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Abstract: The development of new technologies using nanomaterials has allowed scientists to design
advanced processes with many applications in environmental protection, energy production and
storage, and medicinal bio-mediated processes. Due to their significant potential applications in
different branches of science, the development of new polymer composites represents a priority,
especially for nano-technological processes. Interest in polymeric composites was outlined by the
synthesis of a large number of nano- or mezzo-scale materials with targeted functional properties for
polymer matrix hybridization. The present mini review explores some of the most representative and
recent papers reporting the photocatalytic activity of polymer composites toward different organic
compounds (dyes, pharmaceutically active molecules, phenol, etc.). The polymer composites were
divided based on their composition and photocatalytic activity. TiO2- and ZnO-based polymeric com-
posites have been described here in light of their photocatalytic activity toward different pollutants,
such as rhodamine B, phenol, or methyl orange. Polymeric composites based on WO3, Fe2O3, or
Bi2MoO6 were also described. The influence of different polymeric composites and photocatalytic
parameters (light spectra and intensity, pollutant molecule and concentration, irradiation time, and
photocatalyst dosage) on the overall photocatalytic efficiency indicates that semiconductor (TiO2,
ZnO, etc.) insertion in the polymeric matrix can tune the photocatalytic activity without compro-
mising the structural integrity. Future perspectives and limitations are outlined considering the
systematic and targeted description of the reported results. Adopting green route synthesis and
application can add economic and scientific value to the knowledgebase by promoting technological
development based on photocatalytic designs.

Keywords: advanced oxidation; composites; dyes; organic pollutants; pharmaceutical compounds; photocatalysts

1. Introduction

The need for available clean and drinking water has significantly increased due to
demographic expansion, technological development, and higher comfort standards [1].
These factors put an immense stress on the clean water scarcity which emerges as a global
problem threatening human health and future lifestyle. In 2019, the World Health Organi-
zation released a report indicating that around 785 million people have no or limited access
to drinking water and more than half to the Earth population will encounter drinking water
scarcity by 2025 [2,3].

The development of new technologies using nanomaterials has allowed scientists to
design advanced process with many applications in environmental protection, energy pro-
duction and storage, as well as medicinal bio-mediated processes. Due to their significant
potentials applications in different branches of science, the development of new polymer
composites represents a priority, especially for nano-technological processes [4,5]. Polymers
based on nano-composites are considered as hybrid structures composed of organic or
inorganic nano-materials coupled with polymers acting as matrices with different sizes
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and shapes. Such nano-composite structures exhibit distinctive chemical and physical
properties, which cannot be attributed to a stand-alone component and are a consequence
of the effects of synergistic dual components. Interest in polymeric composites was out-
lined by the synthesis of a large number of nano- or mezzo-scale materials with targeted
functional properties for polymer matrix hybridization. These hybrid materials can be
used in different fields, such as organic pollutant removal, energy production and storage,
catalytic assisted processes, etc. [6–8]. Polymer-based nanomaterials have been used in the
medical field, especially in the total hip implant to improve the mechanical performance of
polymers [9].

Persistent organic pollutants (POPs) can be found in many aquatic bodies due to
direct release or indirect contamination, and the concentration varies depending on the
pollution source. The traditional processes for wastewater treatment are inefficient for the
complete removal of POPs and advanced technology is required to address this issue [10].
Bioaccumulation has the disadvantage of moving the pollutant from one site to another,
while the main issue remains unsolved. Fenton-based processes use light and cations
as driving forces for pollutant removal, but the by-product formation is an important
disadvantage. The advanced oxidation process (AOP) is considered as a promising alterna-
tive for the complete decomposition of POPs due to its ability to generate oxidative and
super-oxidative species when a catalyst is irradiated with different sources (microwave,
solar radiation, ultraviolet (UV), visible (vis), or other variants) [11,12]. Mono-component
semiconductor metal oxides (such as WO3 [13,14], TiO2 [15,16], ZnO [17,18], SnO2 [19,20],
MnO2 [21,22], etc.) and heterostructures (such as ZnO/CuO [23,24], TiO2/ZnO [25,26],
Cu2S/WO3 [27,28], TiO2/WO3/ZnO [29], Cu2S/WO3/SnO2 [30], CuO/ZnO/WO3 [31],
etc.) have been intensively studied and characterized as suitable candidates for photocat-
alytic wastewater treatments. However, these materials raise significant issues in large-scale
applications due to their limited absorption range, surface warping, interface chemical
stability, charge carrier recombination, and mobility [32–34].

Polymeric composites are considered as suitable candidates for AOPs due to their
unique physical and chemical properties induced by the formation of the interphase re-
gion, fillers, and matrix. Polymeric materials are widely used in the industry, due to their
lightweight, versatile processability, high chemical resistance, low cost, and low specific
gravity [35,36]. The use of conductive polymers as sensitizing agents in photocatalytic com-
posites have the advantage of improving the photocatalytic efficiency due to p-conjugated
systems which contain a high concentration of electron-rich species available for transfer in
the semiconductor’s conduction band. Consequently, the recombination rate of the photo-
generated charge carriers is reduced, while conductive polymers tune the semiconductor’s
band gap [37,38]. Based on the density functional theory models, the conducting polymers
such as poly(1-naphthylamine), polythiophene, polyaniline, polyacetylene, polypyrrole,
polycarbazole, or poly(ophenylenediamine) exhibit visible absorption activity due to their
low band gap values which make them ideal candidates for extending the semiconductor’s
light absorption range [39–42]. A systematic review can be used as a tool on designing new
experiments to provide more insight on the correlation between the composite composition,
testing parameters, and overall photocatalytic activity.

The present mini review explores some of the most representative and recent papers
reporting on the photocatalytic activity of polymer composites toward various organic
compounds (dyes, pharmaceutically active molecules, phenol, etc.). The literature contains
scientific articles presenting similar or different information that was not considered here
due to the space limitation or incomplete experimental data. The paper describes the effect
of different polymeric composites and photocatalytic parameters (light spectra and intensity,
pollutant molecule and concentration, irradiation time, photocatalyst dosage, etc.) on the
overall photocatalytic efficiency. Representative studies were included and corelated in
order to outline the significance of polymeric composite composition and testing parameters
on the photocatalytic removal of pollutants. It can be seen that high light intensity or
photocatalyst dosage are not pre-requisites for high photocatalytic activity. Tailoring the
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material properties based on their composition as well as the surface chemistry with the
pollutant molecules can play an important role.

2. Photocatalytic Mechanism of Polymeric Composites

Nanotechnology may represent an alternative solution in solving the issues related
to safe drinking water stress and high global demography. The available drinking water
sources are inconsistent with the geographical position of high urban density, and so
long-term solutions are needed. As a flexible alternative for cost-effective wastewater
treatment processes, nanotechnology exhibits high efficiency and multifunctionality and is
suitable for large-scale applications [43,44]. Additionally, the photocatalytic process using
nanomaterials can integrate renewable resources in the technological wastewater treatment
flux as a key component of energy sustainability. The main goal of the photocatalytic process
is to induce the pollutant mineralization, leading to non-hazardous products. However,
the polymer composite requires large optimization procedures in order to attempt this
goal. Moreover, the pollutant is partially decomposed, which may lead to hazardous
by-products [45,46].

Photocatalysts based only on metal oxide semiconductors present limitations in terms
of charge carrier recombination and mobility, chemical stability, and large band-gaps values,
which restrict the light absorption spectrum in the UV region [47–49]. As presented in
Figure 1, when coupled with metal oxide semiconductors, the conducting polymers work
as photosensitizers due to their high charge mobility properties.
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Figure 1. The photocatalytic mechanism of polymeric composites.

The polymeric composite exhibits a high-efficiency response in the presence of vis
light radiation, thermal and chemical stability, and low charge carrier recombination [49].
During irradiation (hν), the composite interface behaves as a synergic active area where
the photogenerated electrons (e−) migrate from the lowest unoccupied molecular orbital
(LUMO) polymer level to the metal oxide conduction band (CB), while the photo-induced
holes (h+) are transferred from the valence energy band (VB) of metal oxide directly on
the highest occupied molecular orbital (HOMO) polymer level [50,51]. As presented in
Equations (1)–(9), the photocatalytic inter-chain reaction is induced by the formation of
hydroxyl radicals (•OH) from water molecules along with the formation of superoxide
anion radicals (•O2

−) from oxygen-dissolved molecules. Both mechanisms require the
participation of photogenerated charge carriers (h+ and e−). The subsequent reactions of
•O2

− with photogenerated holes can form hydroperoxyl radicals (•OOH) and H2O2 [52].
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It must be underlined that the direct oxidation of organic pollutants absorbed at the
photocatalyst surface is also possible [53].

Polymeric Composite + hυ→ e− + h+, (1)

H2O + h+ → HO− + H+, (2)

HO− + h+ → HO•, (3)

O2 + e− → •O−2 , (4)

•O−2 + H+ → •OOH, (5)

•OOH + •OOH→ H2O2 + O2, (6)

H2O2 + e− → •OH + HO− (7)

Organic Molecule + •OH/•O−2 → Degradation By-products (8)

Degradation By-products + •OH + •O−2 + h+ → Mineralization-products (9)

3. Polymer Composite Photocatalytic Materials

Despite the advantages of polymeric materials, their low modulus, low strength,
low working temperature, and chemical stability to environmental conditions limit their
application in photocatalytic processes. The insertion of a secondary material, such as
metals or metallic oxides, as a reinforcement component can provide a unique combination
of optical and electrical properties which will enhance photocatalytic activity. Further-
more, the resulting composites possess superior properties compared with stand-alone
components, including improved chemical resistance, modulus, strength, and electrical
conductivity [54,55].

3.1. Polymer/TiO2- or ZnO-Based Composites

Among transition metal oxides, titanium oxide is considered as the most widely
used semiconductor due to its high chemical stability, versatile morphology, and high UV
sensitivity; however, in recent years, ZnO has earned considerably attention because of its
catalytic properties and cost-effective synthesis procedures [56]. As presented in Figure 2,
both semiconductors can be coupled with polymers in order to form favorable junction
for the photogeneration and transfer of charge carriers, in order to produce oxidative
species. Table 1 contains representative studies of polymers/TiO2 or ZnO composites used
in photocatalytic applications.
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Table 1. Polymer/TiO2- or ZnO-based composites.

Composite Composition Pollutant Photocatalytic Properties
Ref.

Polymer (s) Second
Material Molecule Conc. Radiation

Type
Radiation
Intensity

Exposure
Time

Catalyst
Dosage

Removal
Efficiency

Polyacrylamide TiO2
methyl
orange 1.0 mg/L UV 3 W 300 min np * 95% [57]

Polyurethane TiO2
methyl
orange 10 mg/L UV 38 W/m2 50 min 0.046 g/3.6 mL 100% [58]

Resorcinol-formaldehyde TiO2
methyl
orange 13 mg/L UV 36 W 240 min 1 mg/3 mL 55% [59]

Polyethylene glycol TiO2
methylene

blue 20 mg/L UV 300 W 240 min 3 g/100 mL 100% [60]

Polytrifluorochloro
ethylene TiO2

methylene
blue 10 mg/L UV 0.5 mW/cm2 270 min np 100% [61]

PEG2000-silicone TiO2
methylene

blue 3.2 mg/L UV 20 W 120 min np 40% [62]

Polyvinyl alcohol TiO2 acid black 20 mg/L UV 44 W/m2 120 min 50 mg/400 mL 55.4% [63]Polyethylene glycol 62.8%

Polythiophene TiO2 rhodamine B 40 mg/L UV 10 W 180 min 300
mg/300 mL

76% [64]Vis 320 W 600 min 98%
Poly-phenylpropenes

trans-anethole and
N-phenylmaleimide

TiO2
rhodamine B 10 mg/L UV 600 W 90 min 20 mg/20 mL 95% [65]

tetracycline 97%
Chitosan

Polyvinyl alcohol–chitosan TiO2 metronidazole 10 mg/L UV 32 W 120 min 0.3 g/L 100% [66]

Polyvinyl alcohol TiO2 phenol 10 mg/L Vis 500 W 360 min np 67.5% [67]
Poly(vinylidene fluoride) TiO2/GO phenol 50 mg/L UV 100 W 180 min np 65% [68]

Polydimethylsiloxane TiO2

methylparaben
1 mg/L Sun

Radiation
np 120 min 140 mg/L

50%
[69]ethylparaben 52%

propylparaben 55%

Polypyrrole ZnO methylene
blue 50 mg/L UV 100 W 20 min 50 mg/50 mL 98.12% [70]

Polypyrrole ZnO rhodamine B 5 mg/L Vis 150 W 300 min np 65% [71]
Poly(3-hexylthiophene-

2,5-diyl) ZnO rhodamine B 0.01 mg/L Vis 300 W 80 min 20 mg/100 mL 99% [72]

Poly(propylene
glycol)-dimethacrylate–
methacryloyloxyethyl-

N,N-dimethyl-3-
(trimethoxysilyl)-propane

ZnO methyl
orange 16.35 mg/L Vis 4.9 mW/cm2 250 min 1 g/50 mL 56.12% [73]

ZnO-Ag 95%

* not provided.

The photocatalytic removal of methyl orange was evaluated using composites based on
polyacrylamide/TiO2 [57], polyurethane/TiO2 [58], and resorcinol-formaldehyde/TiO2 [59].
The polyurethane/TiO2 could completely remove the methyl orange dye in 50 min from
a solution with a 10 mg/L concentration using a catalyst dosage of 0.046 g/3.6 mL. The
composite has the advantage of using macroporous supports for TiO2 insertion which favor
the formation of a larger active surface. Consequently, the photo-oxidation rate increases
and the mass transfer is reduced. The polyacrylamides/TiO2 exhibit 95% photocatalytic
efficiency after 300 min of UV irradiation with a 3 W light source. The initial concentration
of methyl orange solution was significantly lower (1.0 mg/L), which allows higher light
penetration during the experiments. The diffusion plays an important role in the photo-
catalytic efficiency. At low diffusion values, the dye concentration decreases more slowly
with time on the outer boundary compared with the case of the fast diffusion. The highest
methyl orange concentration (13 mg/L) was used to test the resorcinol-formaldehyde/TiO2
photocatalytic activity at a 1 mg/3 mL dosage. The sample was irradiated with a 36 W UV
lamp for 240 min in order to remove 55% of methyl orange. A lower photocatalytic activity
was presumed to be induced by the TiO2 influence which reduces the apparent polymeric
surface, in turn decreasing the number of active sites involved in dye degradation.

The photocatalytic removal of methylene blue was tested using polyethylene glycol/TiO2 [60],
polytrifluorochloro ethylene/TiO2 [61], and PEG2000–silicone/TiO2 [62] composites. Both
polyethylene glycol/TiO2 and polytrifluorochloro ethylene/TiO2 could completely re-
move the dye, but under different experimental conditions. The polytrifluorochloro
ethylene/TiO2 composite was tested using a 10 mg/L methylene blue concentration and
270 min of UV irradiation (0.5 mW/cm2). The overall film roughness was improved due to
the TiO2 nanopowder embedded in the polymer matrix, which maximizes the interface
with solution. When roughness increases, these may suggest that the TiO2 nanoparticles
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form aggregates, which can reduce the photocatalytic activity. The concentration of methy-
lene blue solution was double (20 mg/L) for the polyethylene glycol/TiO2 photocatalytic
test and the composite could remove the dye in 240 min under a 300 W UV source using
a catalyst dosage of 3 g/100 mL. It is well known that the surface morphologies play
an important role in dye adsorption, which is the preliminary step for their degradation.
Variations in adsorption capacity were observed due to the PEG increasing the porosity,
resulting in an increased interface area with the dye solution. However, when a mixture of
PEG2000–silicone/TiO2 was used, the photocatalytic efficiency decreases at 40%, even if
the initial concentration of methylene blue solution was limited at 3.2 mg/L and the UV
exposure time was 120 min. In this case, the risk of mechanical collapse was reduced due
to the presence of surface hydroxyl groups, allowing the particles to bond tightly to the
modified silicone.

The TiO2 was employed to form composites with polyvinyl alcohol and polyethylene
glycol for the photocatalytic removal of acid black dye in similar experimental condi-
tions [63]. The dye solution concentration was 20 mg/L and the catalyst’s dosage was
50 mg/400 mL. After 120 min of UV irradiation with 44 W/m2 irradiance, the polyvinyl
alcohol/TiO2 exhibits 55.4% photocatalytic efficiency, while polyethylene glycol/TiO2
reaches 62.8% efficiency. It was found that the polyethylene glycol/TiO2 composite showed
higher photocatalytic activity due to the more appropriate calcination temperature, allow-
ing the interaction of Ti-O-C bonds in the structure. Rhodamine B dye photodegradation
was also tested with the polythiophene/TiO2 composite using UV (10 W) and vis (320 W)
radiation [64]. The dye solution concentration was 40 mg/L and the catalyst dosage
was 300 mg/300 mL. The results indicate that after 180 min of UV radiation, 76% of rho-
damine B was removed, while under vis radiation, 600 min were necessary to remove
98% of rhodamine B. Even if the TiO2 is absorbed in the UV region, surface hybridiza-
tion in the presence of polythiophene can induce visible light photon absorption. The
removal of rhodamine B was also tested with trans-anethole/N-phenylmaleimide/TiO2
composite poly-phenylpropenes under 600 W UV irradiation using a catalyst dosage of
20 mg/20 mL [65]. After 90 min of irradiation, 95% of the 10 mg/L dye solution concen-
tration was removed. The number of free radicals photogenerated under UV irradiation
and the available number of adsorption sites were limited as the dye could saturate a part
of them. Increasing the irradiation time can help in generating more oxidative radicals
involved in rhodamine B degradation, but the energy consumption will also increase. The
same composite and experimental conditions were used for the removal of tetracycline. In
this case, the photocatalytic efficiency increased at 97%, indicating that trans-anethole/N-
phenylmaleimide/TiO2 poly-phenylpropenes are versatile composites that can be used to
remove different organic pollutant. Another pharmaceutical compound (metronidazole)
was considered for photocatalytic degradation using the chitosan polyvinyl alcohol/TiO2
composite [66] with a 0.3 g/L dosage. The metronidazole was completely removed from the
10 mg/L solution concentration in 120 min under 32 W UV radiation based on the synergetic
effect of pseudo-second-order adsorption and pseudo-first-order photocatalytic processes.
Density functional theory modeling (DFT) indicates that the assembly pf hydroxyl groups
will passivate the titanium oxide to the polymer through significant hydrogen bonding.
The adsorption of metronidazole molecules on the composite surface is favored by the
extensive weak dispersive forces.

Phenol photocatalytic removal was evaluated using polyvinyl alcohol/TiO2 [67] and
poly(vinylidene fluoride)/GO/TiO2 [68] composites. A visible light source with a 500 W
intensity was used to irradiate polyvinyl alcohol/TiO2 for 360 min. The results indicate that
67.5% of the phenol was removed to form a 10 mg/L solution due to the short diffusion
length of excitons, which can induce their dissociation prior recombination. The employ-
ment of conjugated PVA will improve the TiO2 absorption, resulting in higher energy
conversion. The dissociation of charge carriers can promote the charge migration from the
polymer to the TiO2 nanoparticles. The poly(vinylidene fluoride)/GO/TiO2 composite
was irradiated with a 100 W UV source for 180 min. The photocatalytic efficiency was
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65%, but the initial phenol concentration was five times higher than in the previous case.
This is due to the GO presence which serves as an electron receptor and network for the
photo-generated charges in TiO2. The photo-generated charged carriers migrate through
the GO sheets that reduce the electron–hole recombination due to the stereo conductive
framework which can alleviate the recombination rate process. The removal of three types
of parabens (methylparaben, ethylparaben, and propylparaben) was performed by placing
the polydimethylsiloxane/TiO2 composite under sun radiation for 120 min [69]. Using the
same paraben concentration (1 mg/L) and photocatalyst dosage (140 mg/L), the removal
efficiency varies up to 50% for methylparaben, 52% for ethylparaben, and 55% for propyl-
paraben. The authors indicate that TiO2, when immobilized in the polymeric membranes, is
the only component acting for the removal of parabens through the photocatalytic process
since no adsorption on the polymeric membranes occurs. Moreover, increasing the TiO2
concentration favors the nanoparticle agglomeration, which can inhibit the TiO2 active sites
and decrease the available active centers responsible for hydroxyl radical production.

Polymeric composites with ZnO were employed for the photocatalytic removal of
dyes such as methylene blue [70], rhodamine B [71,72], or methyl orange [73]. The polypyr-
role/ZnO composite was used to remove methylene blue dye from a 50 mg/L concentrated
solution [70]. After 20 min of 100 W UV irradiation and a 50 mg/50 mL catalyst dosage, the
photocatalytic efficiency was 98.12% due to the suitable charge carrier transfer mechanism
between polypyrrole and ZnO nanoparticles that reduce the charge recombination. The
study indicates that, at higher temperatures (323 K), photocatalytic efficiency increases at
99.05%, which shows that the degradation process follows an endothermic pathway. A
similar composite based on polypyrrole/ZnO was used for rhodamine B photocatalytic
removal with a 5 mg/L solution concentration [71]. The sample was irradiated for 300 min
with a 150 W vis radiation, and the final photocatalytic efficiency was 65%. During the com-
posite light irradiation, excitons were created. The photo-generated electron in ZnO was
transferred from the valence energy band to the CB, and the photo-generated hole migrated
to highest occupied molecular orbital (HOMO) of the polymer. Additionally, the photo-
generated electron from HOMO migrated to lowest energy unoccupied molecular orbital
(LUMO) in the polymer matrix. Finally, from LUMO, the photo-generated electron was
transferred to the conduction band of ZnO. When the poly(3-hexylthiophene-2,5-diyl)/ZnO
composite was used to remove 0.01 mg/L rhodamine B under 300 W vis radiation, the pho-
tocatalytic efficiency increased by 99% after 80 min of irradiation [72]. This result can be at-
tributed to the strengthened vis light absorption and the closely contacted interface between
the two components. A comparative study for methyl orange photocatalytic removal was
conducted using poly(propylene glcol)-dimethacrylate/methacryloyloxyethyl-N,N-dimethyl-
3-(trimethoxysilyl)-propane/ZnO and poly(propylene glycol)-dimethacrylate/methacryloyloxyethyl-
N,N-dimethyl-3-(trimethoxysilyl)-propane/ZnO-Ag composites [73]. The samples were
irradiated with vis light (4.9 mW/cm2) for 250 min in order to remove 16.35 mg/L of
methyl orange. The silver-free composite exhibited 56.12% photocatalytic efficiency, while
the methacryloyloxyethyl-N,N-dimethyl-3-(trimethoxysilyl)-propane/ZnO-Ag composite
reached 95% efficiency. As presented in Figure 3, a lower ZnO-Ag Fermi level relative to
the ZnO conduction band energy was established during irradiation, inducing the photo-
generated migration of electrons from ZnO to the silver-mediated composite using the
potential energy. Consequently, the accumulation of photo-generated electrons occurred
in silver particles along with the hole’s migration to ZnO surface, inducing the charge
carrier’s separation. The insertion of silver nanoparticles had a favorable effect on the
generation of oxidative radicals, where electrons were adsorbed by the O2 to form •O2

−

and holes reacted with OH− to form hydroxyl radicals (•OH).
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3.2. Other Polymer Composites Based Materials

Polymers can be combined with one or more components in order to form suitable
composites for photocatalytic applications. The components are chosen based on several
factors: interface compatibility with the polymeric matrix, chemical stability in the working
environment, light sensitivity, and economic costs. Table 2 presents some recent reports
on polymeric composites containing tandem semiconductors, metals, or mono-component
semiconductors with photocatalytic application for dyes or the removal of pharmaceutically
active compounds.

Table 2. Other polymer composite-based materials.

Composite Composition Pollutant Photocatalytic Properties
Ref.

Polymer (s) Second
Material Molecule Conc. Radiation

Type
Radiation
Intensity

Exposure
Time

Catalyst
Dosage

Removal
Efficiency

Poly(vinyl alcohol-
g-acrylamide) ZnO/SiO2

methylene blue
5 mg/L UV 18 W 960 min 0.1 g/20 mL

86%
[74]crystal violet 77%

congo red 70%
Polyaniline Cu2O/ZnO congo red 30 mg/L UV np * 30 min 100 mg/100 mL 100% [75]

Polysulphone–
styrene maleic

anhydride
copolymer

Bi2S3/TiO2 methylene blue 20.26
mg/L UV–vis 350 W 180 min np 95.32% [76]

Polyvinyl chloride Ag-decorated
Bi2O3/Bi2O2.7

rhodamine B 12 mg/L Vis 5 W 150 min np 97% [77]

Polypyrrole TiO2/V2O5

tetracycline

50 mg/L Vis 300 W 120 min 30 mg/50 mL

98%

[78]
doxycycline 96%

oxytetracycline 85%
ofloxacin 37%

rhodamine B 100%
TX-SCH2COOH-

DO Au/Ag methylene blue 10 mg/L UV 100 W 90 min 5 mg/5 mL 72.5% [79]

Tris(4-carbazoyl-9-
ylphenyl) amine/

polyvinylpyrrolidone

Cu methylene blue np Vis 300 W 90 min 20 mg/15 mL 80% [80]
CuO 90%

Polyvinyl alcohol Au/Pd styrene 20 mg/L Vis 50
mW/cm2 60 min np 100% [81]
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Table 2. Cont.

Composite Composition Pollutant Photocatalytic Properties
Ref.

Polymer (s) Second
Material Molecule Conc. Radiation

Type
Radiation
Intensity

Exposure
Time

Catalyst
Dosage

Removal
Efficiency

Phenylacetylide Ag/Cu

norfloxacin

10 mg/L Vis 9 W 40 min 10 mg/50 mL

100%

[82]
diclofenac 64.3%

bisphenol A 47.6%
naproxen 70.5%

sulfisoxazole 42%
Polypyrrole g-C3N4 methylene blue 10 mg/L Vis 12 W 120 min 0.05 g/50 mL 99% [83]
Polypyrrole

CdS methylene blue 10 mg/L Vis
75,000–
90,000

Lux
300 min 25 mg/50 mL

77%
[84]Polythiophene 71%

Polyaniline 61%
Polyaniline rGO/MnO2 methylene blue 5 mg/L Vis 150 W 120 min 10 mg/50 mL 90% [85]

Polyaniline BiVO4/GO
rhodamine B 4.8 mg/L

Vis 500 W 180 min 0.1 g/100 mL
62%

[86]methylene blue 3.2 mg/L 73%
safrarine O 35 mg/L 82%

Polyaniline MoSe2
methylene blue np Vis 100

mW/cm2
120 min 20 mg/100 mL 65% [87]methyl orange 150 min 94%

Polyaniline LaNiSbWO4/GO safrarine O 35 mg/L
Vis 500 W 180 min 0.1 g/100 mL 84% [88]gallic acid 1.7 mg/L 92%

Polyether
Tetraacrylate

Nd0.9TiO3 Acid Black 15 mg/L UV 250
mW/cm2 30 min np 94% [89]LaTiO3 95%

Cyclodextrin BiOBr Acid Orange 7 70 mg/L Vis 500 W 60 min 40 mg/40 mL 99.2% [90]

Polystyrene/
divinylbenzene Fe2O3

methylene blue
+ oxalic acid

8 mg/L +
38.7 mg/L UV 20 W 120 min 10 mg/100 mL 98% [91]

oxalic acid 88.2 mg/L 73.6%

Polypyrrole Bi2MoO6
methylene blue 5 mg/L

Vis 350 W 80 min 35 mg/50 mL 93.6% [92]tetracycline 30 mg/L 88.3%
4,7-dibromobenzo

thiadiazole/4-
ethynylphenyl

amine

Bi2WO6
tetracycline 10 mg/L Vis 300 W 90 min 20 mg/100 mL 86% [93]

rhodamine B 84%
Poly(trimethyl-

propane
triacrylate)/

bis(acyl)phosphane
oxides

H3PMo12O40
erythrosine B 10 mg/L UV 0.07

W/cm2 120 min np 81% [94]

rose bengal 86%
Poly(trimethyl-

propane
triacrylate)

H3PMo12O40
W10O32 (TH)4

ibuprofen
15 mg/L UV–vis 250

mW/cm2

90 min
np

100%
[95]ciprofloxacin 75 min 90%

oxytetracycline 75 min 86%

Polyimide WO3 imidacloprid 20 mg/L Vis 225 W 180 min
1 g/L 50% [96]2.5 g/L 73.2%

* not provided.

3.2.1. Polymer/Tandem Structure-Based Materials

Tandem structures are composed of at least two semiconductors with suitable disposal
of the energy levels, allowing the mobility of charge carriers through the structure and
reducing the charge recombination rate. As presented in Figure 4, the tandem structure
can be combined with conductive polymeric materials in order to enhance the charge
photo-generation, favoring the reduction reactions with e− and oxidation reactions by h+.
These charge carriers will be involved in the oxidative species development, responsible
for pollutant mineralization. The non-conductive polymeric matrix can be used to increase
the light absorption spectrum, tandem particle dispersion, and the specific surface.

The photocatalytic removal of three dye molecules (methylene blue, crystal violet,
and congo red) was studied using the poly(vinyl alcohol-g-acrylamide)/ZnO/SiO2 com-
posite [74]. The dye’s concentration was established at 5 mg/L and the photocatalyst
dosage was 0.1 g/20 mL. After 960 min of irradiation with a 18 W UV source, the removal
efficiencies were 86% for methylene blue, 77% for crystal violet, and 70% for congo red.
The photocatalytc removal efficiency depends on the surface chemistry between the photo-
catalyst and the dye molecules. When the electrostatic interaction, repelling force, driving
force, and hydrogen bonding between dye molecules and composite active sites are in
equilibrium, the saturated state facilitates the photocatalytic mineralization reactions. The
main driving force for this process is represented by the mass transfer of dye molecules
from solution that could reach the available composite active surface sites.
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The total removal of congo red was reached with the polyaniline/Cu2O/ZnO com-
posite, using a 30 mg/L dye concentration and a 100 mg/100 mL catalyst dosage [75]. Half
an hour was enough to remove the dye due to the insertion of an oxidizing promoter based
on ammonium persulfate/potassium permanganate. The composite performance was
attributed to the small crystallite sizes (18.5 nm), low bandgap (2.68 eV), reduced and low
PL intensity, and large surface area (45.32 m2/g). The high photocatalytic removal of methy-
lene blue was reported on polysulphone–styrene maleic anhydride copolymer/Bi2S3/TiO2
composites [76]. The catalyst was irradiated for 180 min with a UV–vis (350 W) source
and 95% of the 20.25 mg/L dye solution concentration was removed. The composite
absorption includes the entire visible-light spectra, due to the Bi2S3’s small band gap value.
Bi2S3 is a direct transition n-type semiconductor with a 1.3 eV band gap energy, which
can use the complete visible spectra and enhance the composite light absorption spec-
trum. The narrower band gap energy of the Bi2S3-TiO2 tandem structure stimulates the
photo-electric process required to induce the charge carrier’s generation. The combined
effect of adsorption–migration–photodegradation occurs in the molecular interfacial layers.
The reactant’s surface and photocatalytic affinity adsorption properties are significant in
determining the overall reaction rate.

Rhodamine B photocatalytic removal was evaluated using polyvinyl chloride/Ag-
decorated Bi2O3/Bi2O2.7 [77] and polypyrrole/TiO2/V2O5 [78] composites. The polyvinyl
chloride/Ag-decorated Bi2O3/Bi2O2.7 exhibit 97% photocatalytic efficiency after 150 min of
irradiation with a low-intensity vis source (5 W). The photocatalytic activity was attributed
to the •O2

− and h+ photo-generation based on the synergistic effects of good interface
quality; petal-like hierarchical shape; and fast charge separation between Ag particles,
β-Bi2O3, and Bi2O2.7. If the composite uses the same composition on each side of the het-
erostructures surface with good lattice fringes matching, then it can establish a suitable and
tuned channel for the charges produced during the irradiation. This advantage originates
from lower spacing lattice distances between the catalyst partners that may induce lower
lattice mismatch, and subsequently decrease the number of defects and interface pene-
tration barriers. The use of the circular band structure provides higher photo-generated
carrier migration and separation, due to the minor and potential differences between
components. The second composite based on polypyrrole/TiO2/V2O5 can completely
remove the rhodamine B dye after 120 min of irradiation with a 300 W vis source. The
same composite was employed to establish the photocatalytic performance toward four
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molecules of pharmaceutically active compounds. Using a 50 mg/L solution concentration
and a 30 mg/50 mL photocatalyt dosage, the composite exhibits the following removal
efficiencies: 98% for tetracycline, 96% for doxycycline, 85% for oxytetracycline, and 37% for
ofloxacin. The presence of V2O5 increases the vis light absorption in the 600 nm proximity.
The introduction of polypyrrole remarkably broadens the composite absorption region
to the total visible light spectrum, which simultaneously enhances the light absorption
performance and photocatalytic activities under visible light.

3.2.2. Polymer/Metal-Based Materials

Polymer/metal composites are often viewed as suitable materials for the photocat-
alytic removal of persistent organic pollutants, such as dyes or different pharmaceutical
compounds. As presented in Figure 5, the metal nanoparticles penetrate the polymeric
matrix and provide a compatible interfacial region. When conductive polymers are used,
the composite materials which act as Schottky junctions represent the interface between
the metal component and the semiconductor structure, providing an effective pathway
to decrease the photo-generated carrier’s recombination and even to increase the catalyst
spectral absorption.
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The removal of methylene blue was tested using TX-SCH2COOH-DO/Au/Ag [79]
and tris(4-carbazoyl-9-ylphenyl) amine/polyvinylpyrrolidone/Cu [80] composites. The
first catalyst based on TX-SCH2COOH-DO/Au/Ag was tested in the presence of UV
radiation provided for 90 min by a 100 W source. Using a catalyst dosage of 5 mg/5 mL, the
photocatalytic efficiency reaches 72.5%. When the Au/Ag BNps composite was irradiated
with UV light, due to their high surface plasmon resonance effects, a pair of electrons
and holes can be developed. The electrons act to reduce adsorbed molecular oxygen
on the composite surface into hydrogen peroxide radicals and superoxide radical. The
photo-generated holes could follow two directions: (i) directly oxidizing the adsorbed
methylene blue molecules or (ii) producing hydroxyl radicals by interacting with the water
molecules or hydroxyl ions adsorbed at the surface. The second composite based on
tris(4-carbazoyl-9-ylphenyl) amine/polyvinylpyrrolidone/Cu was irradiated for 90 min
with a 300 W vis light source. The photocatalytic activity was 80% when the catalyst
dosage was 20 mg/15 mL. If the Cu is replaced with CuO and all others parameters remain
unchanged, the photocatalytic efficiency may increase at 90%. Bare CP presents good
efficiency for MB removal, as a consequence of the ROS production under visible light.
Photoexcited polymers will develop Coulomb-correlated electron–hole pairs, followed by
interface diffusion to induce charge-separated states. The Cu presence can improve the
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absorption capability of the composite, while CuO can produce light harvesting and charge
carrier separation.

The polyvinyl alcohol/Au/Pd composite was tested for styrene photocatalytical
removal in the presence of 50 mW/cm2 irradiance produced by a vis source [81]. The
styrene was completely removed in 60 min from the 20 mg/L initial solution concentration.
It was observed that the composite catalytic effect increases with increasing light intensity
until a certain point where the thermoelectron effect can damage the specific reactions. The
core–shell structure of the metallic nanoparticles favors an increase in the local temperature,
under visible light illumination. Consequently, the surface plasmon resonances of the
localized metal nanoparticles were used to ensure a high catalytic efficiency, induced by the
collective oscillations of the electrons on surfaces. High photocatalytic activity under low vis
intensity radiation (9 W) was reported for phenylacetylide/Ag/Cu, which can completely
remove 10 mg/L of norfloxacin in 40 min [82]. Under the same experimental conditions,
the photocatalytic efficiencies decrease at 70.5% for naproxen, 64.3% for diclofenac, 47.6%
for bisphenol A, and 42% for sulfisoxazole. Silver nanoparticles insertion endowed the
composites with higher dispersion in aqueous solutions, which enhances their adsorption
capacity as the first step in the mineralization process. The composite could not directly
oxidize hydroxyl ions to radical due to its insufficient valence band potential (0.35 eV).
However, the presence of •OH is due to the H2O2 conversion, which was produced by the
disproportionation of •O2

− following protonation.

3.2.3. Other Examples of Polymer Composite-Based Materials

Other materials, such as g-C3N4, metal sulfides, mixed metal oxides, reduced graphene
oxides, etc., have been used to form polymeric-based composites with photocatalytic appli-
cations. Metal sulfides and mixed metal oxides have the advantage of larger light absorption
spectra and band gap modularity based on their composition. Reduced graphene oxides
and g-C3N4 may increase the active surface, providing more sites for oxidative species
development. Choosing the right materials ensures a balance between the interface com-
patibility, light sensitivity, chemical stability, and photocatalytic performance. By coupling
polypyrrole with g-C3N4, Han H. could remove 99% of methylene blue from a 10 mg/L so-
lution [83]. The composite uses low-intensity vis light (12 W) and a dosage of 0.05 g/50 mL
to generate the oxidative species. Pure g-C3N4 is a low photocatalytic material, which
indicated that polypyrrole addition can enhance the active radical’s production via electron
separation through the composite structure. Owing to the strong conductivity, the polypyr-
role was employed as the electron’s transition channel to move onto the g-C3N4 surface,
thus inhibiting the photogenerated carrier’s recombination. CdS was inserted in three
different polymers (polypyrrole, polythiophene, and polyaniline) in order to study the
photocatalytic removal of methylene blue from a 10 mg/L solution [84]. Due to the higher
gap between the polypyrrole LUMO level and the CdS conduction band energy compared
to that of polythiophene and polyaniline, the recombination rate in the polypyrrole/CdS
composite was lower, resulting in better photocatalytic efficiency (77% for polypyrrole/CdS,
71% for polythiophene/CdS, and 61% for polyaniline/CdS). During irradiation with a
300 W vis source, the CdS conduction band lay below the polymer’s LUMO level (−2.0 eV
for polypyrrole, −2.35 eV for polythiophene, and −2.56 eV for polyaniline). The photo-
generated electrons from the polymer LUMO level were injected into the CdS conduction
band and holes from the CdS valence band migrated to polymers HOMO, inducing the
oxidative and reduction reactions required for oxidative species development.

Polyaniline was associated with rGO/MnO2 [85], BiVO4/GO [86], and MoSe2 [87] in
order to evaluate the composite’s photocatalytic activity in methylene blue removal. The
polyaniline/rGO/MnO2 composite with a 10 mg/50 mL dosage could remove 90% of the
5 mg/L methylene blue solution after 120 min of irradiation with a 150 W vis source. The
second composite based on polyaniline/BiVO4/GO (100 mg/100 mL dosage) reached a
73% removal efficiency in 180 min of irradiation with a 500 W vis source. As presented
in Figure 6, both composites benefit from the graphene oxide conductive network which
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facilitates the charge carrier’s dispersion through the surface. The composites use the
synergistic effects induced by the electron transfer from GO to polyaniline/MnO2 or BiVO4
and the limited recombination of photo-generated electron–hole pairs originating from
of the ternary composition. Graphene oxide is a promising alternative for photocatalytic
application due to its unique properties such as zero band gap and high surface area, as
well as its ability to accept electrons in order to limit the charged carrier’s recombination.
Considering the polyaniline relative energy level (π-orbital and π*-orbital) and metal oxide-
GO band energy, the charges can directly migrate to the π-orbital of PANI. GO serves as the
electron migration medium that facilitates the charge transfer and homogeneous metal ox-
ide distribution in the composite. A comparative evaluation of the polyaniline/BiVO4/GO
photocatalytic activity toward other dyes shows that the composite can remove 82% of the
highly concentrated safrarine O solution (35 mg/L) and 62% of rhodamine B (4.8 mg/L)
using a similar radiation scenario described for methylene blue. The third composite based
on polyaniline/MoSe2 was tested for 120 min under 100 mW/cm2 vis irradiance and a
20 mg/100 mL catalyst dosage. The results indicate that 65% of methylene blue was re-
moved due to MoSe2 posse’s large surface area, high chemical stability, high surface activity,
and vis-NIR light-driven band gap. Additionally, 94% of methyl orange was removed by
the polyaniline/MoSe2 composite in 150 min using the same radiation parameters. During
irradiation, charge carriers’ generation took place in the polyaniline/MoSe2 composite due
to their narrow band gap energy. The MoSe2 valence band and polyaniline HOMO level
were positioned at 0.6 eV and 0.8 eV, favoring the hole migration from the polyaniline
HOMO level to the MoSe2 valence band. Polyaniline was also used to form composites
with LaNiSbWO4/GO in order to remove safrarine O (35 mg/L) and gallic acid (1.7 mg/L)
under radiation produced by a 500 W vis source [88]. The sample exhibits high photocat-
alytic activity, reaching 84% for safrarine O and 92% for gallic acid removal in 180 min.
Here, GO is considered as an electron acceptor which can enhance the charge carrier’s
separation, thereby suppressing their recombination and enhancing the photocatalytic
activity. In addition, the GO unpaired π electrons can interact with LaNiSbWO4 to increase
the light absorption range.
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Polyether tetraacrylate was used to form composites with Nd0.9TiO3 and LaTiO3 for
acid black dye removal from a 15 mg/L aqueous solution [89]. The photocatalytic efficiency
was similar for both composites (94% for polyether tetraacrylate /Nd0.9TiO3 and 95% for
polyether tetraacrylate/LaTiO3) after 30 min of exposure to UV light with 250 mW/cm2 irra-
diance. Titanate perovskites are thermically stable materials with remarkable high corrosion
resistance, which makes them suitable candidates for acidic environmental photocatalytic
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applications. The electrons located on the photocatalyst valence band (O 2p) were excited
and transferred to the conduction band (Ti4+, empty d orbital), which react with H2O and
dissolved oxygen molecules present in the aqueous solution to produce reactive radicals.
The photodegradation of high concentrated acid orange solution (70 mg/L) was studied
using the cyclodextrin/BiOBr composite with a catalyst dosage of 40 mg/40 mL [90]. The
composite photocatalytic efficiency was 99.2% in 60 min of irradiation with a 500 W vis
source. This result is a cumulative action of the porous cyclodextrin polymer characterized
by a high specific surface, high adsorption capacities, ultrafast adsorption performances, a
wide vis-light response range, and good chemical stability exhibited by BiOBr.

Polystyrene/divinylbenzene/Fe2O3 [91] and polypyrrole/Bi2MoO6 [92] composites
were tested for the removal of methylene blue from an aqueous solution with similar
concentration (5–8 mg/L). When the methylene blue solution was mixed with oxalic
acid (38.7 mg/L), the polystyrene/divinylbenzene/Fe2O3 composite with a 10 mg/100 mL
dosage reached 98% photocatalytic efficiency after 120 min of UV irradiation (20 W inten-
sity). However, if the aqueous solution only contains oxalic acid (88.2 mg/L) as pollutant
molecule, the photocatalytic efficiency may decrease at 73.6%. The composite exhibits
a larger specific surface area (655 m2/g) due to the three-dimensional scaffold network
which is beneficial for the sorption and holding of different pollutant molecules and im-
proves the photocatalytic overall performance. The porous polymer matrix can adsorb
intermediate compounds formed during photodegradation and simultaneously induce
a slow release of the organic pollutant and its intermediates into the bulk solution. A
similar efficiency (93.6%) was obtained by irradiating the polypyrrole/Bi2MoO6 compos-
ite with a 35 mg/50 mL dosage for 80 min with a 350 W vis light source. In the same
experimental conditions, the composite reached 88.3% photocatalytic efficiency in the
tetracycline solution with a 30 mg/L initial concentration. The construction of hierarchical
composite photocatalysts combining the Bi2MoO6 semiconductor and the polypyrrole
conductive polymer presents the advantage of uniform polymeric nanoparticle distribution
on the Bi2MoO6 nanosheet surface that could effectively accelerate the photo-generated
electron–hole pair’s separation. The tetracycline photocatalytic removal from a 10 mg/L
solution was tested under 90 min of vis irradiation provided by a 300 W source, using
4,7-dibromobenzo thiadiazole/4-ethynylphenyl amine/Bi2WO6 as a photoactive com-
posite [93]. The experiment was repeated with a 10 mg/L rhodamine B solution and a
20 mg/100 mL catalyst dosage. The results indicate similar photocatalytic efficiencies for
tetracycline (86%) and rhodamine B (84%) due to a tight heterojunction between Bi2WO6
and the polymer, extending the light absorption range and increasing the photogener-
ated charge separation and transport in the heterojunction interface. The mechanism
of charge photogeneration corresponds to a Z-scheme electron transfer, where the holes
form a Bi2WO6 conduction band, oxidizing H2O to •OH radicals, while •O2

− radicals are
produced by the electrons reacting with the adsorbed O2. The enhanced photocatalytic
efficiency can be induced by the p-conjugation polymer backbone possessing unique charge
separation and mobility properties.

The photocatalytic removal of erythrosine B and rose Bengal dyes was tested by irra-
diating the poly(trimethyl-propane triacrylate)/bis (acyl) phosphane oxide/H3PMo12O40
composite with 0.07 W/cm2 UV light [94]. After 120 min, irradiation of the composite
shows 81% photocatalytic efficiency for erythrosine B removal and 86% for rose Bengal
removal. When submitted to photolysis, the polymer component can generate •OH radicals
in reaction with H2O via an oxidative hole trapping mechanism. During the photocat-
alytic activity, the composite can increase the number of oxidative species due to the
photo-generation of simultaneous charge carriers induced by both components. A similar
composite based on poly(trimethyl-propanetriacrylate)/H3PMo12O40/W10O32(TH)4 was
evaluated for the removal of pharmaceutically active compounds from a 15 mg/L aqueous
solution concentration [95]. The composite was irradiated with a 250 mW/cm2 UV–vis
light source and the ibuprofen was completely removed in 90 min. However, if the irra-
diation time decreased at 75 min, the photocatalytic efficiency toward ciprofloxacin and
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oxytetracycline was 90%, and 86%, respectively. In the first step, the drugs were converted
in by-products, such as hydroxylated products or other new functional group intermediates
(including alcohols, olefins, and ketones). In 30 min of irradiation, the by-products were
completely mineralized by the strong oxidant species generated at the composite surface.
The photocatalytic degradation of the imidacloprid pesticide was investigated using a
simple polyimide/WO3 composite as the photocatalyst [96]. The pesticide concentration
was 20 mg/L and the composite was irradiated for 180 min with a 225 W vis light source.
The results indicate that the photocatalytic efficiency increases from 50% to 73.2% if the
catalyst dosage increases from 1 g/L to 2.5 g/L. The composite exhibits a lamellar structure
with a relatively small active surface of 11.49 m2/g. The composite photocatalytic activity
is based on the visible-light driven Z-scheme mechanism where the polymer is excited by
vis light, and their band potential must be matched in order to ensure the recombination of
photo-generated electrons from the polymer LUMO level and holes from the WO3 valence
band. Then, the useful charge carriers (h+ from polymer HOMO level and e− from WO3
conduction band) can participate in the oxidative species development. The insertion of
phosphorus can improve the efficiency of charge separation and induce the absorption
edge redshift.

4. Conclusions and Perspectives

This study has emerged to correlate the photocatalytic activities toward different pollu-
tant molecules with the polymeric composite content and testing conditions. The composite
photocatalytic activity depends on catalyst composition/dosage, the active surface area
characteristics (active sites, pores size, and volume), the pollutant type/concentration, and
the surface chemistry between the pollutant molecule and the catalyst. In processes such
as adsorption, decomposition, and diffusion, the desorption kinetics of the degradation
products may vary based on the chemically significantly different surfaces and composition.
The paper indicates that the balance between all these factors is essential and can provide
the pathway for higher photocatalytic efficiencies. Even in the situation of chemically
similar materials, the presence of various crystalline forms exhibits drastically different
activity. Switching from UV to vis spectra can improve the photocatalytic efficiency of the
polythiophene/TiO2 composite toward rhodamine B from 76% to 98%. However, higher
efficiency was reached with high energy costs considering the use of a 320 W vis light
source for 10 h. The silver insertion in different polymeric composites induced a significant
increase in the rhodamine B removal rate from 56.12% to 95%, which can be considered as
a suitable method to enhance the photocatalytic activity. When pharmaceutically active
compounds are used as target molecules, the dependency between the chemical compat-
ibility of drug molecules and catalyst surfaces must be carefully evaluated. The present
work has several limitations: (i) the numbers of references were reduced based on the most
representative papers, (ii) several papers which may be representative were excluded due
to the incomplete experimental description, and (iii) not all the parameters were considered
due to the space restrictions.

For future work, the development of catalytic composites via green routes could be
attempted, characterized, and compared with other commercially available nanomate-
rials. The green route application of composite materials is expected to add economic
and scientific value to the knowledge by promoting technological development in light
of the photocatalytic design. The composite materials could represent the following steps
to the a large-scale industrial transition for photocatalytic degradation based on sustain-
able energy processes. The challenge of scaling up photocatalytic composite applications
at the industrial level is one of the main issues not yet sufficiently addressed by the
scientific community.

Finally, most of the studies presented in the literature target the effects of temperature,
pH, pollutant concentration, or other technological parameters in relation to composite ad-
sorption and photo-degradation capacities, whereas the problem of real wastewater pollu-
tants is very rarely addressed. The wastewater usually contains various pollutant molecules
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which are ignored in most studies. The interface chemistry, absorption/desorption kinet-
ics, and photocatalytic activity are different when complex wastewater charge pollution
is considered.
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