.612 and 6.213 vs 5.935, p = 0.0114 and p = 0.0046, respectively, C and D). Moreover, both Firmicutes/Bacteroidetes (F/B, 1.294 vs 1.132, p = 0.0137, E) and 
Actinobacteria/Proteobacteria ratio (A/P, 1.068 vs 0.827, p = 0.0113, F) were significantly increased in patients with short PFS. Metric data are shown as mean and 
corresponding standard deviation (SD). Statistical significance *P < 0.05; **P < 0.01, ***P<.001.
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Figure 4F depicts the whole cohort network using key PFS- 
associated species, where Bacteroidetes species strongly corre-
late with each other and show a strong negative correlation 
with C. aerofaciens. Streptococcus species showed a similar 
reciprocal correlation within their taxonomic niche, whereas 
S. vestibularis, S. anginosus, and S. gordonii were negatively 
correlated with multiple Bacteroidetes species (Figure 4F). SFig 
4C shows the differences between networks generated from 
patients with short and long PFS.

Characteristics of the whole cohort network and compar-
ison of key species’ long vs. short PFS networks are shown in 
Figure 4G-H. The Long PFS network is more interconnected 
with higher number of edges for the same number of nodes, 
decreased characteristic path length, increased network den-
sity, heterogeneity, and centralization (Figure 4H). 
Dendrogram displays nodes (taxa) according to betweenness 
centrality. Cluster A bacteria, such as S. vestibularis, 
B. uniformis, B. faecalis, A. shahii, B. visceriola, B. sp. A1C1, 
and B. heparinolyticus are considered central hubs in the PFS- 
related gut microbiome with a multitude of connections. 

Paraprevotella xylanophila is the most isolated species, with 
the lowest number of associations with other species from 
cluster B (SFig 4I).

Key genera and species according to CHT-regimen and 
PD-L1 status (SFig 3) were also used to generate interac-
tion networks. Genera and species overrepresented within 
the CHT-naïve or treated population positively correlate 
with each other (SFig 5A-D). Regarding PD-L1 status, 
Methanobrevibacter smithii, the only species significantly 
overrepresented in PD-L1-low patients shows negative cor-
relation with PD-L1-high status associated taxa 
Lachnoclostridium sp.YL32 and Ruminococcus gnavus 
(SFig 5D).

Taxa associated with ICI toxicity and history of Antibiotic-, 
Steroid, and PPI/H-blocker treatments

Next, we aimed to reveal differentially abundant taxa according 
to the presence of ICI adverse events (toxicity) and medications 
are taken before IT, including antibiotics, antacids, and 

Figure 3. Differentially abundant genera and species and outcomes. Cluster analyses. Horizontal bar charts show the abundance of key genera and species with 
significantly different abundance between patients with long- vs short PFS, Wilcoxon ranksum test, p < 0.05 (A). Only genera and species (Clr>-1) from the Bacteria and 
Archaea domains were included in the analyses. High abundance taxa (CLR≥0) and low abundance taxa (0 > CLR ≥ −1) are separately labeled. Heatmap displays 
Z-scores (blue=low, red=high) for every cell generated from individual CLR-transformed abundances from key species for all patients (B). Axis X shows patients (IDs) in 
the Discovery cohort, whereas indicator bars on top reflect their PFS (red/blue, short vs long), PD-L1 (green/red, high vs low) and front-line CHT-treatment (purple/pink, 
CHT-treated vs CHT-naive) as previously described (B). Axis Y shows key bacterial species clustered to representative groups (STable 7). There were two outlier patients 
(S2, S57), in the whole cohort and two outlier patients in cluster B (S50, S53), who cannot be clustered to any groups. Patient clusters are compared shown in stacked bar 
charts (C) according to their composition of long vs short PFS, PD-L1 high vs low and CHT-treated vs naive patients. Cluster a represents significantly more patients with 
long PFS (compared to cluster B, p = 0.003, C) with an increased abundance of beneficial α and γ bacteria, a decreased abundance of β and a decreased- or variable 
abundance of δ bacteria; cluster B is characterized by a decreased abundance of α and γ, an increased abundance of δ and an increased or variable abundance of β 
bacteria. Cluster A1a and A1b represent a PD-L1-low and high subcluster in cluster A, with no significant difference in patients according to PFS. Cluster A1b consists of 
significantly more CHT-naive patients than cluster B in general. Fisher’s exact test was used to calculate differences among all clusters and subclusters. Metric data are 
shown as mean and corresponding standard deviation (SD). Statistical significance *P < 0.05; **P < 0.01, ***P<.001.
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steroids. Treatment toxicity was associated with a slight 
decrease in the abundance of genera Absiella and Blautia 
(Figure 5A) and a pronounced increase in the abundance of 
Prevotella dentalis (Figure 5A). Antibiotic treatment affected 

multiple taxa, significantly decreasing the abundance of 
Anaerostipes, Christensenella, Longibaculum, Lachnospira, 
Anaerostipes Hadrus, and Erysipelothrichaceae bacterium 
GAM147 (Figure 5B). In contrast, Eggerthella (E) and 

Figure 4. Bacterial networks in patients with long- vs short PFS. Network maps show the correlation, phylogenetic origin and representation in patients with long- vs 
short PFS of key genera and species. Nodes represent taxa, where association with long (blue)- or short (red) PFS and phylogenetic classification are color-coded (A). Size 
of nodes reflects median CLR value of the taxon in the whole cohort. Edges represent significant (p < 0.01) positive (red) or negative (blue) correlations (r > [0.4]) among 
nodes. Thickness of edges reflect rho values according to Spearman’s correlation coefficients. Correlations r < [0.4] and p ≥ 0.01 are not shown in networks. Nodes and 
taxa without minimum one significant correlation (r > [0.4], p < 0.01) and a minimum median CLR of 0 (genera) or − 1 (species) are not shown in networks (B,D,F,G). 
Using the Diffany network analyzer module from Cytoscape, differential analysis of long- vs short PFS networks were performed, where red arrows depict a decreasing 
level of association-, while green arrows denote an increasing level of association between two taxa in bacterial networks. Diffany diagrams use the long PFS population 
as reference point and shows how the short PFS population differs from it (C,E,H). Long PFS patient-networks were used as reference for Diffany graphs, so diagrams 
depict how the network differs in patients with short PFS. Panels show whole cohort network and Diffany diagram for phyla (B,C), and for key genera (D,E). Panel 
F shows whole cohort network for key species. Number of nodes, edges, average number of neighbors, characteristic path length between nodes, clustering coefficient, 
density, heterogeneity and centralization of networks are shown in the whole cohort (G) and compared between long- and short PFS patient networks (H). Dendrogram 
depicts clusters in the whole cohort species, revealing a cluster (A) with high betweenness centrality and a cluster (B) with relatively low betweenness centrality (I).
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E. lenta, Bifidobacterium bifidum, and Bacteroides xylanisol-
vens were significantly overrepresented in patients with 
a history of antibiotic treatment (Figure 5B). Antacid medica-
tion was associated with a modest decrease in Synergistetes 
phylum (Figure 5C) and a marked increase in species 
Streptococcus (S) equinus, S. parasanguinis, and S. salivarius 
(Figure 5C), whose increased abundance was also detected in 
short PFS patients (Figure 3A). The phylum Proteobacteria and 
its prominent genus Escherichia (E) and species E. coli were 
significantly more abundant in steroid-treated patients, simi-
larly to Longibaculum and Erysipelothrichaceae bacterium 
GAM147 (Figure 5D).

Multivariate statistical models
ROC curves were generated, and AUC values were measured to 
reveal the predictive power of key bacterial taxa regarding long 
or short PFS and to assess their prospect as clinical tests in 
predicting ICI efficacy (Figure 6A). Results of Wilcoxon tests 
ROC-analyses are shown in Stable 8. B. faecalis, 
S. parasanguinis, B. breve, and B. visceriola represent high- 
specificity, but mediocre sensitivity taxa, while S. vestibularis, 
S. salivarius, A. finegoldii, B. adolescentis, and B. sp. A1C1 
represent a high-sensitivity, but mediocre specificity taxa. 
A. shahii is the only species showing strong specificity and 
sensitivity to predict PFS.

Figure 5. Differentially abundant taxa according to ICI-toxicity and antibiotic, antacid, or steroid treatment before immunotherapy. Bar charts show the CLR-normalized 
abundance of taxa with significantly different abundance (Wilcoxon ranksum test, p < 0.05) according to ICI-toxicity (A-A’), Antibiotic (AB)-treatment prior IT (B-B’), 
Antacid treatment prior or during IT (C-C’) and steroid treatment prior or during IT (D-D’). Only genera and species (Clr>-1) from the Bacteria and Archaea domains were 
included in the analyses. Genera Absiella and Blautia showed significantly decreased abundance in patients with no ICI-toxicity (p = 0.031 and p = 0.032, A), whereas 
species Prevotella dentalis was significantly more abundant in patients with ICI-toxicity (p = 0.0046, A’). Genera Anaerostipes (p = 0.0156), Christensenella (p = 0.0032), 
Lachnospira (p = 0.0323) and Longibaculum (p < 0.001) showed significant depletion, whereas Eggerthella (p = 0.0012) was significantly increased in AB-treated 
patients (B). Regarding species, Anaerostipes hadrus (p = 0.0244) and Erysipelothrichaceae bacterium GAM147 (p < 0.001) showed a significantly decreased abundance, 
whereas Bacteroides xylanisolvens (p = 0.0295), Bifidobacterium Bifidum (p = 0.0096) and Eggerthella lentha (p = 0.0053) showed a significantly increased abundance in 
AB-treated patients (B’). Low-abundance phylum Synergistetes showed a slight, but significant decrease in patients with a history of- or ongoing Antacid medication (C), 
whereas Streptococci (S) S. equinus (p < 0.001), S. parasanguinis (p = 0.0021) and S. salivarius (p = 0.0018) exhibited significantly increased abundances in Antacid 
treated patients (C’). Steroid treatment prior or during IT was associated with a significantly increased abundance of Proteobacteria phylum (p = 0.017) and genera 
Escherichia (p = 0.0108) and Longibaculum (p = 0.0103), whereas abundance of genus Desulfovibrio (p = 0.0217) was significantly decreased in the same group of 
patients (D). Two species showed significantly increased abundance in steroid-treated patients: Erysipelothrichaceae bacterium GAM147 (p = 0.0266) and Escherichia 
coli (p = 0.0298) (D’). Horizontal colored bars above charts show the phylogenetic origin of taxa (see description in Figure 4A).
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Next, we established a gut bacteria-based multivariate 
model for predicting IT response, where Lasso regression and 
Cox proportional hazard regression were used. Univariate- (U) 
and multivariate (M) models were used for Cox regression. 
Univariate analysis (Cox (U)) was performed for all key species 
(Table 1) with a significant, ROC curve (AUC>0.7). In multi-
variate Cox models, key species with significant (p < 0.05) Cox 
(U) predictive values and confounding parameters such as 
gender, PD-L1 expression, and CHT-treatment were included 
(Figure 6A-B). To exemplify the hierarchy of critical species 
according to their association with PFS, a pyramid model is 
shown in Figure 6E.

An additional patient cohort (n = 60, STable 1b) was used 
for validation. According to our hierarchical pyramid model, 

we aimed to validate level 3 and 4 species with our validation 
cohort, where at least one multivariate regression model (Lasso 
or multivariate Cox) showed a significant predictive role. We 
confirmed species A. shahii (p = 0.0181) and A. finegoldii (p =  
0.041) that were significantly increased in patients with long vs. 
short PFS, and species S. salivarius (p = 0.018), S. vestibularis 
(p = 0.0029) and B. breve (p = 0.0051), that were significantly 
increased in patients with short vs. long PFS (Figure 6C,E). 
Abundance of B. adolescentis did not show a significant dif-
ference in the validation cohort (SFigure 6A). Cut-off values 
were generated based on the ROC curves, and KM analysis was 
performed for level 3 and 4 species. An increased abundance of 
A. shahii (p < 0.001), A. finegoldii (p = 0.0084), and 
B. visceriola (p = 0.015) was associated with significantly 

Figure 6. Multivariate and survival analysis. XY chart visualize key species according to AUC value from ROC analysis (axis Y) and p-value of Wilcoxon rank sum test (axis 
X) relative to the binary classification of long vs short PFS (A). Association of bacterial species with PFS is depicted in red (short) and blue (long). The normal value of 
Lasso coefficient is depicted in full (>0.5), half (0.1–0.5) and empty (not significant) spheres (A). Sensitivity-Specificity chart plots the same species, where specificity (axis 
Y), and sensitivity (axis X) are denoted in percentage (B). Association of bacterial species with PFS is depicted in red (short) and blue (long). The p-value from Cox (M) 
analysis is depicted in full (p < 0.05) and empty (p ≥ 0.05) spheres (B). Abundance of A. shahii (p = 0.0181) and A. finegoldii (p = 0.041) was significantly increased in 
patients with long- (vs short) PFS, whereas abundance of S. salivarius (p = 0.018), S. vestibularis (p = 0.0029) and B. breve (p = 0.0051) was significantly increased in 
patients with short- (vs long) PFS according to validation on an additional patient cohort. There was no significant difference in the case of B. adolescentis (p = 0.692). 
There were no abundance data available for B. visceriola, and A. dispar in the validation cohort’s Metaphlan2 dataset (C). Hierarchical pyramid-model shows key 
bacterial species according to long (blue) vs short (red) PFS (E): Level 1: Significant (p < 0.05) Wilcoxon Rank sum test; Level 2: Level 1 requirement and at least fair 
(Auc>0.7) ROC curve or at least one multivariate analysis (Lasso or Cox) with significant result; Level 3: Level 1 requirement and at least fair (Auc>0.7) ROC curve and at 
least one multivariate analysis (Lasso or Cox) showing significant result; Level 4: Level 1 requirement and at least fair (Auc>0.7) ROC curve and both multivariate analyses 
(Lasso and Cox) showing significant results (E). Bacteria on Level 3 and 4 were validated on an additional patient cohort (C) and KM curves were generated with cutoffs 
derived from ROC analysis for all species on levels 3 and 4 (D). A. shahii, A. finegoldii and B. visceriola – high patients showed significantly increased PFS compared to 
patients with low abundance of these species. Patients with increased abundances of S. vestibularis, S. salivarius and B. breve exhibited decreased PFS, compared to 
patients with low abundance of these species. Panel D displays KM curves with median PFS in months, p-values of Log-rank tests and patient numbers at risk in every 
comparison. X-axis represents elapsed (progression-free) time in months. Y-axis shows progression-free survival probability in percent. Encircled: Successfully validated; 
Underlined: KM curve analysis shows significant difference (Log-rank test).
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improved PFS. Conversely, increased abundance of 
S. salivarius (p = 0.0389), S. vestibularis (p = 0.0349), and 
B. breve (p = 0.0022) was associated with significantly shor-
tened PFS (Figure 6D, E). According to KM analysis, 
B. adolescentis and A. dispar showed no significant difference 
in PFS (SFig 6B-C). Results of Cox regression for key phyla and 
genera are shown in STable 9. Lasso regression underpinned 
the negative predictive role of both Firmicutes and 
Actinobacteria, and Firmicutes were also identified as an inde-
pendent negative predictor by multivariate Cox regression.

Metabolic Pathways and machine learning approach

In a sub-cohort of 37 patients, metagenome pathways were 
analyzed from the MetaCyc Metabolic Pathway Database. 
A total of 73 individual Metacyc Pathways were identified. 
First, Metacyc pathways were classified into 16 “Metacyc 
SuperPathways” to capture the essential metabolic routes in 
the bacterial domain (SFigure 7). The stacked bar chart 
(Figure 7A) shows the distribution of SuperPathways in every 
patient, where only a limited fraction (11.23%) of high-quality 
reads were classified as unmapped or unintegrated.

According to PFS, none of the SuperPathways showed 
a significant difference in long- vs. short-term survival 
(Figure 7B). In contrast, SuperPathways Nucleoside and 
Nucleotide degradation (p = 0.012), Amino Acid Biosynthesis 
(p = 0.023), and Fermentation (p = 0.007) were significantly 
more abundant in PD-L1-low expressor patients (compared 
to PD-L1-high expressors, Figure 7C). Patients were also 
assessed according to CHT treatment. There was an increased 
abundance of Glycolysis (p = 0.032) in CHT-naive patients, 
whereas there were increased abundances of Amino Acid 
Degradation (p = 0.035) and Carbohydrate Biosynthesis (p =  
0.044) in CHT-treated patients (Figure 7D). Among individual 
MetaCyc Pathways, patients with short PFS exhibited 
a significantly increased abundance of Adenosine 
Ribonucleotide de novo Biosynthesis (p = 0.024). In contrast, 
CDP-diacylglycerol Biosynthesis I-II are significantly more 
abundant in patients with long PFS (p = 0.023) (Figure 7E). 
There was a more dominant shift in pathway representation 
according to PD-L1 expression and CHT-regime, where 7–7 

pathways showed a significant difference in distinct patient 
groups, respectively (Figure 7E).

Next, a Random Forest (RF) model was built, where 5K-fold 
cross-validation was used to evaluate the performance of key 
species and Metacyc Pathway abundances in predicting short 
vs. long PFS, high vs. low PD-L1 expression, and CHT- 
treatment or naivete. PFS was best predicted with key species 
(AUC = 0.74), whereas pathways alone (AUC = 0.63) or com-
bined with taxonomy (AUC = 0.63) gave a poor performance 
in predicting PFS (Figure 7F). In contrast, PD-L1 expression 
was best predicted with pathways (AUC = 0.87) and gave 
a lower performance for species (AUC = 0.63) (Figure 7F’). 
The machine learning algorithm predicted the CHT-regime 
with a good performance using pathways (AUC = 0.8) and 
with a fair performance using species alone or with species 
combined with pathways (AUC = 0.76, respectively) 
(Figure 7F”). These results suggest that the taxonomic profile 
is best suited to predict long or short PFS, while the pathway 
profile predicts better the PD-L1 phenotype of patients.

Discussion

The reasons behind the divergent response rates to cancer IT 
are still poorly understood, and even today, PD-L1 represents 
the most widely used predictive biomarker in clinics. 
Therefore, our study analyzed a large-scale, real-life cross- 
sectional cohort to uncover the theranostic role of the gut 
microbiome in NSCLC patients. To the best of our knowledge, 
our study is among the first to provide insights into the specific 
interactions of the gut microbiome with CHT and IT by ana-
lyzing CHT-naïve and CHT-pretreated patients. Our most 
important findings include that alpha-diversity is not asso-
ciated with IT response, CHT treatment, or PD-L1 status in 
NSCLC; in contrast, beta-diversity shows significant associa-
tion with PFS on IT. Phyla Firmicutes, Actinobacteria, and 
species Streptococcus salivarius, Streptococcus vestibularis, 
and Bifidobacterium breve are overrepresented in patients 
with short PFS. In contrast, Alistipes shahii and Alistipes 
finegoldii are overrepresented in patients with long PFS.

Others showed that a higher gut microbiota alpha diversity 
was associated with increased response rates to ICI therapy and 
improved PFS16,17. In contrast, we found no significant 

Table 1. Results of Uni- and Multivariate Cox regression for key species. Green color represents significant (<0.05) p-values and dark green color shows only a trend. Cox 
(M) analysis was performed only for taxa with a significant result (p < 0.1) in Cox (U) analysis. Grey colored taxa are low-abundance. For Lasso regression, Lasso coeff (n) 
is only shown for significant (p < 0.05) predictors.

Cox (U) p-value Cox (U) Wald Cox (U) Exp (b) Cox (M) p-value Cox (M) Wald Cox (M) Exp (b) Lasso coeff (n)

Alistipes_shahii 0.0119 6.329 0.6767 0.0178 5.6203 0.6633 1.4665
Barnesiella_viscericola 0.121 2.4048 0.7057 >0.1 0.4796
Butyricimonas_faecalis 0.0785 3.0952 0.7351 >0.1 ns
Streptococcus_salivarius 0.0342 4.4852 1.2519 0.0342 4.4852 1.2519 0.5814
Bacteroides_sp_A1C1 0.3436 0.8756 0.8756 >0.1 ns
Alistipes_finegoldii 0.0228 5.1852 0.7109 >0.1 1.0919
Streptococcus_vestibularis 0.0086 6.9075 1.3859 0.0106 6.5351 1.3906 ns
Bifidobacterium_adolescentis 0.3136 1.0154 1.0815 >0.1 0.4185
Bifidobacterium_breve 0.0557 3.6602 1.4483 0.0207 5.3553 1.5452 ns
Streptococcus_parasanguinis 0.0582 3.5889 1.2927 >0.1 ns
Alistipes_dispar 0.0268 4.9062 0.7398 0.0444 4.0415 0.7421 0.9224
Streptococcus_equinus 0.0072 7.2156 1.4965 0.0024 9.229 1.6766 0.6782
Streptococcus_anginosus 0.0004 12.3796 1.7921 0.0283 4.8092 1.5541 ns
Streptococcus_gordonii 0.0596 3.549 1.3793 0.0302 4.6975 1.5568 ns
Strep._sp_FDAARGOS_192 0.0318 4.6097 1.4037 0.0047 7.9736 1.6594 ns
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Figure 7. Metagenome Pathways and machine learning approach. Abundance-distribution of Metacyc Superpathways per patient is shown in a stacked bar chart, where 
X axis shows patient IDs grouped according to PFS and Y axis represents the relative abundance of the correspondent Superpathway, color coded (A). Patients were 
grouped as long vs short PFS, PD-L1-high vs low and CHT-treated vs CHT-naive, as previously described. None of the superpathways showed significant difference 
according to PFS (B), whereas Nucleoside and Nucleotide degradation, Amino acid biosynthesis and Fermentation superpathways were significantly more abundant in 
PD-L1 low patients (compared to PD-L1 high patients, C). Regarding chemotherapy, chemo-naive (0) patients showed significantly increased abundance of the 
Glycolysis superpathway and significantly decreased abundance of the Amino acid degradation and Carbohydrate biosynthesis superpathways (compared to CHT- 
treated patients, D). Multiple individual Metacyc pathway are differentially abundant between different patient groups, including Adenosine Ribonucleotide de novo 
Biosynthesis (p = 0.024), CDP-diacylglycerol Biosynthesis I-II (p = 0.023) according to PFS (E); Guanosine Ribonucleotide de novo Biosynthesis (p = 0.037), Inosine 5’ 
Phosphate Degradation (p = 0.015) L-histidine Degradation III (p = 0.034), Pyruvate Fermentation to Isobutanol (p = 0.008), L-valine Biosynthesis (p = 0.008), GDP- 
mannose Biosynthesis (p = 0.002) and Anaerobic Gondoate Biosynthesis (p = 0.004) according to PD-L1 expression (E) and GDP-mannose Biosynthesis (p = 0.023), 
Adenosine- and Guanosine Deoxyribonucleotides de novo Biosynthesis II (p = 0.02, respectively), Superpathway of Guanosine Nucleotides de novo Biosynthesis II (p =  
0.019), Glycolysis IV (p = 0.035) and CDP-diacylglycerol Biosynthesis I-II (p = 0.026, respectively) according to Chemotherapy-regime (E). 5-fold cross validation 
performed on Random Forest (RF) machine learning models show that PFS is best predicted with key species (AUC: 0.74; Recall: 0.64; F1: 0.56, F) and PD-L1 expression 
is best predicted with pathways (AUC: 0.88; Recall: 0.87; F1: 0.82, F’). The model fitted fairly to the prediction of first-line (CHT-treated) or subsequent-line (CHT-treated) 
IT for both key species (AUC: 0.76; Recall: 0.86; F1: 0.82, F”) and pathways (AUC: 0.8; Recall: 1; F1: 0.88, F”). Metric data are shown as mean and corresponding standard 
deviation (SD). Statistical significance *P < 0.05; **P < 0.01, ***P<.001.
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difference in alpha-diversity in any comparison, including PFS, 
CHT-treatment, and PD-L1 phenotype. However, beta- 
diversity significantly differed between patients with short 
and long PFS, as in the case of other NSCLC16,17 and mela-
noma studies9–11. Moreover, we detected a significant gut 
microbial compositional difference between CHT-treated and 
CHT-naive patients that underlines the effect of CHT on the 
gut microbiome. It is noteworthy that bacterial richness and 
alpha-diversity are parameters that are difficult to assess in the 
routine clinical practice, whereas detecting or quantifying indi-
vidual species is cost-effective. Thus, we identified specific 
indicator species that could predict outcomes with high relia-
bility and we established a hierarchical model stratifying taxa 
based on the extent of their predictive role regarding long or 
short PFS. Notably, apart from univariate statistical tests, we 
have also implemented various multivariate statistical models, 
such as Lasso- and Cox proportional hazard regression, to 
define the predictive relevance of a particular taxon based on 
solid evidence.

Accordingly, we analyzed the differences regarding major 
bacterial phyla and found that Firmicutes and Actinobacteria 
were associated with short PFS. The Firmicutes/Bacteroidetes 
(F/B) ratio is widely accepted to play an important role in 
maintaining normal intestinal homeostasis and is impaired in 
dysbiosis34,35. To our knowledge, this is the first NSCLC study 
to confirm that the F/B ratio is significantly increased in 
patients with short PFS. At the species level, multivariate ana-
lysis and validation on an additional cohort unequivocally 
confirmed the positive predictive role (performance to predict 
long PFS) of Alistipes shahii and Alistipes finegoldii and the 
negative predictive role (performance to predict short PFS) of 
Bifidobacterium breve, Streptococcus Salivarius, and 
Streptococcus vestibularis. A highlighted finding of our analy-
sis is the consistent association of Streptococci with short PFS, 
where both the genus and multiple species show a stringent 
association with worse outcomes. In a mixed cohort of epithe-
lial tumors, including NSCLC and renal cell carcinoma (RCC) 
specimens, Routy and colleagues20 associated taxa 
Akkermansia muciniphila and Alistipes with better- and 
Bifidobacteria with worse clinical outcomes, using shotgun 
metagenomics, similar to the current study. We used the latest 
version of the KRAKEN reference database that enabled us to 
discover more extensively the potential predictive role of rare- 
and low abundance taxa, including an array of Streptococcus 
species (S. gordonii, S. equinus, and S. anginosus), whose 
association with negative outcomes was also confirmed by 
multivariate Cox regression.

Two other NSCLC studies have interpreted the gut micro-
biome in the context of ICI-response so far. According to Jin 
et al., Alistipes putredinis, Bifidobacterium longum, and 
Prevotella copri were associated with better outcomes, while 
unclassified Ruminococcus was linked with impaired ICI- 
response16. In contrast, Zhang et al. identified Desulfovibrio, 
Actinomycetales, Bifidobacterium, Anaerostipes, 
Faecalibacterium, and Alistipes as overrepresented in respon-
der patients and different Fusobacteria in non-responders17. 
However, none of these studies interpreted the taxonomic 
profiles at the species level. Both research groups assessed the 
gut microbiome in an East-Asian patient cohort, whose 

baseline gut commensal flora significantly differed from 
Caucasians36. Other possible explanations for the discrepancies 
include the different sample collection frame times, reference 
databases (Metaphlan vs. KRAKEN), and study endpoints. It is 
important to highlight that previous NSCLC studies interpret-
ing alpha-diversity and taxonomic profiles according to ICI- 
response16,17 used 16S rRNA sequencing works with distinct 
reference datasets and limited taxonomical scope compared to 
shotgun metagenomics.

Next, we showed that the network of bacterial communities 
is more interconnected in patients with long PFS, with stronger 
correlations between taxa. S. vestibularis, B. uniformis, 
B. faecalis, A. shahii, and B. visceriola were the central hubs 
in the community network. Our study is unique in terms of 
first interpreting taxonomic differences according to CHT 
treatment or naivete in the context of ICI efficacy. While 
multiple taxa show differential abundance between the CHT- 
naive and CHT-treated population, CHT-treatment does not 
shift the microbiome into a more short- or long PFS-like 
profile. The fact that differentially abundant taxa (in the con-
text of PFS on ICI) in the CHT-treated patient subgroup and in 
the whole cohort significantly overlap underpins the principle 
that CHT pretreatment is not detrimental to the microbiome 
concerning ICI efficacy. CHT-pretreated patients exhibit 
slightly worse outcomes (vs. CHT-naive patients), possibly 
due to their tumor’s lower PD-L1 expression. Further studies 
are needed to confirm these findings.

We revealed that treatment toxicity is not associated with an 
extensive shift in the microbiome. Prevotella dentalis is the 
only species with a marked increase in patients with ICI- 
related trAEs. There is still a contradiction about whether AB 
treatment significantly affects ICI efficacy. While Pinato and 
colleagues claim that AB therapy reduced response rates prior 
to, but not during ICI treatment26, others reported the opposite 
or the lack of significance in multivariate analysis37,38. Our 
findings indicate a noticeable change in microbial signature, 
with the substantial alteration experienced in Eggerthellas; 
specifically, E. lentha, and no taxa associated with short PFS 
show significantly increased abundance in the AB-treated 
group. So far, only preclinical studies have reported the shift 
in the intestinal microbiome due to systemic corticosteroid 
treatment27,39. We found only a minor bacterial conversion 
in steroid-treated patients with an increased abundance of 
Proteobacteria, including Escherichia and E.coli. In contrast, 
we observed a notable increase of short PFS-associated 
Streptococcus species in patients treated with antacids. This is 
supported by findings of a recent meta-analysis claiming that 
PPI medication disrupts the gut microbiome and worsens the 
outcomes of ICI therapy40.

Analyzing functional metabolic profiles of the gut micro-
biome is an outstanding advantage of shotgun metagenomics 
compared to 16S RNA sequencing. SuperPathways Nucleoside 
and Nucleotide degradation, Amino Acid Biosynthesis, and 
Fermentation were significantly increased in PD-L1 low 
patients, whereas Amino Acid Degradation and Carbohydrate 
Biosynthesis were significantly increased in CHT-treated 
patients, and Glycolysis was significantly increased in CHT- 
naive patients. When analyzing taxonomic profiles, we 
revealed that Euryarchaeota phylum41 and its prominent 
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species Methanobrevibacter smithii showed a strong associa-
tion with PD-L1 expression being overrepresented in low 
expressors, which might be connected to the fact that there 
was an increased rate of fermentation41 in PD-L1-low patients.

Our microbiome-based machine learning approach inte-
grated metagenome data to overcome limitations of previously 
used traditional tumor biomarkers and test more complex 
bacterial microbial associations. Lately, multiple machine 
learning-based biomarker study was published on radiographic 
imaging, proteomics, and transcriptomics to predict response 
to ICI42,43 or showing a network-based method to select ICI- 
response-associated transcriptomic biomarkers effectively44. 
Advanced machine learning models in the future can help 
researchers to identify complex microbial signatures that 
might help to select patients for ICI therapy. These models 
outperformed traditional biomarkers and have made robust 
machine learning-based personalized predictions even with 
fewer case number training sets compared to predictions 
based on other conventional ICI treatment biomarkers. Our 
Random Forest model confirmed that predicting PD-L1 phe-
notype has a higher accuracy using pathways. In contrast, 
taxonomic profiles performed better when predicting short 
vs. long PFS.

The strengths of our study include the short turnaround 
time of sample collection, the careful attention to related 
methods using the latest and most comprehensive databases, 
and the measurement of multiple confounding factors asso-
ciated with host genetics and exposures. PFS-associated taxa 
are presented in a hierarchical manner supported by multi-
variate testing, a novel approach in our research. Limitations of 
our study include that we cannot assess whether altered micro-
biota contribute to or exist as a consequence of disease. 
However, this is a widespread issue in the field currently. 
Therefore, we are cautious about interpreting our results and 
encourage further studies with a larger sample size. Moreover, 
our Validation cohort included significantly more patients 
treated with ICI subsequent line than the Discovery cohort, 
which included more ICI first-line administration. 
Additionally, we did not have next-generation sequencing per-
formed on patients’ tumor tissue samples to be able to discern 
the potential impact of tumor mutation burden (TMB). 
However, unlike PD-L1, TMB has not been confirmed to be 
predictive for OS in NSCLC.45

Conclusion

Our study shows the complexity of the gut microbiome, 
a highly diverse system, in NSCLC. We were able to define an 
outcome-related common gut microbial signature with inter-
nal cross-validation and using an additional cohort. Multiple 
Streptococcus and Bifidobacteria species showed a stringent 
association with impaired ICI efficacy, whereas the presence of 
Alistipes and Barnesiella was linked to better outcomes. The 
machine learning approach revealed that the PD-L1 phenotype 
is best predicted from metabolic pathways, while the taxo-
nomic profile is more suited to predict outcomes. To our 
knowledge, this is the first comprehensive data in NSCLC 
using metagenomic visualization tools to extract knowledge 
efficiently to support further studies in the field.
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