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Abstract: Sensors are devices that can capture changes in environmental parameters and convert
them into electrical signals to output, which are widely used in all aspects of life. Flexible sensors,
sensors made of flexible materials, not only overcome the limitations of the environment on detection
devices but also expand the application of sensors in human health and biomedicine. Conductivity
and flexibility are the most important parameters for flexible sensors, and hydrogels are currently
considered to be an ideal matrix material due to their excellent flexibility and biocompatibility. In
particular, compared with flexible sensors based on elastomers with a high modulus, the hydrogel
sensor has better stretchability and can be tightly attached to the surface of objects. However, for
hydrogel sensors, a poor mechanical lifetime is always an issue. To address this challenge, a self-
healing hydrogel has been proposed. Currently, a large number of studies on the self-healing property
have been performed, and numerous exciting results have been obtained, but there are few detailed
reviews focusing on the self-healing mechanism and conductivity of hydrogel flexible sensors. This
paper presents an overview of self-healing hydrogel flexible sensors, focusing on their self-healing
mechanism and conductivity. Moreover, the advantages and disadvantages of different types of
sensors have been summarized and discussed. Finally, the key issues and challenges for self-healing
flexible sensors are also identified and discussed along with recommendations for the future.

Keywords: flexible sensor; self-healing mechanism; conductivity; mechanical lifetime; hydrogel

1. Introduction

In recent years, research on flexible sensors in the fields of wearable devices [1–3],
health monitoring [4–8], and electronic skin [9–11] and smart sensor systems [12–14] has
attracted widespread attention. Due to its good flexibility and ductility, high sensitiv-
ity and small size, the flexible sensor can better monitor subtle changes in the external
environment, such as temperature [15–17], humidity [18,19], pressure [20] and deforma-
tion [21,22]. Compared with traditional sensors based on rigid semiconductors, metals
and ceramics, flexible sensors can convert subtle changes into detectable electric signals.
However, the accuracy and stability of the signal transmitted by the flexible sensor are
closely related to the sensor’s external environment and service lifetime [23]. To adapt to
harsh working environments, self-healing flexible sensors have been proposed in different
fields. According to the matrix material composition, self-healing flexible sensors can
be divided into self-healing flexible elastomer sensors [24–33] and self-healing flexible
hydrogel sensors [34–42].

Flexible elastomer sensors usually use flexible metals [43,44], polymer films [45,46] and
polymer elastomers [47,48] as substrates and are then combined with graphene [49,50], car-
bon [51,52], carbon nanotubes (CNTs) [53,54] and metal nanowires [55,56] as the conductive
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fillers to form the final sensors. However, due to the inherent properties of flexible metals,
polymer films and elastomers, these sensors always exhibit limited stretchability and poor
fatigue resistance. Conversely, the self-healing flexible hydrogel sensor has excellent flexi-
bility and biocompatibility, and simplicity in preparation, which has attracted the attention
of many researchers [57–60].

Improving the mechanical properties (e.g., tensile strength, compressive strength,
elongation at break and fatigue resistance) and conductivity are the keys to preparing
self-healing flexible hydrogel sensors. Mechanical properties are an essential requirement
for sensors and determine their working environment and lifetime. Conductivity is an-
other important element for sensors and directly affects the sensitivity and stability of
the sensor [61]. However, the commonly used hydrogels often have deficiencies in both
mechanical properties and conductivity. To improve the performance mentioned above,
one common method is incorporating another component into the hydrogel matrix, such
as conductive polymers or nanoparticles [62,63], to improve the mechanical properties
and conductivity of the hydrogel. These introduced components can form a conductive
network in the hydrogel to transfer electrons and finally result in good conductivity [64].
Generally, the higher the content of the filling components, the better the conductivity,
while more filling components in hydrogels easily promote filler agglomeration and result
in phase separation between the filling component and polymer matrix, subsequently
reducing the stretchability, toughness, fatigue resistance and self-healing property of the
sensors [65–68]. Typically, surface modification of the conductive filler or cross-linking
agent is used to improve the affinity of the conductive filler to the hydrogel matrix and
inhibit phase separation. Another form of conductivity of hydrogels is ionic transmis-
sion [69]. For ionic conductive hydrogels, adding salts (e.g., LiCl, NaCl or KCl) to the
hydrogel network creates a large number of freely moving ions. Thus, ionic hydrogels can
enhance conductivity while maintaining good mechanical properties [70,71]. Furthermore,
ionic hydrogels have better transparency than electronic conductive hydrogels, allowing
their applications in the biomedical field [72,73].

Over the past few decades, self-healing hydrogels have been extensively investigated
due to their conductivity and self-healing properties, and many outstanding contributions
have been obtained. However, few review articles focusing on the self-healing mechanism
and conductivity of hydrogel sensors have been reported, and almost no article can give us a
comprehensive understanding of the mechanism and conductivity of self-healing hydrogel
sensors. Many recent review articles mainly focus on the fabrication and application of
hydrogel sensors [74–78]. The goal of this review is to provide researchers with a systematic
and comprehensive understanding of the self-healing mechanism and conductivity of
flexible hydrogel sensors. As summarized in Figure 1, the route to achieve self-healing
of hydrogels is by noncovalent or reversible dynamic covalent bonding in polymeric
materials, and enhancing the conductivity of hydrogels by the addition of conductive
fillers, conductive polymers or conductive ions. In addition, we aim to help researchers
design and manufacture flexible sensors according to the self-healing mechanisms and
conductive categories.

This review aims to provide a comprehensive account of the latest progress in self-
healing flexible hydrogel sensors. First, we summarize the mechanism of self-healing
flexible materials and their latest developments in flexible sensor applications. Second, the
conductive categories of the self-healing hydrogel flexible sensor were reviewed. This study
ends with a brief conclusion and perspective on this rapidly developing and promising
field of flexible sensors.
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Figure 1. Illustration of self-healing mechanism and conductivity of hydrogel-based sensor.

2. Self-Healing Mechanism of Hydrogel

In recent years, breakthroughs have been made in research on hydrogels, but most
hydrogels still have poor mechanical strength and are susceptible to damage (accidental
fracture, etc.), leading to some microscopic or macroscopic cracks [79,80]. As these cracks
are further extended, the structure of the hydrogel network is destroyed, its mechanical
properties are significantly reduced and its original function is lost, resulting in a waste of
resources. To reduce environmental pollution and save resources, it is necessary to study
self-healing materials that can prolong life cycles via the autonomous repair of damage [81].
The self-healing ability allows the hydrogel to recover from the damage it has sustained,
thus maintaining its main properties and functions, and finally extending the service
lifetimes of the materials [82–84]. The self-healing properties of polymeric materials can
be divided into extrinsic and intrinsic self-healing, depending on whether the self-healing
component is inserted into the polymer or the original component in the polymer matrix.
Extrinsic self-healing materials can heal by encapsulating the components that enable
healing, such as monomers, that are dispersed in matrix materials in the form of capsules,
and the components inside the capsules are released upon damage. This method has
difficulty achieving repeated self-healing. In the second category of intrinsic self-healing
materials, healing is achieved through noncovalent or reversible dynamic covalent bonds
in polymeric materials. When a hydrogel is subjected to external forces, the covalent or
noncovalent bonds in the gel will break, forming a fracture surface. By re-contacting the
fracture surface, the polymer chain segments interpenetrate and re-establish the dynamic
cross-linking sites in the damaged area to repair the network structure of the hydrogel and
restore its original mechanical properties and function to a certain extent. Table 1 compares
the different performance (such as self-healing time, efficiency and mechanical property
recovery) of different hydrogels in detail.
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Table 1. Comparison of the different performances of self-healing hydrogels.

Hydrogel Materials Self-Healing
Systems

Self-Healing
Time

Mechanical
Healing Efficiency

Mechanical Property
Recovery Ref.

PAAm/SDS/NaCl/C18-C22 noncovalent a few seconds ~100% break at elongation ratios [85]
κ-CG/PAA noncovalent 24 h 67% toughness [86]

HPAAN/PDA noncovalent 5 h 49%, 67%, 78% mechanical strength, tensile
strain, modulus [87]

XG/MMT/PAAm noncovalent 24 h 70% tensile [88]
PVA/Agar/AS noncovalent – 27.8%, 82.9% tensile stress, tensile strain [89]

f-BNNS/clay/PNIPAM noncovalent 6 h ~70% tensile [90]
βCD-Ad noncovalent 24 h 84% strength [91]

PPy/G-Zn-tpy noncovalent 60 s ~100% strength [92]
PVA/AMCS7/ADA covalent 12 h – – [93]

OSA/PAM covalent 6 h >70% tensile strength [94]
LA/PAA/Fe3+ covalent 14 h 86% fracture stress [95]
PVA/SA/NaCl covalent 15 s well restored heavy object pull test [96]

CNC/PEG covalent 24 h 78% tensile strength [97]

Abbreviation: κ-carrageenan (κ-CG); stearyl methacrylate (C18); dococyl acrylate (C22); montmorillonite (MMT); xanthan gum (XG);
ammonium sulfate (AS); functionalized-boron nitride nanosheets (f-BNNS); acetonitrile-based supramolecular gel (G-Zn-tpy); oxidized
alginate (ADA); acrylamide-modified chitosan (AMCS7); oxidized sodium alginate (OSA); α-lipoic acid (LA).

2.1. Noncovalent Interactions

Noncovalently cross-linked hydrogels have been developed to assemble self-healing
hydrogels using various mechanisms, including hydrophobic interactions, hydrogen bond-
ing, host–guest interactions and metal coordination leading to dynamic and reversible
networks. When the hydrogels are subjected to an external force, the noncovalent inter-
action in the network will dissociate and associate, and the hydrogel will have hysteresis
in the process of deformation and recovery, dispersing the energy [98]. Thus, the hydro-
gels exhibit reproducible features and a fascinating self-healing ability. However, these
hydrogels have stimuli responses and are less mechanically robust structures.

2.1.1. Hydrophobic Associations

Hydrophobic associated hydrogels are physically cross-linked hydrogels formed by
hydrophobic interactions [85]. The preparation of hydrophobic association hydrogels gen-
erally adopts the micellar polymerization method [99]. Micelle polymerization is formed
by introducing the hydrophobic segment into the hydrophilic polymer segment for copoly-
merization, and the hydrophobic segment serves as the dynamic cross-linking point of
the hydrogel. When the hydrogel is stretched, these physically cross-linked points could
dynamically dissociate/associate to reorganize the polymer chains, distributing the ap-
plied stress uniformly over the entire network. Meanwhile, physically cross-linked points
dissipate the energy by a large hysteresis [86]. In micellar polymerization, hydrophilic seg-
ments, hydrophobic segments and surfactants are required [87,88]. Tuncaboylu et al. [100]
reported a hydrophobic interaction self-healing hydrogel. Using stearyl methacrylate as
the hydrophobic monomer and n-alkyl(meth)acrylate as the physical cross-linking agent,
copolymerization in wormlike sodium dodecyl sulfate (SDS)/NaCl aqueous solutions was
performed to prepare the hydrogel. Additionally, the effects of the length of the alkyl
side chain of the hydrophobe and the surfactant concentration on the properties of the
self-healing gel are discussed.

To enhance the mechanical properties of hydrogels, self-healing hydrogels are usu-
ally designed by combining hydrophobic association effects with other physical interac-
tions [101]. A composite hydrogel was prepared by incorporating grape seed-extracted
polymer (GSP) into an acrylamide, methacrylate stearate matrix [102]. As the side chains of
GSP contain carboxyl groups, ammonia groups, hydroxyl groups and alkyl groups, these
groups tend to form dynamic noncovalent bonds (hydrogen bonds, ionic interactions and
hydrophobic association) in the hydrogel, which could dissipate energy efficiently. The
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hydrophobic association existing in the system can self-heal after being broken, which
gives the hydrogel excellent mechanical properties and self-healing properties, as shown
in Figure 2a.
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Yang et al. [103] proposed a polyacrylamide (PAM)/cellulose nanofiber (CNF)/multiwalled
carbon nanotube (MWCNT) hydrogel by in situ polymerization. CNFs dispersants uni-
formly disperse the MWCNTs in the hydrogel and strengthen the mechanical properties of
the hydrogel by hydrophobic interactions and electrostatic repulsion. The prepared hy-
drogel had conductivity, an electromagnetic shielding function and self-healing properties.
The hydrogel could be bent 1000 times without breaking after self-healing. The hydrogel
could completely self-heal in approximately 7 days, with a healing efficiency of 77.2%.

2.1.2. Hydrogen Bond

Hydrogen bonding, as a type of physical interaction, is formed by the short-range
supramolecular interaction between an electron-deficient hydrogen atom and an electron-
rich species [89,104]. The hydrogen bond can be broken by heating. It can also be re-
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generated at a certain temperature. This reversible effect enables the material to achieve
self-healing effects [90]. Due to the inherent weakness of hydrogen bonding, hydrogen
bonding can be susceptible to competition with the surrounding water molecules, poten-
tially weakening the mechanical properties of hydrogels.

Improvement in the mechanical properties of hydrogels can be achieved by designing
the network structure of the hydrogel, such as a double-network hydrogel. A double-
network hydrogel with poly (acrylamide-co-acrylic acid) (PAM-co-PAA) as the first network
and polyvinyl alcohol (PVA) as the second network was prepared [105]. The first network
was formed by free radical copolymerization, and the second network was created by
freezing and thawing a large number of hydrogen bonds as cross-linking points. The
mechanical properties and self-healing properties of the hydrogel were improved by these
hydrogen bonds as shown in Figure 2b. The hydrogen bonds can also be derived from the
interaction of C=O and N-H, in addition to the hydroxyl groups.

In addition, hydrogen bonding is often combined with other cross-linking interactions
to produce self-healing hydrogels with excellent mechanical strength. The self-healing
hydrogel was also prepared by carboxymethyl cellulose (CMC) in a paste with water and
acidified with a citric acid solution [106]. The self-healing effect was the best when the
hydrogel was soaked in citric acid at a concentration of 8 mol/L. When the hydrogel was
cut in half and re-contacted, the uncross-linked CMC built new hydrogen bonds with
hydrogen ions, thereby restoring the damaged area of the hydrogel. The self-healing effi-
ciency reached 81%, and the compressive strength reached 2.3 MPa. Hydrogen bonds can
also work with other chemical bonds to improve the mechanical properties of the hydrogel.
Wang et al. [107] added acrylic acid and methylene bisacrylamide to a mixed solution of
cellulose and PVA, and a double-network hydrogel was obtained by UV-induced polymer-
ization. The cutting hydrogel contacted for 16 h, and the cracks disappeared completely
and could be bent, at room temperature. This double-network structure improved the me-
chanical properties of the hydrogel. In addition, the self-healing properties of the hydrogel
were also improved by forming hydrogen bonds and metal coordination bonds.

In addition, the introduction of 2-uridine 4-pyrimidinone (UPy) in the preparation
of hydrogels has enabled excellent self-healing properties. UPy has been widely used
as a multi-hydrogen bonding motif in supramolecular chemistry due to its higher inter-
molecular bonding strength than single hydrogen bonds. For example, the UPy group was
used as a cross-linking point with a PANI/PSS network to form a self-healing conductive
hydrogel [108]. The hydrogel completely self-heals within 30 s after damage due to the
multiple hydrogen bonds generated by UPy. Furthermore, the combined effect of multiple
hydrogen bonds and metal–ligand coordination not only enables the hydrogel to achieve
rapid self-healing, but also improves the mechanical properties of the hydrogel (the tensile
strength of the self-healed hydrogel reached 7.9 MPa). This hydrogel also has excellent
self-healing properties. The damaged hydrogels can recover 91% of their initial properties
within 1 h [109].

2.1.3. Host–Guest Interaction

The host–guest interaction is a type of noncovalent interaction formed by the phys-
ical insertion of the guest’s moiety into the host moiety [91]. Generally, host molecules
include cyclodextrins (CDs), pillar[n]arenes, crown ethers, calix[n]arenes, cucurbiturils and
adamantane. The commonly used guest molecules include ferrocene, azobenzene, cholic
acid and N-vinylimidazole derivatives.

Among the frequently used host molecules, CD has lipophilic inner cavities and
hydrophilic outer surfaces, enabling high-affinity interactions with specific hydrophobic
guest moieties. Specifically, as the most important member of the CD family, β-cyclodextrin
(β-CD) is most widely produced and possesses a cavity that matches the size of numerous
guest molecules and can be easily crystallized, separated and purified. Furthermore, β-CD
inclusion complexes can enhance the resistance of the encapsulated guest molecules to
various environments, such as acidic and alkaline media, light and heat [110–112]. A self-
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healing hydrogel was synthesized by the host–guest interaction between the hydrophobic
isopropyl group of N-isopropylacrylamide (NIPAM) and β-CD [110]. The main procedure
is shown in Figure 2c. The isopropyl group in NIPAM serves as the guest component and
β-CD serves as the host component to form a host–guest complex. Hydrogels have a variety
of hydrogen bonds and host–guest interactions. Extensive comparative experiments have
shown that the host–guest interaction is the principal factor influencing the self-healing
of hydrogels. The hydrogel, cut into two pieces, is capable of rapid self-healing at room
temperature. The self-healing ability of the hydrogel was measured by its weight-bearing
capacity before and after healing. For example, the original hydrogel (before cutting)
could bear 200 g and after healing it could bear 55 g. Therefore, the self-healing efficiency
is approximately 28%. Adamantane, as the guest molecule, can form a stable inclusion
complex with the β-CD cavity and has a high binding constant with the β-CD cavity
compared with other guest molecules. Rodell et al. [113] used methacrylate to modify
hyaluronic acid and further used it as the main chain of β-cyclodextrin/amantadine
(β-CD/Ad) to prepare a double network hydrogel with self-healing properties. The cross-
linking point of the first network was formed by the host and guest interaction, and the
second network was a methacrylate network. Not only were the mechanical properties
greatly improved, but self-healing could also be completed in an instant. The experimental
results show that the cut hydrogel fragments heal quickly within about 1 s. However,
hydrogels synthesized by chemical processes take a long time and produce toxic byproducts
that are unsuitable for biological applications. Therefore, a nonchemical grafting method
to prepare hydrogels was proposed [114]. In this hydrogel, the amphiphilic substance
N,N-dimethyl-1-adamantane (DM-AD) was used as a cross-linking agent, and CMC and
poly β-cyclodextrin (β-CDP) were used as the polysaccharide skeleton. One end of DM-AD
is the adamantly group, which is wrapped by β-CDP through host–guest interactions. The
nitrogen atom at the other end combines with protons to form a quaternary ammonium
compound and is electrically attracted to the carboxyl anion. To verify the self-healing
ability of the hydrogel, two identical hydrogels were stained with different colors and
cut from the middle of hydrogel. Take two different colored hydrogel cut surfaces into
contact with each other. After much time (more than 0.5 h), the hydrogel was completely
healed, and there was no obvious sign of fracture on the fracture surface of the hydrogel.
In addition, stretching the ends of the hydrogel again, the hydrogel did not fracture.

In summary, by changing the host and guest monomers and polymers, different
synthetic methods can be utilized to design and prepare host–guest complexes according
to the different applications. Self-healing hydrogels containing reversible host–guest
interactions exhibit some advantages, such as a repeatable healing process without any
external energy, long storage time and high healing rate. Self-healing based on host–guest
interactions is still a wide field for research due to the diversity of guest molecules and
their reversible nature.

2.1.4. Metal Coordination

Metal coordination is a supramolecular structure that introduces metal ions and
organic ligands into the matrix. Metal coordination interactions have a wide selection of
metal ions (Fe3+, Zn2+ and Cu2+) and ligands (-COOH, -NH2 and -OH), which can respond
quickly to external stimulation. Meanwhile, their coordination strength and applicability
cover a large range of natural and synthetic polymers, thus metal coordination interactions
are widely used in the synthesis of self-healing materials.

Lee et al. [115] modified CNTs with mussel adhesion protein to improve their compat-
ibility with polymer materials and enabled CNTs to be uniformly dispersed in the solution.
Then, Fe3+ was added to the solution to form a reversible metal coordination with the
carboxyl group, which acted as the physical cross-linking point of the system. However,
when the hydrogel is damaged, the metal coordination interaction between the carboxyl
group and the Fe3+ ion at the affected area can be re-established to form a new physical
cross-linking point to achieve fast self-healing. In fact, the healing time directly affects the
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performance of the sensor. Therefore, many researchers have focused on how to shorten
the healing time of hydrogels by some methods, such as a self-healing conductive hydrogel
that introduces Zn2+ and 2,2′:6′,2′′-terpyridine (tpy) ligand into a polypyrrole (PPy) matrix
with good conductivity by sol–hydrogel conversion [92]. Its excellent conductivity could
reach 12 S m−1. The coordination of Zn2+ could connect the separated PPy chains to
reform the supramolecular structure and achieve the self-healing of the material after the
hydrogel was broken. Self-healing could completely restore its original conductivity at
room temperature in 1 min.

In addition to using the method of chemical cross-linking to prepare this type of
hydrogel, the approach of physical cross-linking cannot be ignored. Hussain et al. [116]
added Fe3+ as the cross-linking agent to the physical cross-linking network formed by
hydroxyethyl cellulose and PAA. The metal–ligand effectively dispersed energy and im-
proved the mechanical properties of the self-healing hydrogel. In enhancing the mechanical
properties of hydrogels, double metal coordination bonds are also used to prepare hydro-
gels. Shao et al. [117] proposed a physically cross-linked CNF composite hydrogel by a
one-pot strategy. Self-healing was achieved by double metal coordination bonds (iron ions
and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized CNFs and carboxylate ions on
PAA) and hydrogen bonds (PAA and CNF molecular chains). Fe3+ and CNFs were used as
the cross-linking agents to improve the mechanical properties, such as excellent fracture
strength (1.37 MPa), fracture elongation (1803%) and fast self-healing (95.7% recovery ratio
within 1 h). Tannic acid (TA) was coated on the surface of nanocrystals (CNCs) by static
electricity, and AA polymerization was carried out in situ by free radicals in TA@CNC so-
lution [118]. Aluminum ions were then introduced to form a variety of coordination bonds,
as shown in Figure 2d. A nanocellulose-reinforced hydrogel material with a dynamic
cross-linking structure and excellent self-healing properties was prepared. The hydrogel
could directly adhere to human skin and be used as a wearable electronic sensor to detect
large deformations (wrist swings) and weak physiological signals (pulse beats).

2.2. Dynamic Covalent Bonds

Repeated self-healing of hydrogels is also possible by forming reversible dynamic
covalent bonds in the hydrogel network. Because the bonding strength of dynamic covalent
bonds is higher than that of noncovalent bonds, these hydrogels possess good mechanical
strength. In addition, these hydrogels also have some other excellent properties, such as
pH sensitivity, redox sensitivity and temperature sensitivity. Currently, some dynamic
covalent bonds have been successfully utilized to prepare self-healing hydrogels, containing
Schiff base linkages, disulfide bonds, boronic/boronate ester bonds and Diels–Alder (DA)
reactions. Such covalent links are formed by reversible couplings, and hydrogels are
formed via the association equilibrium between rupture and reformation.

2.2.1. Schiff Base Linkage

Schiff base linkage [93,94] is derived from the condensation of carbonyl groups with
amines and used as one of the driving forces for self-healing hydrogels. The Schiff base
reaction (imine, acylhydrazone bonds) is mediated by the nucleophilic attack of the N
atom of the amino group on the electrophilic carbon atom of the aldehyde/ketone, which
takes place in an aqueous solution under physiological conditions and generates nontoxic
products, ensuring good biocompatibility for Schiff base reaction-based hydrogels. In
addition, it has a high chemical reaction selectivity and rapid reaction speed. Once the
Schiff base linkages in the network structure are disrupted, the amino or hydrazide groups
on the fracture surface rapidly react with the aldehyde groups in contact and form imine
or acylhydrazone bonds again, thus reconfiguring the hydrogel matrix for self-repair. It is
worth noting that the Schiff base is only stable in an alkaline or neutral environment.

In recent years, polysaccharides (such as chitosan, hyaluronic acid, sodium alginate,
cellulose and dextran) have become ideal matrix materials to prepare self-healing hydrogels
with acylhydrazone bonds. This is mainly because their backbones carry a large number
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of functional groups that can participate in the Schiff base reaction either in a direct way
(such as the primary amine groups of chitosan) or after being modified into aldehyde and
amine groups. Among them, chitosan is a nontoxic, biodegradable and biocompatible
polysaccharide that can only be soluble in acidic aqueous solutions. Therefore, researchers
have enhanced chitosan’s water solubility by chemical modifications or conjugations with
a specific ligand, making it suitable for the conditions of Schiff base reactions.

Zhang et al. [119] used a large amount of -NH2 on chitosan (CS) to condense with
benzaldehyde groups on dibenzaldehyde-terminated telechelic PEG to form imine bonds.
The study found that this could quickly form a hydrogel within 60 s after contacting CS
with telechelic PEG at 20 ◦C. The self-healing experiment showed that the incision on the
hydrogel gradually decreased over time and could be completely healed within 15 min,
after the hydrogel broke. The broken hydrogels could self-heal by the dynamic properties
of Schiff base linkage. To obtain the self-healing hydrogels with high performances, a
self-healing hydrogel formed of oxidized sodium alginate (OSA) and acrylamide (AM)
monomer by schiff base reaction was prepared [94]. Figure 3a shows the process of the
self-healing hydrogel. The different colored hydrogels were cut into two semicircular
hydrogels. Then, the separated semicircular hydrogel was contacted for a period of time,
and the fractured surfaces joined together and healed. After self-healing, the hydrogel
still retained excellent mechanical and conductivity properties. Yang et al. [120] used
modified carboxyethyl cellulose with dibenzaldehyde-terminated PEG under the catalysis
of 4-amino-DL-phenylalanine to form a self-healing hydrogel. The prepared hydrogel
not only had better self-healing ability but also had dual responsiveness to pH and redox
agents. This is because the acylhydrazone bond is more sensitive to pH and the disulfide
bond is more sensitive to redox agents. As mentioned in previous studies, the imine and
acylhydrazone bonds in Schiff base reaction-founded self-healing hydrogels can be formed
under mild conditions and not only allow facile preparation of hydrogels without any
stimulation, but also bestow the self-healing ability. Therefore, Schiff base reaction-founded
hydrogels prepared through some modification strategies and methods will promote the
development and effective application of hydrogels.
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2.2.2. Disulfide Bond

The disulfide bond [121] is a dynamic covalent bond based on the thiol/disulfide
dynamic exchange reaction, which is sensitive to many factors such as acid, alkali and
ultraviolet light. Li et al. [122] proposed a photosensitive cellulose-based self-healing hy-
drogel by embedding thiuram disulfide bonds into hydrogels via the polyaddition method.
The hydrogel could realize rapid self-healing within 2 min, and the cracks disappeared
completely under visible light irradiation (Figure 3b). The reason is that the dithiocarba-
mate ester bonds in the CNC-containing hydrogel could be the result of homolytic cleavage
under visible light and produce dormant dithiocarbamyl radical intermediates. When
the fracture surfaces were in contact with each other, the dithiocarbamyl radicals broke
and recombined on the re-contacted surfaces by exchange and transfer reactions, and the
covalent S–S bond was reconstructed to realize the healing of the fracture surface. The
self-healing efficiency reached 97%, and the hydrogel could be stretched 42.6 times of the
original length. Usually, disulfide bonds are combined with other covalent or noncovalent
bonds to enhance the mechanical properties and self-healing efficiency of hydrogels. Dang
et al. [95] prepared a healable ionic hydrogel with acrylic acid (AA), choline chloride and
ferric chloride through a simple, fast process. The self-healing properties are achieved
due to the contribution from disulfide bonds, hydrogen bonds and coordination bonds
in the hydrogel. Hydrogels can be used directly as wearable sensors to monitor human
movement [123].

2.2.3. Boronic/Boronate Ester Bond

Boronic/boronate ester bonds are formed via a combination of boronic acid and 1,2- or
1,3-diols. These bonds can be formed or broken reversibly depending on the pH or aqueous
media. Boronic acid can selectively bond to diols to form boronic esters or boronate esters;
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therefore, boronic acid can be applied in sensors as a component in drug delivery systems
and self-healing materials [96].

In polymer networks containing boronic ester bonds, these bonds undergo facile
bond exchange via associative or dissociative mechanisms. Lu et al. [124] designed a self-
healing hydrogel with boronic ester bonds as the driving force. The process consisted of
3-acrylamidophenylboronic acid (AAPBA) and acrylamide (AM) chain copolymerization
and covalently cross-linked with hydroxypropyl guar gum (HPG). The tensile strength
increased as the AAPBA, HPG and AM increased. In the hydrogel, the phenylboronic acid
groups in AAPBA combined with the 1,3-cishydroxyl moieties of HPG formed dynamic
covalent phenylboronic (PBA)-diol ester bonds and endowed the hydrogel with good
self-healing properties and tensile properties. The hydrogel (cut into two pieces) could be
completely restored for 30 min at room temperature. It was found that the formation of
PBA ester bonds was dependent on the pH value. In an acidic environment, AAPBA did
not react with HPG, and the hydrogel had poor tensile stress. When the pH was higher
than 8.2, stable boronic ester bonds were formed in the hydrogel.

In addition, boronate ester bonds are another dynamic covalent bond formed by free
boronic acid and diol. In many studies, borax has been used as an alternative to boric acid,
combining with diols to form dynamic B-O bonds, and dynamic B-O bonds are usually
regarded as boronate esters. Because the borax can be hydrolyzed in water to form boric
acid and borate ions, it has been widely used as a cross-linking agent in the preparation of
PVA–borax hydrogels. Lu et al. [125] used the reversible dynamic boronate bond to mix
with the microfibrillated cellulose (MFC) obtained by ball milling with borax, and then
added a PVA solution to prepare a pH-responsive self-healing hydrogel. The hydrogel
containing 3.0% MFC could be stretched 3000%, while the hydrogel without MFC was
easily broken. This indicated that MFCs could improve the mechanical properties of the
hydrogel. Then, the self-healing process of the two hydrogels was observed, as shown in
Figure 3c. After 10 min, the broken hydrogel could be healed. Moreover, the hydrogel was
sensitive to pH as it showed a repetitive sol–gel phase transition depending on the pH.

However, traditional self-healing hydrogels have long self-healing times. Modifying
the components of the hydrogels could greatly shorten the self-healing time and increase
the conductivity of the hydrogels [96]. In these hydrogels, dynamic boronate bonds were
formed by PVA and benzoboric acid groups. The separated hydrogel was contacted for
15 s, and the fractured surfaces could join together and heal together.

2.2.4. Diels–Alder Reaction

The Diels–Alder (DA) reaction [126], also known as diene addition, is the reaction of
conjugated diene and dienophile to generate substituted cyclohexene. The DA reaction, as
one of the “click chemistry” reactions, plays an important role in the preparation of various
functional hydrogels due to its high efficiency, high selectivity and lack of side reactions and
byproducts [127]. Additionally, the DA reaction possesses atomic economy and generally
requires no catalyst or initiator. Interestingly, the DA reaction is reversible under certain
conditions (e.g., at elevated temperature or in organic solvents). Hence, the DA reaction has
been used for the preparation of hydrogels. DA reaction-founded hydrogels can be healed
by the reversible formation and breakage of covalent bonds upon heating. Specifically, in
the damaged hydrogel, the Diels–Alder bonds break upon the application of heat, and
the chains become elastic at high temperatures. The elastic chains move to the fracture
site to reform the Diels–Alder bonds upon a decrease in temperature, and self-healing
occurs as the network is reformed. Shao et al. [97] reported a tough, highly elastic and fast
self-healing hydrogel with an interpenetrating network by the Diels–Alder click reaction.
The synthesis process of self-healing hydrogels is shown in Figure 3d. The furan group
at the crystal end of the modified CNFs and the maleimide at the end of the polyethylene
glycol form a thermally reversible covalent bond. As a reinforcing agent and chemical
cross-linking agent, CNFs can improve the mechanical properties of the hydrogels.
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3. Conductive Categories of Self-Healing Hydrogel for Flexible Sensors

Wearable flexible devices are one of the main application fields of flexible sensors,
which require the matrix materials of sensors to have good biocompatibility. Currently,
most sensor devices are based on inorganic materials (such as metals and silicon) with
good conductivity. However, the physical and chemical properties of these inorganic
materials are significantly different from those of biological tissues. Inorganic material
sensor devices may cause inflammatory reactions in the body when in direct contact with
the skin, and the signals collected may be inaccurate. Conductive hydrogels with self-
healing properties have shown great potential in sensor devices due to their appropriate
electrical and mechanical properties, long service life and good biocompatibility. However,
most of the polymer networks in hydrogels are insulated [128,129], so the methods to
synthesize conductive hydrogels are as follows: (1) embedding conductive fillers into
an existing nonconductive hydrogel matrix; (2) constructing hydrogel networks by self-
polymerization or self-assembly of conductive polymers; and (3) diffusing free ions.

Conductive hydrogels with self-healing properties can significantly prolong the service
time of electronic devices. Many conductive hydrogels with high self-healing properties
are based on the intrinsic repair method by designing reversible (weak) interactions in
polymer networks. Under low external stress, the weak bonds can break first and adsorb
energy to protect the covalent polymer network. When the covalent polymer network of
the hydrogel is damaged under a higher external stress, the reversible bonds will reform to
restore the properties of the hydrogel.

3.1. Self-Healing Hydrogel with Conductive Fillers

The most convenient way to obtain a highly conductive self-healing hydrogel is to
embed conductive fillers into an existing nonconductive hydrogel matrix. These con-
ductive fillers are suspended in the hydrogel precursor solution for polymerization and
cross-linking to form a conductive network in the hydrogel. Typically, conductive fillers
include metal nanomaterials, carbon nanomaterials, transition metal carbides and carboni-
trides. As the nanoscale conductive filler can be uniformly dispersed into the hydrogel
matrix, stress concentration is avoided, enabling the mechanical strength of the hydro-
gel to be significantly increased. In addition, the type and content of conductive fillers
used in synthetic self-healing conductive hydrogels, as well as the surface modification
and cross-linking methods used, have a significant impact on the properties of hydrogel
sensors, such as conductivity, stretchability, toughness, fatigue resistance and self-healing
properties [130,131]. However, the conductive mechanism of conductive filler-based hy-
drogels is complex, and different conductive mechanisms need to be combined to explain
this conductive phenomenon. Currently, the conductive mechanisms commonly used
for conductive filler-based hydrogels are contact conduction and tunnel conduction [132].
As the filling amount of conductive filler increases, the conductivity gradually increases.
When the filler content reaches the critical volume fraction, the conductivity increases
sharply. This phenomenon is called “percolation threshold”. However, as the filler content
continues to increase, the conductivity no longer increased significantly [133]. In conduc-
tive filler-based hydrogels, in one case, conductive fillers are in contact with each other
to form conductive network pathways, and in the other case, conductive fillers are not in
contact with each other, and they exist in isolation or in aggregates. However, when the
spacing between the conductive fillers is very small, the electrons of the conductive filler
may be activated by a thermal vibration due to the interaction between the conductive
filler particles. The activated electrons absorb energy and jump across the barrier of the
thin polymer layer to the adjacent conductive filler, thereby forming a tunneling current
and conducting path. This is the electron tunneling effect conductive mechanism [134].

3.1.1. Metal-Based Nanomaterials

Metal nanomaterials (such as metal and its oxide nanoparticles, nanowires and
nanorods), as one type of the preferred raw materials for the preparation of functional
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conductive hydrogels, have high conductivity, optical properties, catalytic properties and
easy processing [135–139]. Contact conduction theory can explain the conductive mecha-
nism of metal-based hydrogels. When the content of metal filler is below the permeation
threshold, only a local conductive network can be formed inside the hydrogel and its
conductivity is low. As the filler content gradually rises above the percolation threshold, a
complete conductive network is formed inside the hydrogel and the conductivity increases
significantly.

Incorporating metal nanoparticles into hydrogels improve their strength but causes
nonbonding between fillers and the polymer matrix. To address this issue, some researchers
have proposed solutions. He et al. [140] fabricated a conductive hydrogel made of PVA
and in situ reduced Au nanoparticles, which could achieve self-healing without external
stimuli due to hydrogen bonding and reversible metal–ligand coordination. Furthermore,
the conductive hydrogel has a high mechanical toughness (maximum compressive strength
was 7.26 MPa). To obtain a shorter healing time and better conductivity, the silver/reduced
graphene oxide (Ag/rGO) composite material was combined into PVA–borax [141]. This
hydrogel contains many hydrogen bonds and can heal itself within 3 s without any external
stimulation at room temperature. Ding et al. [142] proposed a self-healing hydrogel-based
sensor with conductivity, antibacterial and self-healing properties consisting of hydropho-
bic modified polyacrylamide (HMPAM), bis (acryloyl) cystamine (BACA)-modified silver
nanowires (AgNWs) and dextran, as shown in Figure 4a. This sensor had ultralow strain
(0.05%), a wide strain sensing window (0.05–1200%), a wide operating frequency range
and superior cycle stability (200 relatively low resistance changes). The Young’s modulus
of the hydrogels increased with the increasing ANGWS content, as shown in Figure 4b.
However, these hydrogels with different contents of AgNWs exhibited quite a low Young’s
modulus (10~90 kPa) and were very sensitive to strain signals. Meanwhile, Figure 4c
shows a number of reversible noncovalent and hydrogen bonds contained in the hydrogel
network, as well as reversible Ag–S coordination bonds, which were helpful to improve the
self-healing and mechanical properties of the hydrogel. Furthermore, Figure 4d shows that
HMPAM/Dex/AgNW nanocomposite hydrogels have outstanding compression perfor-
mance. According to the conductivity experiment, the conductivity increased with AgNW
content and reached a maximum of 1.0 S m−1 (Figure 4e). In particular, the sensor was first
realized to recover its sensing properties after self-healing.

Although AgNWs have excellent conductivity and easy processing, research on hydro-
gels filled with AgNWs is still very limited, mainly because (i) the mechanical properties
of the hydrogel are reduced when the filled AgNWs are not uniformly dispersed in the
hydrogel polymer matrix, (ii) the process of patterning AgNWs on the hydrogel surface is
less and (iii) there is weak interfacial bonding between AgNWs and the hydrogel matrix.
Zhu et al. [143] proposed an easily patterned, highly conductive self-healing hydrogel
sensor by dispersing AgNWs in a highly viscoelastic hydrogel matrix. The mechanical
properties of this hydrogel were superior to those of other hydrogels, and the fracture
stress could reach 3.3 MPa. The hydrogel sensor had a gauge factor of 58.2 and could detect
human motions.

Therefore, the introduction of metal nanomaterials into hydrogels can effectively
improve the conductivity and mechanical properties [144,145]. However, precious metal
conductive materials (such as gold and platinum) are usually expensive, which severely
limits their large-scale utilization. In addition, metals are prone to corrosion in a humid
environment, resulting in a decline in the electrical properties of hydrogels, which greatly
hinders their potential application in the field of bioelectronics.
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3.1.2. MXene-Based Nanomaterials

MXene (transition metal carbides and carbonitrides) nanosheets [146], as a new two-
dimensional material, have some excellent properties: high conductivity, good mechanical
properties and water solubility. It is widely used in the fields of supercapacitors [147,148]
and sensors [31]. Because MXene has abundant hydrophilic groups, these hydrophilic
groups firmly combine MXene nanosheets with the hydrogel network through multi-
physical interactions, thereby improving the mechanical properties [149,150]. In addi-
tion, MXene nanosheets have good water solubility, which allows them to be evenly
distributed in the hydrogel network, not easily agglomerate and form a stable conduction
network [151].

According to the contact and tunnel conduction theory, the conductivity of the MXene-
based hydrogel increases with increasing the MXene nanosheets content, reaching an
optimum conductivity after exceeding to the percolation threshold. Combined with effec-
tive polymer action, an effective tunneling current is achieved for the MXene nanosheets,
resulting in a high conductivity of the hydrogel. Simultaneously, the deformation of the
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hydrogel causes a change in conductivity. Specifically, under tensile deformation, the spac-
ing between the MXene nanosheets in the hydrogel increases, which induces a decrease
in conductivity. In contrast, under compressive deformation, the distance between the
MXene nanosheets decreases, which increases the conductivity of hydrogels. As such,
Zhang et al. [152] added MXene nanosheets (Ti3C2Tx) to a matrix containing PVA, water
and anti-dehydration additives, and the obtained hydrogel had excellent tensile strain
sensitivity, self-healing properties and conductivity. The self-healing properties of the
hydrogel were achieved by hydrogen bonding. It was found that the value of the compres-
sion experiment was higher than the values of the tensile experiment. Some movement
directions and speeds of the sensor surface could be detected more accurately by this
asymmetric sensitivity. A self-healing hydrogel suitable for low temperature was also
proposed [153]. The hydrogel polymer network was composed of PVA, MXene nanosheets
and polypropylene amine (PAAM) (Figure 5a). MXene nanosheets were added to the
hydrogel matrix to form a three-dimensional conductive network, which contributed to
electron transmission and made the hydrogel have excellent conductivity. The self-healing
process of the hydrogel is shown in Figure 5b. The two semicircular hydrogels with dif-
ferent colors healed together by dynamic cross-linking and molecular interactions. The
healed hydrogel did not break when stretched again. Meanwhile, to further investigate
the effect of self-healing on the electrical performance, a circuit with a red LED indicator
was designed (Figure 5c). When the hydrogel was cut off completely in the circuit, the red
LED indicator switched off immediately. After the two fractured parts were re-contacted
and healed, the circuit was restored and the red LED indicator lit up again. A wider strain
range contributes to expanding the applications of hydrogels. Wei et al. [154] proposed
a ternary hybrid network hydrogel composed of TA-modified CNFs, which combined
the conductive MXene nanosheet network and covalently cross-linked PAAM network.
It contained a large number of hydrogen bonds and dynamic borate bonds, which not
only realized the self-healing properties of the hydrogel, but also improved the tensile
properties of the hydrogel. The hydrogel also had a wide working strain range and high
sensitivity, which was suitable for human body motion monitoring.

However, there are still many problems in the application of MXene-based flexible
hydrogels. For example, some dangerous chemicals are used in the preparation of MXene
nanosheets, which may pollute the environment and introduce harmful substances. The
prepared MXene-based flexible hydrogel has a relatively weak network and excellent
mechanical properties, which will limit its application [155,156]. Therefore, to make MXene
nanosheets more widely used in hydrogel sensors, it is necessary to perfect the preparation
method of MXene nanosheets.
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3.1.3. Carbon-Based Nanomaterials

Carbon nanotubes (CNTs) [157–160], graphene oxide (GO) [161,162], carbon fiber [163]
and other carbon-based nanomaterials [164–166] are the preferred conductive materials
with great development prospects due to their unique properties (such as high conductivity,
relatively high Young’s modulus, environmental stability and good biocompatibility). The
excellent stability of carbon-based nanomaterials in humid environments greatly promotes
their application in conductive nanocomposite hydrogels (Table 2), making them a good
substitute for metal nanomaterials [167].

The aspect ratio of CNTs exceeds 1000, which can allow them to achieve electron
transfer at lower voltages [168]. With increasing the CNT content in the hydrogel system,
the conductivity of the hydrogel also increases [169]. Here, contact conduction and tunnel-
ing conduction can be used to clarify the conductive mechanism of hydrogels. However,
the random distribution and easy aggregation behavior of CNTs limit the properties of
hydrogels. The modification of CNTs is the key to overcoming the poor compatibility be-
tween CNTs and the polymer matrix [170,171]. Han et al. [172] reported a multi-functional
conductive hydrogel based on PVA–borax and CNT–CNF composite materials, in which
borax was used as a cross-linker to make the hydrogel mechanically tough and self-heal.
When the CNTs content was below 0.3 wt%, no complete conductive network was formed
within the hydrogel, which resulted in low conductivity of the hydrogel. When the CNTs
content was increased to 0.5 wt%, the conductivity of the composite hydrogel increased
rapidly to 8.0 ± 0.5 S m−1. The results show that the permeation threshold of CNT content
was 0.3 wt%. As the content of CNTs continued to increase, conductive channels were
formed within the hydrogel, thus enabling the contact conduction mechanism. In addition,
cellulose nanofibers (CNFs) cannot only act as a dispersant to stabilize the dispersion of
CNTs in hydrogels, but also achieve an effective tunneling current for CNTs to achieve high
conductivity at low CNTs content. In this hydrogel network, borax formed borate ester
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bonds with PVA chains, and CNFs contributed to its rapid self-healing ability. Similarly, it
is still feasible to use these two conductive theories to explain the conductive phenomena
of carbon-based hydrogels. Wang et al. reported a conductive self-healing hydrogel with
adhesion properties by adding dopamine (DA) [173]. Furthermore, it was found that MWC-
NTs could be uniformly dispersed in the hydrogel network due to π–π interactions between
DA and MWCNTs. In addition, multiple hydrogen bonds were formed to realize the rapid
self-healing of the hydrogel. The hydrogel also exhibited good adhesion in the presence of
DA, which improved the comfort of the sensor. In addition, Gao et al. [174] proposed a
multifunctional conductive hydrogel composed of a PAM/CS composite network, which is
shown in Figure 6a. The PAM network was cross-linked by hydrophobic associations, and
the CS network was ionically cross-linked by MWCNTs. These two networks were further
interconnected by physical entanglement and hydrogen bond interactions. Because the
dynamic cross-linking network effectively dissipated energy, the prepared hydrogel exhib-
ited excellent flexibility, adhesion and self-healing. After re-contacting the two cut samples
of hydrogel for 48 h, they were completely self-healed. Moreover, for the hydrogels with
different c-MWCNT contents after healing for 48 h, the tensile curves coincided with those
of the original samples, as shown in Figure 6b. (The solid lines represent the tensile curves
of pristine hydrogel, and the dashed lines are the tensile curves of hydrogel after healing
for 48 h.) The conductivity of this hydrogel increased dramatically as the c-MWCNT in-
creased from 0.5 wt% to 1 wt%. When the content of c-MWCNT was increased to 1.5 wt%,
the increase in the conductivity of the hydrogel was not significant. The disadvantage
is that the tensile properties of the hydrogel deteriorate, although increasing the content
of c-MWCNT increases the conductivity of the hydrogel. Significantly, the hydrogel was
simply assembled as a wearable sensor. It can accurately monitor human motions, such as
elbow, neck and knee joint motions, as shown in Figure 6c–f.
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Graphene oxide (GO) nanosheets contain abundant hydroxyl, epoxy and carboxyl
groups on their surface and have been used as cross-linkers to prepare conductive hy-
drogels. A copolymer hydrogel double-cross-linked by laponite and GO could achieve
repeated healing [175]. The hydrogel as an electrolyte in supercapacitor not only had ultra-
high mechanical tensile properties of 1000% but could also achieve repeated healing under
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infrared light irradiation and heating conditions. Xia et al. [176] prepared a conductive self-
healing hydrogel with a physical cross-linking network. Using the FeCl3 as a cross-linking
site, the hydrogel was formed with PAA, CS and GO in a solvent mixture of water and glyc-
erol. The conductivity of PAA/CS/GO/Gly hydrogel could reach 5.6± 0.25× 10−3 S cm−1,
which is attributed to the effect of GO and ions (Fe3+, Cl). These hydrogel sensors also
had a rapid response time (40 ms) and moderate gauge factor (GF) (1.138). In addition, the
hydrogel could be self-healed rapidly due to coordination interaction and hydrogen bonds.
After 1 h of being self-healed, the stretch curve of the healed hydrogel was almost identical
to the original sample. Wang et al. [177] prepared a new self-healing conductive hydrogel
with a fast self-healing ability and good conductivity (10.5 mS dm−1). This hydrogel was
synthesized by GO, soluble starch and poly (sodium 4-vinyl-benzenesulfonateco-N-(2-
(methacryloyloxy)ethyl)-N,N-dimethylbutan-1-aminium bromide)(P(NaSS-co-MOBAB)).
It is worth noting that the hydrogel conductivity could be restored after self-healed. The
experimental tests have shown that after 10 cut-healing cycles, the hydrogel could be
restored to 80% of its original conductivity.

Table 2. Summary of properties of recently reported carbon-based hydrogel sensors.

Hydrogel Materials Conductive Type Self-Healing
Mechanism Gauge Factor Conductivity Application Ref

PC/rGO/PVA Electron cross-linked bonds 14.14 Wearable E-skin [178]
PVA/PDA/pRGO Electron hydrogen bonds 2.7 S cm−1 soft strain sensor [179]

PVA/CNTs/ graphene Electron/ion hydrogen bonds, borate
ester bond 52.7 electronic device [180]

TOCNF/GN/PAA Electron/ion hydrogen bonds,
metal-ligand interactions 5.8 2.5 S m−1 soft sensor devices [181]

P(DMA-co-PFPA)/
SWCNTs/PVA Electron/ion dynamic boronate ester

bonds 1.27 S m−1 electronic skins [182]

rGO–SAP Electron/ion hydrogen bonds 1500 ΩM soft sensor devices [183]

PVA/PDAP/ MWCNT Electron borate bonds, hydrogen
bonds wearable electronics [184]

PAA/CS/GO/Gly Electron/ion hydrogen bonds,
electrostatic interaction 1.138 5.6 × 10−3 S cm−1 wearable sensor [176]

PAA-GO Electron/ion
coordination

crosslinking, hydrogen
bonds

0.46 wearable sensor [162]

EW/CNT Electron/ion hydrogen bonds,
hydrophobic interactions 87.8 kΩ epidermal sensors [185]

CS/ZnPcTa Electron Schiff-base linkage 0.0029 S cm−1 biomedical
applications [186]

PVA/Gly/CB/CNT Electron hydrogen bonds 2.1 wearable sensor [187]
Poly(NIPAM-co-β-

CD)/CNT/PPY Electron Host−Guest Interactions 34.93 S m−1. wearable sensors [188]

CS/DA/GO Electron hydrogen bonds, π-π
stacking 1.2 × 10−3 S cm−1 engineering

applications [189]

rGO/AM Electron covalent bonds hydrogen
bonds 27.2 S m−1 artificial skin, soft

robotics [190]

PNIPAM/Laponite/CNT Electron electrostatic interaction,
hydrogen bonds 0.17 S m−1 wearable sensor [191]

PAM/MWCNTs Electron hydrophobic interactions,
hydrogen bonds 5.6 0.5 S m−1 Wearable medical

monitoring [192]

GOxSPNB Electron/ion electrostatic interaction,
hydrogen bonds 10.5 mS dm−1 conductive

adhesive materials [177]

PAA/GO/Ca2+ Electron/ion Hydrogel bonds, ionic
interactions 257.31 kΩ wearable biosensors [193]

AlgPBA/PVA/
PAM/rGO Electron covalent ester bonds,

hydrogen bonds 0.0525 S m−1 E- skins, healthcare
monitoring, [194]

PVA/FSWCNT/ PDA Electron/ion Hydrogen bonds, π–π
stacking, wearable sensors. [195]

Abbreviation: proanthocyanins (PC), acrylamide (AM), Partially reduced graphene oxide (pRGO), functionalized single-wall carbon
nanotube (FSWCNT), carbon black (CB); 2,2,6,6-tetramethylpiperidine-1-oxyl oxidized CNFs (TOCNFs), graphene nanocomposites (GN),
Egg white (EW), Sodium polyacrylate polymer particles (SAP), β-cyclodextrin (β-CD); zinc phthalocyanine tetra-aldehyde (ZnPcTa),
glycerol (Gly), Pentafluorophenyl acrylate (PFPA) Nisopropylacrylamide(NIPAM), N,N-Dimethyl acrylamide (DMA).

3.2. Self-Healing Hydrogel with Conductive Polymers

Hydrogels prepared by incorporating a conducting polymer into a hydrogel matrix
typically have excellent conductivity. The conductive polymers (CPs) include PANI [196–198],
PPy [199] and poly (3,4-ethylenedioxythiophene): polystyrene sulfonate(PEDOT:PSS) [200–204].
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However, the conjugated structures of conductive polymers are inherently rigid and na-
tively hydrophobic, which make them incompatible with the hydrophilic polymer matrix,
resulting in the conductive component tending to aggregate and inhomogeneously dis-
tribute. The insufficient weak interactions between the two ingredients usually result in the
weak mechanical performance of the hydrogel and poor adaptability to large deformations,
which seriously impede practical applications in the fields of wearable strain sensors.
Additionally, conductive polymers in the intrinsic state, the π electrons on the conjugated
structure, are difficult to migrate along the long chain of the molecule when unexcited, so
the conductivity is limited and needs to be modified by chemical doping [205]. Specifically,
the essence of doping is that the polymer chain with a conjugated structure has a charge
transfer or redox reaction with the dopant, so that the formed electrons can move along the
direction of the molecular chain, and the conductivity of the polymer will be significantly
improved [206]. The conductive mechanism of the conductive polymer is related to the
type of dopant, which can generally be divided into a charge transfer mechanism and
proton acid mechanism [207,208].

The one conductive mechanism of hydrogel is the charge transfer when conductive
polymers are modified with oxidizing dopants, such as metal salts (FeCl3) and halogens
(I2, Br2). For example, FeCl3 acts as a p-type dopant, taking electrons from the large π

bonds of the polymer, which reduces the hindrance of hole-electron migration, thereby
increasing the conductivity [209]. Ding et al. [210] reported a new strategy for the design
and preparation of a multifunctional hydrogel. Specifically, PPy was assembled onto the
surface of CNFs and then mixed with PVA/boric acid solution. The results show that
the PPy was well dispersed in the hydrogel to form a continuous conductive network,
which promoted the tunneling of charges transferred between adjacent PPy chains. The
conductivity of the hydrogels was increased from 1.5 to 4.8 S cm−1 with increasing PPy.
The obtained hydrogel exhibited a high water content (∼94%), low density (∼1.2 g cm−3)
and rapid self-healing ability.

Another conductive mechanism is the protonic acid mechanism. Commonly used pro-
ton acid dopants are HCl, H3PO4 and H2SO4 or other non-oxidized Lewis acids (BF3) [211].
Specifically, there is no migration of electrons between the polymer chain and the dopant.
However, the proton of the dopant is attached to the carbon atom of the main polymer chain,
causing a change in the charge distribution on the polymer chain [212]. Typically, hydro-
gels are prepared by free radical polymerization [213–215]. Polymer monomers, oxidizing
agents (APS) and/or dopants are used to complete the polymerization and are homoge-
neously dispersed into the hydrogel matrix by the cross-linking agents to form a complete
conductive network. Yang et al. [216] proposed a self-healing hydrogel with good exten-
sibility, using trypan blue (TB) as the cross-linking agent to form a semi-interpenetrating
network with PAA and PPy. In addition, the PAA support structure and the PPy molecular
chain can be well connected to form an interconnected conductive network by the large
π conjugated ring of TB. So, the conductivity of this hydrogel was equivalent to that of
pure PPy hydrogel, up to 15 S m−1. Its elongation at break exceeded 750%. In addition, the
broken hydrogel could recover more than 60% within 10 s. A self-healing hydrogel can also
have antibacterial properties by PPy and Zn-functionalized CS molecules cross-linked with
PVA [217]. The conductive component CS-PPy was synthesized by graft polymerization of
PPY on double bond-decorated chitosan with a free radical. When the content of CS-PPy
was 1%, the maximum conductivity of the hydrogel reaches 1.16 S cm−1. The reason for
this phenomenon was that the content of the conductive component reached the electrical
percolation threshold and the PPy molecular chain formed a connected conductive network
in the hydrogel. In hydrogels, multiple covalent bonds (hydrogen bonds and zinc-based
coordination bonds) also endowed the hydrogel with self-healing properties. In addition,
the introduction of Zn ions enhanced the antibacterial properties of the hydrogel.

In situ polymerization of conductive polymer monomers onto nanostructured flex-
ible templates (CNF, CNC) to synthesize hydrogels with a stable, flexible, continuous
conductive network thereby improves electrochemical and mechanical properties of the
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hydrogels [218–221]. Han et al. [222] prepared PANI/CNF nanocomposites by dispersing
aniline on CNFs by in situ polymerization. Then, the nanocomposite was introduced into
the borax cross-linked PVA hydrogel to prepare a self-healing hydrogel with good ductility
and excellent conductivity (Figure 7a). As shown in Figure 7b, with the mass ratio of
aniline (ANI) monomers to CNFs increased, the hydrogel conductivity increased from 2.5
to 5.2 S m−1; the result shows a nonlinear enhancement of conductivity with increasing the
PANI content. It was also demonstrated that the PANI/CNF complex was well dispersed
in the PVA system, resulting in the construction of an effective conductive pathway. The
hydroxyl groups and dynamic reversible cross-linked bonds in the hydrogel network
enable the hydrogel to recover quickly within 15 s, as shown in Figure 7c. Figure 7d shows
that the electrical pathways inside the hydrogel are still maintained during the stretching
process, indicating the high stability and stretchability of the hydrogels. In addition, Song
et al. [223] added CNC–PANI polymer (in situ polymerization) into PVA/borax to prepare
the hydrogel. The separated hydrogel could recover quickly without any external stimuli
under the effect of hydrogen bonds and dynamic borate bonds. The sensor made from this
hydrogel could be sensitive to tiny movements of the human body (swallowing, bending
of fingers or joints).
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3.3. Ionic Self-Healing Hydrogel

The hydrogel is composed of a three-dimensional framework and significant water
molecules (water content above 90%). Such a structure provides many channels for ion
migration, which provides the possibility to synthesize excellent ion conductive hydrogels.
The preparation method of ion conductive hydrogels usually incorporates inorganic salts
(e.g., LiCl, NaCl or KCl) [224,225] into the hydrogel network, balancing the conductive
properties and mechanical properties of the hydrogels [226]. Inorganic salts are a strong
electrolyte, which are dissolved in water to form freely moving anions and cations. Under
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the action of an electric field, the positive ions generated within the hydrogel move in the
direction of the electric field and the negative ions in the opposite direction, enabling rapid
transport of ions and giving the hydrogel a good ionic conductivity [227].

Extensive research has shown that the mechanical strength of polyvinyl alcohol-based
or chitosan-based hydrogels can be significantly improved by using the salting out effect
of NaCl. Currently, the method used is to soak the prepared hydrogels in NaCl solution.
For instance, a self-healing hydrogel with a semi-interpenetrating polymer network using
carboxymethyl CMC, NaCl and PAM is shown in Figure 8a [228]. When the concentration
of NaCl reached 0.9 M (unsaturated), the salting out effect could occur in hydrogel; thus,
it caused more hydrogen bonds to form between the CMC and PAM chains. During the
stretching process, the hydrogen bonds act as sacrificial bonds to dissipate energy, resulting
in a significant enhancement of the mechanical properties of the hydrogel. Moreover, the
NaCl introduced in the hydrogel promoted the formation of hydrogen bonds between the
carboxymethyl CS and PAM chains and subsequently improved the mechanical properties
(Figure 8b) and self-healing properties of the hydrogel (Figure 8d). In addition, the NaCl
solution gives the hydrogel better properties (water retention and freezing resistance).
Yuan et al. [229] proposed a PAA/2-hydroxypropyltrimethyl ammonium chloride chitosan
(HACC) self-healing hydrogel by in situ polymerization in NaCl solution. The hydrogel
showed excellent mechanical properties (the fracture stress was 3.31 MPa, the Young’s
modulus was 2.53 MPa and the compressive stress was 60 MPa). Putting the broken
hydrogel into NaCl solution, the self-healing efficiency reached 61%. In addition, the
hydrogel was rich in sodium and chloride ions and had high ionic conductivity. This ion
conductive hydrogel with salts is believed to be an ideal material for the fabrication of
strain sensors [230–233].

LiCl and KCl are also important components for preparing ionic self-healing hydrogels.
Lv et al. [234] reported a dopamine-functionalized hyaluronic acid (HAC)/borax/PAM
self-healing hydrogel. Abundant conductive ions were formed in the hydrogel network by
introducing LiCl solution, which improved the conductivity of the hydrogel. In addition,
Wu et al. [235] prepared a KCL/PAM/carrageenan self-healing hydrogel. The ethylene
glycol/glycerol binary solvent introduced into the hydrogel formed a strong hydrogen
bond with water molecules so that the hydrogel had excellent self-healing properties. The
hydrogel also had good freezing resistance and drying resistance due to the existence of
this binary solvent [236–238].

In summary, introducing conductive particles and conductive polymers into hydro-
gels can establish their conductive network. To improve the conductivity of hydrogels,
more conductive fillers need to be added. However, during the stretching process, the
interconnected conductive polymers or overlapping nanomaterials will be irreversibly
separated from each other, resulting in a significant decrease in conductivity. Therefore,
scientific researchers turned their attention to the direction of preparing ion-conducting
hydrogels. Ion-conducting hydrogels not only have better ductility and are suitable for
sensors in more situations but can also be used in the field of energy storage, broadening
the application range of hydrogels. In addition, ion-conducting hydrogels also have good
biocompatibility, which gives them great potential in the field of biomedicine.
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4. Conclusions and Perspective

Hydrogel-based flexible sensors have rapidly developed in wearable electronic de-
vices, electronic skins, artificial intelligence and other popular areas due to their high
sensitivity and conductivity, strong tensile properties and excellent mechanical properties.
To improve the lifetime of the hydrogel-based flexible sensor, it is necessary to introduce
self-healing properties that can repair structural damage and restore the sensing ability in
the hydrogel to resist fracture damage under continuous action. Moreover, for hydrogel
flexible sensors, conductivity is another important property. This review summarizes the
latest research status and research progress in self-healing hydrogel-based flexible sensors,
including the self-healing mechanism and conductivity. Self-healing performance is the
best solution for flexible sensors when dealing with damage and chapping. Many factors
should be coordinated while improving the conductivity of self-healing flexible materi-
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als, such as achieving ultrahigh conductivity while maintaining the flexibility, elasticity,
repairability and high transparency of flexible materials. Although great progress has
been made in the preparation and research of self-healing conductive hydrogels, which
are widely used in artificial skin, artificial intelligence, flexible sensors, wearable devices
and other fields, self-healing conductive hydrogels still have limitations and face many
challenges, which as described as follows

(1) High conductivity, mechanical and tensile properties are the basic requirements
for most hydrogel-based sensors. However, as wearable sensors, direct attachment to the
skin surface is required for practical applications, requiring the development of conduc-
tive hydrogels with additional features, such as self-healing and tissue adhesion. The
current research is focused on the design and preparation of hydrogels with self-adhesive
properties through the addition of polysaccharides, proteins, polyethylene glycols and
polydopamine (PDA). Self-adhesive hydrogels prepared by adding polysaccharides, pro-
teins and polyethylene glycols have good biocompatibility, but these hydrogels have poor
adhesion and toughness. The strategy has largely enhanced the adhesion of hydrogels by
adding PDA, but dopamine is easily oxidized, resulting in a dopamine-based hydrogel
whose adhesion is not sustainable and repeatable. In the future, the mussel adhesion mech-
anism should be investigated in depth, such as the interaction between mussel proteins and
the effect of multiscale structure on the adhesion mechanism, to optimize the self-adhesive
properties of the hydrogel-based sensor.

(2) Although many reports mention good self-healing properties in their studies,
they have not been evaluated fully and accurately. Therefore, there is a need to establish
standardized experimental evaluation criteria to measure these properties. For instance, in
hydrogel self-healing tests, the volume size of the hydrogel, the number of cuts, the healing
time and the characterization after healing all need to be accurately represented.

(3) In addition to the material aspects, we will focus more on the packaging, integration
and practical applications of hydrogel-based sensors. While several strategies, such as
surface modification and encapsulation, have been proposed to address these issues, these
strategies can affect the mechanical properties of the hydrogel and reduce the conductivity
and sensitivity of the sensor. Future research on the integration of hydrogels should
take into account the interface difference between the “soft” material and the “hard”
encapsulation material, the comfort of the encapsulated hydrogel sensor and the fatigue
resistance and durability of the encapsulation material.

Thus, the development of a flexible sensor with excellent comprehensive properties,
low cost and a simple process will be of great significance to the further development of
wearable electronic devices.
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