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ABSTRACT 

 

 
Coronavirus Disease 2019 (COVID-19) is a pandemic disease caused by a new corona virus. COVID-19 affects different 

people in different ways. COVID-19 could affect the gastrointestinal system via gut microbiota impairment. Gut microbiota 

could affect lung health through a relationship between gut and lung microbiota, which is named gut-lung axis. Gut microbi- 

ota impairment plays a role in pathogenesis of various pulmonary disease states, so GI diseases were found to be associated 

with respiratory diseases. Moreover, most infected people will develop mild to moderate gastrointestinal (GI) symptoms such 

as diarrhea, vomiting, and stomachache, which is caused by impairment in gut microbiota. Therefore, the current study aimed 

to review potential role of gut microbiota in patients with COVID-19, its relation with lung axis, Central Nervous System 

(CNS) axis and improvement with probiotic therapy. Also, this review can be a guide for potential role of gut microbiota in 

patients with COVID-19. 
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INTRODUCTION 

 
Coronavirus Disease 2019 (COVID-19) is a pan- 

demic caused by a new corona virus, named as Se- 

vere Acute Respiratory Syndrome Coronavirus-2 

(SARS-COV-2). Accordingly, this disease  threatens 

public health of communities as a critical event (1). 

The virus was initiated in Hubei, China, at late 2019 

and then spread rapidly in many countries. There- 

fore, World Health Organization (WHO) stated this 

disease as an endemic and international concern on 

January 30, 2020 (2). COVID-19 led to 6,192,698 

cases of infection and more than 131,572 deaths since 

April 3 2020 in Iran (3). 

The COVID-19 functions as it uses angiotensin 

converting enzyme-2 (ACE2) receptors in various 

tissues (4). Spike protein of the virus detects the re- 

ceptor and then attacks the host via transmembrane 

 
*Corresponding author: Neda Rahimian, MD, Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University 

of Medical Sciences, Tehran, Iran; Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sci- 

ences (IUMS), Tehran, Iran.         Tel: +98-9125210321          Fax: +98-2188942622          Email: Rahimian.n@iums.ac.ir 

 
 

Copyright © 2022 The Authors. Published by Tehran University of Medical Sciences. 

                              This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International license 

                          (https://creativecommons.org/licenses/by-nc/4.0/). Noncommercial uses of the work are permitted, provided the original work is properly cited. 

 

1 

mailto:n@iums.ac.ir
https://creativecommons.org/licenses/by-nc/4.0/


NAZANIN ALIBEIK ET AL. 

2 IRAN. J. MICROBIOL. Volume 14 Number 1 (February 2022) 1-9 http://ijm.tums.ac.ir 

 

 

 

 
 

protease serine 2 (TMPRSS2) (5). Both ACE2 and 

TMPRSS2 proteins must be expressed in various 

tissues spontaneously, especially in lung and gas- 

trointestinal system (GI) to enter the cells (6). In 

addition, COVID-19 causes inappropriate immune 

responses, including the increased pro-inflammatory 

cytokines and subsequently cytokine storm induced 

inflammatory pathway, leading to the Acute Respi- 

ratory Distress Syndrome (ARDS) and multi-organ 

failure (7). A study performed in Wuhan, China re- 

ported that mortality rate in patients with COVID-19 

is mostly due to severe inflammation and cytokine 

storm, and there was a significant difference between 

patients expired and discharged regarding WBC val- 

ue, Lymphocyte count, and Interlukine-6 (IL-6) lev- 

els (2, 8). Immune responses and pro-inflammatory 

cytokines cause a change to gut microbiota as well as 

a subsequent change in integrity of gut barrier, which 

is accompanied with secondary infection and pneu- 

monia (9). 

Since SARS-COV-2 is similar to SARS-COV and 

causes respiratory symptoms, many studies were 

performed on findings of chest radiography (10). In 

contrast, the findings showed that SARS coronavi- 

rus viral RNA is detectable in feces of patients that 

a month has passed from their illness besides respi- 

ratory secretions (11). Accordingly, this fact can be 

considered as the reason for the presence of gastro- 

intestinal (GI) symptoms such as diarrhea, vomiting, 

and stomachache in patients with COVID-19 virus, 

which are caused by impairment in gut microbiota 

(12). Therefore, the GI symptoms in patients with 

COVID-19 should not be ignored (13). Moreover, 

epidemiologic studies conducted in various regions 

showed that the incidence rate of GI symptoms in pa- 

tients with COVID-19 is increasing over time, and 

Pan et al. reported this as 50.5% in 204 patients (14, 

15). Therefore, the current study aimed to review 

the potential role of gut microbiota in patients with 

COVID-19, as well as its relationship with lung axis, 

Central Nervous System (CNS) axis, and improve- 

ment with probiotic therapy. 

 
Gut microbiota. In human GI, there are more than 

1014  cells and 500 to 1000 bacterial species named 

gut microbiota (16). Microbiota is an asset of micro- 

organisms including bacteria, fungi, archaebacteria, 

and viruses living in various body organs like the 

human intestine, in response to the external environ- 

ment changes (17). The microbial population can be 

transmitted from a generation to the other one, and 

this plays a key role in preserving human health (18). 

Various projects on human microbiome showed 

that microbiota plays an important role in the de- 

velopment of immune system, defeating pathogenic 

microbes, intestinal synthesis of vitamins, defecation 

of toxin, basic metabolism of body, digesting the in- 

digestible substrates, and in total, in human beings’ 

survival (19, 20). Imbalance of gut microbiota is as- 

sociated with several diseases, including cancer, dia- 

betes, obesity, depression, and cardiovascular diseas- 

es (CVD) especially gastrointestinal (GI) disorders 

(21). Moreover, several studies showed that symbiot- 

ic bacteria in human play a key role in the functions 

of lung and brain (22, 23). According to variations in 

the human microbiome in each region and its direct 

effect on disease and treatment, studying the micro- 

biome is currently known as an important field of 

research (24). 

In patients with COVID-19, the structure, function, 

and diversity of their gut microbiota are impaired, 

since the expression of ACE2 decreases during a 

viral infection (25). Moreover, ACE2 regulates the 

expression  of  B0AT1  amino  acid  transporter  that 

is responsible for control tryptophan (Trp) uptake 

in the gut (26). Trp regulates the expression of the 

antimicrobial peptides mRNA levels via the mam- 

malian TOR (mTOR) pathway that has an effect on 

the microbiota (27). So, a decline in the expression 

of ACE2 leads to the decreased Trp absorption in in- 

testine and antimicrobial peptides secretion, the in- 

creased pathogen invasion, and consequently to gut 

dysbiosis (28). 

Many patients with COVID-19 who underwent 

treatment  with  antibiotic,  indicated  dysbiosis  and 

GI symptoms such as diarrhea, vomiting, and stom- 

achache, named as Antibiotic Associated Diarrhea 

(AAD) (29). Accordingly, AAD is a common com- 

plication of antibiotic therapy, occurring in approx- 

imately 50  to  75%  of  those  patients  who  receive 

antibiotics (30). Additionally, in patients aged more 

than 65 years old infected with COVID-19, the in- 

cidence of GI symptoms is higher than those aged 

under 65 years old (31). Because of aging-associated 

alterations in composition, diversity, and functional 

features of intestinal microbiota and in the incidence 

of dysbiosis in these individuals (32), exploring some 

strategies to restore a normal balance in gut microbi- 

ota is essential for improving an interaction between 

gut microbiota and key organs such as the lung and 
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the brain. Correspondingly, this can increase severi- 

ty of pulmonary and brain damages through gut-lung 

axis and gut-brain axis in patients with COVID-19. 

 
Gut-lung axis. Gut could affect lung health 

through a relationship between gut and lung micro- 

biota, which is named gut-lung axis (33). Evidences 

showed that there are microorganisms in lung similar 

to gut microbiota; however, in gut, Bacteroidetes and 

Firmicutes are predominant, and in lung, Bacteroide- 

tes, Firmicutes, and Proteobacteria are predominant 

(34). 

Dysbiosis in the gut microbiota plays a role in 

pathogenesis of various pulmonary disease states, so 

GI diseases were found to be associated with respi- 

ratory diseases (35). It was seen that inflammatory 

bowel disease (IBD) in about 50% of patients is ac- 

companied with pulmonary disease (36). However, 

they had no history of respiratory disorders. Addi- 

tionally, the excessive antibiotics’ consumption was 

found to be related to gut microbiota impairment, 

which is associated with the increased risk of lung 

cancer in people consuming penicillin, cephalospo- 

rin, macrolide, and quinolone (37). 

It was reported that the gut-lung axis might be re- 

ciprocal. Therefore, endotoxins and microbial me- 

tabolites can affect lung function, inflammation, and 

the gut microbiota (38). In this line, several studies 

reported some changes in function of the combina- 

tion of gut microbiota and respiratory infection (37). 

In this line, Chunxi et al. (2020) reported that “in- 

creasing evidence suggests an important and com- 

plex crosstalk between the gut and lung, as well as 

between the gut microbiota and host immunity”. Gut 

microbial dysbiosis is believed to be associated with 

the etiology or/and development of common respi- 

ratory diseases, such as asthma, COPD, CF, lung 

cancer, and respiratory infection. To date, the under- 

standing of the mechanism involving the gut-lung 

axis is still in its infancy and remains to be further 

elucidated (39). Dumas et al (2018) study demonstrat- 

ed that “Administration of microbes (using probiot- 

ics or faecal transfer), microbe components, or prod- 

ucts favoring their growth (e.g., prebiotics) has been 

suggested to confer host protection through direct 

competition with the disease‐causing microbes, en- 

hancement of epithelial barrier functions, or immune 

modulation during respiratory diseases (37).” Also, 

Sencio et al. (2021) study reported that “The gut mi- 

crobiota has a critical role in pulmonary immunity 

and host’s defense against viral respiratory infec- 

tions. The gut microbiota’s composition and function 

can be profoundly affected in many disease settings, 

including acute infections, and these changes can ag- 

gravate the severity of the disease” (40). The findings 

reported that the COVID-19 virus can be transmit- 

ted to the GI tract and gut through systemic blood 

circulation and lymphatic flow after impairing lung 

tissue (22). 

In general, gut and respiratory system were ob- 

served to be related to each other by modifying im- 

mune system functions (33). The balanced gut mi- 

crobiota has an important effect on lung immunity, 

so that germ free (GF) mice with no gut microbiota 

are not able to scavenge pathogens in lung (41). In 

response to an infectious pathogen like coronavirus, 

the healthy gut microbiome are considered as import- 

ant components in preserving optimum immune sys- 

tem functions, in order to inhibit immune overreac- 

tions, which is harmful for vital organs such as lungs 

(42). Of note, an overreaction and under-reaction of 

immune system both can lead to the exacerbation of 

clinical complications of patients with COVID-19 

such as pneumonia and ARDS (43). 

ARDS is a serious clinical sign, in pathogenesis of 

which, the destruction of gut microbiota plays an es- 

sential role (44). It was reported that the lung micro- 

biota is different in patients with ARDS and patients 

with no ARDS. Experimental studies over decades 

have indicated that the gut microbiome population 

have a prominent role in the pathogenesis of ARDS 

(45): antibiotic-suppressed and germ-free mice are 

prevented from the lung impairment and mortali- 

ty of experimental sepsis and a lot of clinical trials 

studies have indicated that prophylactic suppression 

of gut microbiome population by antibiotics is pre- 

ventive towards multi-organ impairment and death 

in patients with critical conditions (46, 47). Howev- 

er, the mechanism of the gut microbiome population 

involvement in ARDS is unclear, an assumption is 

that the lung microbiome is full of gut microbiome in 

human ARDS (48). Enrichment of the lung microbi- 

ome by gut-related microbiome lead to independent 

of the upper respiratory tract, related with severity 

of systemic inflammation states and cause to the re- 

sistance of live bacteria in the lung microbiome (49). 

Alveolar inflammatory cytokine such as tumour-ne- 

crosis factor-α (TNF-α) is a main mediator in ARDS 

patients that is highly related by changes in lung mi- 

crobiome (50). 
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Therefore, gut and lung microbiota can be recog- 

nized as a predictive factor for ARDS as well as for 

laboratory results of COVID-19 patients (51). It was 

observed that viral infection of influenza in the re- 

spiratory system of mice could also increase Entero- 

bacteriaceae and decrease lactobacilli and lactococci 

populations of the gut microbiota (52). 

 
Gut-central  nervous  system (CNS)  axis.  It  is 

worth noting that coronaviruses lead to neurologi- 

cal impairment. Several neurological complications 

of patients with corona, such ascranial neuropathy, 

encephalopathy and Guillain-Barre Syndrome, have 

been demonstrated (53). Also, genome sequencing 

indicated the presence of SARS-CoV-2 in the cere- 

brospinal fluid. According to various researches, cur- 

rent study proposed the hypothesis that COVID-19 

affecting CNS by gut-CNS axis (54). Many health 

aspects of brain are affected by gut function and flo- 

ra (55). Gut microbiota affects the CNS through the 

gut nervous system, named as the gut-brain axis (56). 

Notably, due to the similarity of the intestinal ner- 

vous system to the autonomous CNS, the intestinal 

nervous system is known as the second brain (57). 

Various studies have previously reported the recip- 

rocal relationship between gut and brain axis, which 

is from the gut microbiota to brain and from brain to 

gut microbiota using neural, endocrine, immune, and 

humoral links (58). 

Over one hundred million neurons exist in the gut, 

which can be linked to brain through the secretion 

of neurotransmitters (59). The neurotransmitters are 

secreted from three major sources, including neurons 

in brain, enterochromaffin cells, and gut microbiota 

that reach brain by blood flow (60). Many gut mi- 

crobiota are able to produce neurological active com- 

pounds such as tryptophan, serotonin, and leptin that 

have no appropriate functions in the absence of flora 

(61). Gut microbiota can directly affect some neu- 

rological disorders such as Parkinson, Alzheimer’s 

disease, Autism, Depression, and other psychiatric 

diseases through gut-brain axis. In contrast, stress 

and  depression  can  consequently  affect gut-brain 

axis (62, 63). Although some recent studies showed 

the importance of the gut-brain axis, one of the gaps 

in our current knowledge is the absence of a relation- 

ship between the SARS-COV-2 and nervous system, 

especially with the gut-brain axis (23). In addition, 

neuro-invasive and neurovirulence profiles were re- 

ported in many patients with types of coronaviruses 

such as SARS-COV-1 and MERS-COV, belonging to 

genetic group of beta corona virus COVID-19 (64). 

In SARS pandemic disease during 2002-2003, pa- 

tients showed some neurological complications, and 

SARS-COV-1 was seen in the cytoplasm of neurons 

by autopsy of brain tissue that  consequently led to 

tissue’s inflammation (65). Experimental mice trans- 

genic studies for ACE2 receptor showed that SARS- 

COV-1 virus could lead to brain attack through ol- 

factory nerves, which is accompanied with neuronal 

death (66). In contrast with SARS-COV-1, MERS- 

COV binds to Di-Peptidyl Peptidase 4 (DPP-4) re- 

ceptor from the cell surface to the cytoplasm, which 

is widely expressed in whole body, especially on the 

brain. Since SARS-COV-2 has a genetic and struc- 

tural and clinical aspects similar to SARS-COV-1 

and MERS-COV, many mechanisms involved in de- 

structing gut-brain axis could also be identical (67). 

Several previous studies showed that COVID-19 

accompanied with GI symptoms such as diarrhea, 

nausea, vomiting, and abdominal pain in patients 

would cause neurological complications (10, 68). In 

addition,  several  animal  studies reported  that  the 

brain does not grow at the same rate with the body 

in mice models with no microbiome (69). Moreover, 

it was shown that essential processes of brain such 

as development, myelination, neurogenesis, and mi- 

croglial activation are vigorously dependent on gut 

microbiota combination (70). As explained earlier in 

previous sections, SARS-COV-2 affects gut micro- 

biota through entering GI system, especially ACE2 

receptor in intestine, which consequently causes 

dysbiosis in the gut (17). Thereafter, it reaches CNS 

through blood flow or vagus nerve pathway and then 

causes neurological complications (71). Neurons and 

glial cells in CNS also express ACE-2 receptors on 

their surface, leading SARS-COV-2 to enter brain 

cells (72). As well, SARS-COV-2 use the DPP-4 re- 

ceptor from the brain cell surface to the cytoplasm. 

COVID-19 virus can directly reach CNS through 

olfactory nerve and blood pathways, and then cause 

neurological impairments (23). 

Neurological symptoms such as headache, the im- 

paired consciousness, and paresthesia might be mild 

at first, which subsequently become severe and cause 

the indication of some problems such as loss of con- 

sciousness, convulsion, and brain stroke (73). There- 

fore, it is logical to assume that when the COVID-19 

virus reaches to the gut, the severe clinical symptoms 

occur along with neurological disorders. 
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Probiotic. The intestine involves the regulation of 

lung and CNS function in various ways, such as ner- 

vous system, hormone system, and immune system. 

Increasing  evidence  shows  that  the  SARS-CoV-2 

can cause intestinal dysfunction, microbial imbal- 

ance, and immune disorder. Through the microbe- 

gut-brain and lung axis, the intestine, especially the 

intestinal bacteria, is most likely to be the major ap- 

proach for SARS-CoV-2 affecting the brain and lung 

function. It is therefore likely that brain and lung 

dysfunction would be secondary complication after 

SARS-CoV-2 infection. 

One of the most important factors affecting the gut 

microbiota is dietary regimen (74). Food is a main 

source of energy that lead to growth, develop, im- 

munity, tissue repair, homeostatic regulation, as well 

as source of energy for gut microbiota (75). Per- 

ceiving the association between the gut microbiome 

population and diet is necessary for improvement 

of next-generation therapeutic supplementation that 

target the microbiota in health (76). Food is able to 

affect the gut microbiome directly, which lead to alter 

biochemical reactions pattern in the gastrointestinal 

system (77). Intestinal microbes absorbed and trans- 

formed various nutrients into other metabolites that 

are ingested by the host (78). The various products 

of the biochemical transformation including short- 

chain  fatty  acids  (SCFAs),  biogenic  amines  (such 

as histamine) or other amino-acid-derived metabo- 

lites such as serotonin or gamma-aminobutyric acid 

(GABA) have main role in health and disease condi- 

tion (79). Moreover, the production leads to induce 

alteration in gut microbiome composition. Non-di- 

gestible carbohydrates food may be ferment in the 

intestinal lumen and lead to produce several SCFAs 

including acetate, propionate and butyrate (80). SC- 

FAs metabolites have main role in several biological 

pathways that provide energy sources for colonic ep- 

ithelial cells in gastrointestinal lumen. In addition, 

fermentation of prebiotic carbohydrates including 

inulin and fructo-oligosaccharides lead to induce 

proliferation of important gut microbiome such as 

Bifidobacterium spp. and Lactobacillus spp. in the 

gastrointestinal lumen (81). 

In this mean, the more affection of the gut micro- 

biota with probiotic source is so prominent in human 

and animal disease treatment. Regular consumption 

of probiotics, foods or supplements containing ben- 

eficial bacteria is a critical approach to establish eu- 

biosis condition, which is a state of gut microbiota 

balance (82). 

The word “probiotic” results from Greek and 

means “for life.” In 1954, Ferdinand Vergin under- 

stood the word “probiotic” in a paper with “Anti-und 

Probiotika,” title that various microorganisms were 

reported to make a list of beneficial bacteria and to 

assess the detrimental effects of antibacterial agents 

and antibiotics on the intestinal microbe (83). Due 

to  the  Food  and  Agriculture  Organization  (FAO) 

and the World Health Organization (WHO), probi- 

otics are known as live and non-pathogenic micro- 

organisms, so their sufficient consumption can affect 

health status through direct and indirect mechanisms 

(84). Clinical studies also confirmed that probiotics 

are effective factors on the improvement of treatment 

process of spectrum GI diseases such as Ulcerative 

Colitis (UC), acute infectious diarrhea, Irritable 

Bowel Syndrome (IBS), antibiotic resistance of diar- 

rheal pathogens, and necrotizing enteritis (85). 

Nowadays, most probiotic species in dietary sup- 

plements or pharmaceutical products belong to Lac- 

tobacillus and Bifidobacter. However, other bacterial 

species like bacteria that produce lactic acid, are also 

able to be applied in producing wide spectrum of 

fermented foods (diary and non-diary) (84). Modula- 

tion of the gut microbiota improves a several health 

disorders; probiotic consumption with a high-fat diet 

(HFD) demonstrated imbalanced of the gut microbi- 

ota composition with a decrease in the Gram-posi- 

tive bacteria phyla Firmicutes and Actinobacteria in 

animal models (86). In contrast, in another animal 

model of lipid disorders, the probiotic consumption 

of Lactobacillus caused to prominent alters in the 

gut microbioma population, including an elevated 

amount of Bacteroidetes and Verrucomicrobia and a 

decreased ratio of Firmicutes. It is obvious that pro- 

biotic sources consumption has prominent roles in 

maintaining the gut microbiota in humans and ani- 

mals gastrointestinal system (87). 

Health effects of probiotics on the gut microbiome 

can be performed in two ways, either dependent on 

living bacterium and its metabolic activity, or depen- 

dent on non-living compounds derived from micro- 

biota (88). Notably, probiotics produce the antimi- 

crobial factors or metabolic compounds (89), which 

compete for receptors with other gut microbes in the 

gut mucosa and consequently suppress the growth of 

other microorganisms and compete for active site of 

receptors and binding with other intestinal microbes 

on the intestinal mucosa (90). Probiotic species of 
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Lactobacillus may improve gut barrier function, 

which leads to the modification of immune response; 

the modulation of gut epithelial response; the de- 

creased bacteria translocation; endotoxemia; and 

various diseases such as GI infections, IBS, and IBD 

(89, 91). Moreover, probiotics may modify metabol- 

ic function besides directly affecting gut microbiota 

combination. Another mechanism involved in the ef- 

fect of probiotics on gut microbiome is their ability 

to bind to enterocytes, which leads to the prevention 

of pathogen binding to the host gut epithelium and 

the  production  of  antimicrobial  metabolites  such 

as bacteriocin, lantibiotics, short chain fatty acids 

(SCFA), and lactic acid. Moreover, active oxygen 

compounds like hydrogen peroxide (H O ) are also 

key organs such as the lung and the brain. Since the 

human microbiome is adaptable and can be re-seed- 

ed with the help of dietary changes, we reported an 

important nutrient in this field. Probiotics are recom- 

mended as a part of the dietary management of gut 

microbiome function. New types of probiotics may 

be used as further considerations in order to promote 

health, prevent disease, and treat various disorders. 

It is currently assumed that targeting brain and lung- 

gut microbiota axis through diet and dietary supple- 

ments containing probiotic can be an effective way 

in this regard. However, further studies are required 

to evaluate the association between probiotics and 

COVID-19 management. 

2    2 

among the mechanisms known in this regard (92-95). 

 
 

CONCLUSION 

 
In this review we have summarized the findings 

that indicate evidence for bidirectional interactions 

the gut-lung axis and gut-CNS axis via the host mi- 

crobiome in COVID-19 with implications for post- 

COVID-19 GI complications as well as for gut in- 

fections and consequently for lung and brain impair- 

ment. 

In summary, GI injury in COVID-19 patients can 

impair the structure, function, and diversity of their 

gut microbiota. Consequently, this can increase se- 

verity  of  pulmonary  and  brain  damages  through 

gut-lung axis and gut-brain axis in patients with 

COVID-19. The microbiota relation with lung is re- 

sulting from similar microbiota in gut and respiratory 

system were observed to be related to each other by 

modifying immune system function. The balanced 

gut microbiota has an important effect on lung im- 

munity and the germ free mice with no gut microbi- 

ota are not able to scavenge pathogens in lung. More- 

over, gut microbiota can affect the brain by using 

neural, endocrine, immune, and humoral pathways. 

In this mean, over one hundred million neurons ex- 

ist in the gut, which can be linked to brain through 

the secretion of neurotransmitters and many gut 

microbiotas are able to produce neurological active 

compounds such as tryptophan, serotonin, and leptin 

that have no appropriate functions in the absence of 

flora. Therefore, exploring some strategies to restore 

a normal balance in gut microbiota is essential for 

improving an interaction between gut microbiota and 
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