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Abstract: The fabrication of energy storage EDLC in this work is achieved with the implementation
of a conducting chitosan–methylcellulose–NH4NO3–glycerol polymer electrolyte system. The simple
solution cast method has been used to prepare the electrolyte. The impedance of the samples was
fitted with equivalent circuits to design the circuit diagram. The parameters associated with ion
transport are well studied at various plasticizer concentrations. The FTIR investigation has been done
on the films to detect the interaction that occurs among plasticizer and polymer electrolyte. To get
more insights into ion transport parameters, the FTIR was deconvoluted. The transport properties
achieved from both impedance and FTIR are discussed in detail. It was discovered that the transport
parameter findings are in good agreement with both impedance and FTIR studies. A sample with
high transport properties was characterized for ion dominancy and stability through the TNM and
LSV investigations. The dominancy of ions in the electrolyte verified as the tion of the electrolyte is
established to be 0.933 whereas it is potentially stable up to 1.87 V. The rechargeability of the EDLC is
steady up to 500 cycles. The internal resistance, energy density, and power density of the EDLC at
the 1st cycle are 53 ohms, 6.97 Wh/kg, and 1941 W/kg, respectively.

Keywords: polymer blend; plasticizer; ion transport; EEC modeling; FTIR deconvolution; TNM and
LSV study; EDLC device

1. Introduction

In the past few years, researchers have been deeply concerned about global issues
regarding sustainable energy sources that are safe for the environment. The most prominent
electrolyte used in batteries and supercapacitor industries is an electrolyte in the liquid form.
A liquid electrolyte (LE) provides high ionic conductivity due to its low bulk resistance
but has drawbacks like leakage of harmful gases or corrosive liquid [1]. Researchers are
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attracted to study solid polymer electrolytes (SPEs). They are easier to handle due to their
free-standing properties compared to LEs. Rapid technology development is needed in this
era due to massive commercial demands on various electrical devices with different shapes
and sizes. These demands can be solved with the implementation of SPEs [2]. Several
advantages of SPEs include them being lightweight, of excellent thermal stability, high
flexibility, cheap, and easy handling [3,4].

Plastic production worldwide has been boosted from ~2 million tons in 1950 to
8.3 billion tons in 2015. This is approximately an increase of 76% and results in increasing
waste production. This plastic waste is in the environment, landfills, and oceans [5]. This
is the main reason that biopolymers are studied in order to find alternatives to current
non-biodegradable polymers. The most commonly studied marine biopolymer is chitosan
(CS). CS can be a good ionic conductor due to its chemical structure (existence of OH and
NH2) [6]. Methylcellulose (MC) is another biopolymer with great potential to be used in
polymer electrolyte applications. MC is extracted when alkali-based cellulose is treated
with methyl chloride. Its basic structural units are joined by β-(1→4) glycosidic bond [7,8].
Polymer blend, a method used in this work, is a straightforward process where two or
more polymers form a superior material [9]. This is because the functional groups of each
polymer interact with each other and provide more pathways for ions. CS and MC possess
functional groups with lone pair electrons which are beneficial in ionic transportations.

A lot of ionic sources are available for SPE applications such as sodium, lithium,
magnesium, potassium, silver, copper, and ammonium salts. This work is focused on the
use of ammonium salts to fabricated protonic (H+) energy devices. H+ can be obtained not
only from ammonium salts but also from inorganic acids like sulfuric acid (H2SO4) and
phosphoric acid (H3PO4). Reports on these acids show a chemical degradation which is not
good for energy device applications [10,11]. Ammonium nitrate (NH4NO3) is chosen in this
work owing to its stumpy lattice energy of 648.9 kJ mol−1. This value can be considered
low compared to other ammonium salts, e.g., for ammonium acetate (NH4CH3CO2),
ammonium sulfate ((NH4)2SO4, and ammonium phosphate ((NH4)3PO4), the values are
703.1, 1754.7, and 3334.0 kJ mol−1, respectively. In addition, lattice energy for ammonium
bromide (NH4Br), ammonium chloride (NH4Cl) and ammonium fluoride (NH4F) is 682.0,
708.0 and 834.0 kJ mol−1, respectively [12,13]. A low lattice energy salt provides more
free ions and all of these free ions can thus contribute to the energy storage process of the
energy devices.

The process of energy storage for an electrochemical double-layer capacitor (EDLC)
involves a non-Faradaic reaction which means that ions build a charge double-layer on
the carbon-based electrodes [14]. It has been reported that EDLC has higher power den-
sity and easier fabrication methods compared to Faradaic capacitor or pseudocapaci-
tor [15–17]. Activated carbon is the most commonly used active material in the electrodes
of an EDLC [18–20]. Various activated carbons have been synthesized from different
sources such as nori-based [21], tofu-based [22], dimocarpus longan-based [23], coconut
shell-based [24], and many more. Unique properties of activated carbon such as excel-
lent electron conductivity, reasonable price, easy handling, and good chemical stability,
plus high surface area mark it a choice for EDLC applications [25]. In this effort, CS is
blended with MC to form a polymer matrix. Ions are provided by the addition of NH4NO3
and glycerol. The electrolyte with the best performance will be chosen to be used in the
EDLC fabrication.

2. Experimental Methods
2.1. Electrolyte Preparation

The preparation of polymer electrolytes was performed from the components of MC
(4000 cP), CS (MW 310,000–375,000 g/mol), and low MW glycerol plasticizer. In a separate
flask, CS:MC polymer blends were prepared by dissolving 30 wt.% MC and 70 wt.% of CS
in 40 mL of 1% acetic acid at ambient temperature for about 3 h. The two solutions were
then combined and stirred for further 2 h in order to obtain a homogeneous solution. To this
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solution, 40 wt.% of NH4NO3 was added. Plasticization of the resulting CS:MC polymer
blend solutions was performed by adding different quantities of 14, 28, and 42 wt.%
glycerol. The obtained samples were denoted as MCCSNH1, MCCSNH2, and MCCSNH3,
correspondingly. The contents of these samples were poured into the plastic petri dishes to
cast the fabricated films, which were subsequently dried at ambient temperature. Prior to
characterizations, the films were further dried using silica gel desiccant.

2.2. Characterization Techniques
2.2.1. FTIR and EIS Analyses

HIOKI 3531 Z Hi-tester was implemented to gain the impedance spectra of all samples
over a frequency range f = 50 Hz–1000 kHz. Small pieces of 2 cm in diameter were cut
from the films to prepare discs, which were placed between the two stainless steel (SS)
electrodes underneath a spring pressure.

Moreover, Fourier transform infrared (FTIR) spectroscopy analysis was also carried
out to investigate the interaction and complexation among the polymers, salt, and plasti-
cizer. The FTIR analysis in this work was employed using a Spotlight 400 Perkin–Elmer
spectrometer with 1-cm−1 resolution in the range of 500–4000 cm−1. To further support
the ionic conductivity studies, the ionic transport parameters; number density (n), ionic
mobility (µ), and diffusion coefficient (D) based on the percentage of free ions were identi-
fied. The deconvolution method via the Gaussian–Lorentzian function was used to extract
overlapping peaks as well as to correct the baseline of the curves.

2.2.2. Transference Number Analysis (TNM)

Transference number analysis (TNM) was conducted at a working voltage of 0.20 V
using a V&A Instrument DP3003 digital DC power supply. The data were used to prove the
involvement of ions in the entire conductivity. The electrolyte was sandwiched in between
stainless steel (SS) electrodes. The summation of electronic (te) and ionic (ti) transference
number is equal to 1, where both values can be acquired from the subsequent equation:

ti =
Ii − Iss

Ii
(1)

where Iss and Ii are the steady-state current and initial current, respectively. The circuit for
TNM structure is shown in Figure 1.
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2.2.3. Linear Sweep Voltammetry (LSV)

The LSV analysis was performed using a Digi-IVY DY2300 potentiostat at a 0.02 V/s
scan rate. The highest conducting sample was mounted in a Teflon holder with SS electrodes.

2.2.4. Steps to Fabricate EDLC and Their Characterization

Mixing and pulverization of 0.25 g of carbon black (CB) and 3.25 g of activated carbon
(AC) powders were carried out using a planetary ball miller (XQM-0.4) at a rotation speed
of 50 rpm for 15 min. Meanwhile, polyvinylidene fluoride (PVDF) as a binder was stirred in
15 mL of N-methyl pyrrolidone (NMP) solvent. Dissolution of the AC-CB powder mixture
in the NMP-PVDF solution resulted in the formation of a thick black solution, which then
varnished on an Al-foil using a doctor blade. After oven drying of the coated foil at 60
◦C, the dried electrodes were cut into circular samples with area of 2.01 cm2. The prime
conducting electrolyte was situated between two carbon electrode CR2032 coin-type cells.
As shown in Figure 2, these coin cells of EDLC were positioned in Teflon holders for further
examination. The charge-discharge for the EDLC was measured using a Neware battery
test system (current density = 0.5 mA/cm2). The equations below are allowed calculating
each specific capacitance (C), equivalent series resistance (ESR), efficiency, energy density
(E), and power density (P) of the EDLC.

C =
i

xm
(2)

ESR =
Vd
i

(3)

e f f iciency =
tdis
tcha
× 100% (4)

E =
CV
2

(5)

P =
V2

4mESR
(6)

where i is the current apply, x the slope of discharge part, Vd is the drop voltage and m
stands for the mass of activate material used. The times for discharge and charge parts are
given as tdis and tcha, respectively.
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3. Results and Discussion
3.1. Impedance Study

PEs as part of an innovative class of materials are widely applied in devices [26].
Many investigational studies have confirmed the importance of adding low molecular
weight plasticizers into the PEs for enhancing ion migration [27]. A significant role of
impedance spectroscopy is the investigation of the electrical properties of a large variety of
electrolyte materials and the electrode–electrolyte interfaces [28–30]. The impedance plots
for the CS:MC:NH4NO3:glycerol system are depicted in Figure 3A–C. When the circuit
composed of a capacitor and a resistor in parallel, the ideal impedance spectra should be
a standard semicircle having a diameter-matched with the real axis. The absence of the
high-frequency semicircular region indicates that the ions are primarily responsible for the
conduction [31–33]. However, the presence of the spike at the low-frequency region results
from the electric double-layer capacitance at the blocking electrodes [34–37]. As obviously
seen in Figure 3A–C, the absence of the semicircles at the high-frequency region is owed to
the use of the plasticizer [38]. This relation below is employed to calculate the impedance
of CPE (ZCPE) [39,40]:

ZCPE =
1

Cωp

[
cos
(πp

2

)
− i sin

(πp
2

)]
(7)

where C, ω and p stand for the CPE capacitance, the angular frequency and the deviation
measure of the plot from the axis, respectively. The CPE is connected in series with the Rb
of the electrolytes and their EIS signals only display the spike [41]. The impedance can be
mathematically represented as follows [42]:

Zr =
cos
(πp

2
)

Cωp + Rb (8)

Zi =
sin
(πp

2
)

Cωp (9)

These equations are also used in the fitting parameters (CPE1 and CPE2) and determined
the Rb values precisely. The resulting Rb values and CPE values for the CMNG1, CMNG2,
and CMNG3 electrolytes are listed in Table 1. The high values of CPE2 with the addition of
glycerol can be explained on the basis of increasing the number of ions in the electrolytes.
This results in an increase in the accelerating electrode polarization; thereby, an increase
in the capacitance value at low frequency [43]. The addition of glycerol as a plasticizer
enhances salt dissociation and hence increases ion mobility [44,45].

From Equation (10), the ionic conductivity (σ) can be calculated as the measure of the
electrical properties of the electrolytes. The calculation also comprises Rb, t, and A values as
charge resistance, thickness, and surface area, respectively. From Table 1, the conductivity
values for the electrolytes are expressed by:

σ =
t

A× Rb
(10)

Commonly the σdc can be stated as follows [46]:

σdc = Σq n µ (11)
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Table 1. Room temperature ionic conductivity and circuit elements for the plasticized polymer
electrolytes (PPEs).

Electrolyte Rb (Ohm) Conductivity (S cm−1)

CMNG1 200 6.97 × 10−5

CMNG2 150 1.16 × 10−4

CMNG3 140 1.31 × 10−4

Previous investigations established that the H+ ion released by ammonium ion is
considered as the charge carrier species in such polymer/ammonium salt systems [47]. The
extra plasticizer amended the number of charge carriers (n) through further salt dissociation
and increase mobility (µ) by providing huge amorphous phases. Some equations can be
applied to calculate the transport parameters such as diffusion coefficient (D), mobility
(µ), and number density (n) of ions from impedance data possessing only a spike [48].
Beginning with the calculation of the D of ionic species, the following equation is employed:

D = D◦ exp
{
−0.0297[ln D◦ ]2 − 1.4348 ln D◦ − 14.504

}
(12)

D◦ =

(
4k2l2

Rb
4ωmin

3

)
(13)

where l is the electrolyte thickness, ωmin is the angular frequency at the minimum Zi value.
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The mobility (µ) of the ionic species is determined from Equation (14),

µ =

(
eD

KbT

)
(14)

where T is the absolute temperature and kb is the Boltzmann constant.
Since DC conductivity of ions is obtainable from Equation (10), the density of ion

carriers (n) can be determined from Equation (11). In Table 2, the parameters associated
with the ion transport for all the systems are listed. There is a clear trend of increasing both
values of D and µ with increasing glycerol quantity from 14 to 42 wt.%. These correlations
are related to the chain flexibility enrichment in the presence of glycerol. The same trend
of increasing n with increasing glycerol quantity is observed. All these, in turn, result in
an increase in conductivity. A possible explanation of this is the role of glycerol molecules
in enhancing the salt dissociation, thereby raising the number density of ion carriers [48].
In addition, the attractive forces between the anions and cations of the salt are greatly
lowered [49]. Consequently, a higher number of NH4

+ ions (ni) is created by NH4NO3 into
the polymer.

Table 2. The values of D, µ, and n at room temperature.

Electrolyte n (cm−3) µ (cm2V−1s−1) D (cm2s−1) p (rad) CPE * (F)

CMNG1 2.02 × 1021 2.15 × 10−7 5.53 × 10−9 1.20 2.29 × 10−6

CMNG2 2.73 × 1021 2.65 × 10−7 6.81 × 10−9 1.17 4.35 × 10−6

CMNG3 3.02 × 1021 2.71 × 10−7 6.97 × 10−9 1.13 8.00 × 10−6

* CPE: constant phase element.

3.2. FTIR Results

Figure 4 shows the FTIR spectra of the electrolytes at a wavenumber of 550–4000 cm−1.
The bands due to -OH stretching and -OH bending can be found at (i) 3700–3150 cm−1 in a
broad peak form and (iv) 1250–1500 cm−1 in a sharp peak form, respectively which caused
by the addition of glycerol into the system [50,51]. Numerous peaks are observed in-band
region (iv) where the one centered at 1332 cm−1 came from -OH bending. In addition, the
observed peak ascribed to the NH4

+ asymmetry elucidates a high tendency of the NH4
+

distortion to release H+ ions [52]. Furthermore, the -CH symmetrical stretching and -CH
asymmetrical stretching are found at the band region of (ii) 3050 to 2850c m−1 [53,54]. It
is noticed that the intensity of the -CH bands is increased as the concentration of glycerol
increases which signified the complex development between the glycerol and CS-MC-
NH4NO3 [55]. The location carboxamide and amine band for the electrolytes are located at
(iii) 1750–1520 cm−1 where a slight shift is observed when the concentration of glycerol
increases. The shift shows the effect of glycerol concentration to provide more ions for
the interaction with the oxygen and nitrogen atoms in the polymer blend [56]. Aziz
et al. [57] and Shukur et al. [58] also reported a similar range of carboxamide and amine
bands for their electrolyte systems. Lastly, the sharp peak located at (v) 900–1200 cm−1

possibly belongs to the C-O stretching which is comparable to the previous work reported
by Mejenom et al. [59] and Poy et al. [60]. As the concentration of glycerol is increased,
this band peak becomes sharper and causes a small shoulder peak to appear which also
describes the interaction between the CS-MC-NH4NO3 and glycerol.
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The FTIR deconvolution analysis is employed to support the ionic conductivity results
where it also provides several advantageous properties such as resolving the overlapping
peaks, removing noise and fringes from the spectrum, and inspecting the interconnection
among deconvolution parameters [61]. Based on this approach, the deconvolution FTIR
spectra can provide the fraction of conducting ions. The deconvolution possibility of
FTIR spectra allowed one to isolate the existing peaks as well as alter both intensity and
wavenumber as highlighted by Ramelli et al. [62]. Thus, the involvement of H+ in charge
carriers can be verified. The opted band region for the deconvolution purpose was from
1250 to 1500 cm−1, as shown in Figure 5. This is payable to the evident interaction as
before clarified in the FTIR analysis. In the same band region, the use of NH4NO3 led
to shift the bands within the range of 1200–1500 cm−1, as reported by Kamarudin and
Isa [63] and Hafiza and Isa [64]. Thus, this approach is intended to isolate the free and ion
pairs appropriately. The free ions correspond to the free mobile ions like H+ while the ion
pairs correspond to the ions of NH4

+ or NO3
− [65–67]. With the help of the deconvoluted

FTIR spectra shown in Figure 5, the percentage of free ions can be quantified using the
following equation:

Free ions % =
Area of free ions peak

Total area (free ions peak + ions pair peak)
× 100 (15)
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The percentage of free ions obtained by CMNG1 is 67.5%, which then significantly
increased to 71.7% with 28 wt.% of glycerol. However, a slight decrease of the free ions
percentage to 70.2% is observed when the concentration of glycerol is increased to 42 wt.%.
This is generally explained that the percentage of free ions is influenced by the concentration
of glycerol in the system which is highly correlated to the trend of the ionic conductivity.
The increase of H+ ions that dissociated from NH4

+ could also be a factor for the increment
of ionic conductivity. Aniskari et al. [68] also reported the highest conducting electrolyte
also had the highest percentage of free ions. By employing the percentage of free ions
for each electrolyte, the transport parameters of number density (n), ionic mobility (µ),
and diffusion coefficient (D), can be calculated using the Equations (16)–(18), where NA is
Avogadro’s constant, M represents the number of moles of glycerol, and e is the elementary
charge. VTotal is the total volume of the polymer electrolytes.

n =
M× NA

VTotal
× ( f ree ion %) (16)

µ =
σ

ne
(17)

D =
µkT

e
(18)
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The calculated transport parameters of the electrolytes are listed in Table 3 using
FTIR routine. It can be observed that the trend of number density is followed the ionic
conductivity pattern as in Table 1. The dissociation of H+ ions assists to facilitate the
coordination of the H+ ions in the electrolyte system which leads to the enhancement of
ionic conductivity value [69,70]. This can be further proved through the trend of µ and D.
The flexibility and the segmental wave of the polymer chains in the system also predisposed
the transport properties as well as the ionic conductivity [71]. However, the improvement
of transport properties was observed when glycerol concentration reached 42 wt.% which
is due to the enhancement of the chain flexibility that leads to the concentration increment
of H+ carriers, and thus increases the ionic conductivity of the electrolyte.

Table 3. Transport parameters values of the electrolytes.

Electrolyte n (cm−3) µ (cm2V−1s−1) D (cm2s−1)

CMNG1 4.90 × 1022 1.02 × 10−8 2.67 × 10−10

CMNG2 6.31 × 1022 1.11 × 10−8 2.87 × 10−10

CMNG3 6.80 × 1022 1.14 × 10−8 2.98 × 10−10

3.3. Transference Number Study

The transfer of electrons and ions in an electrolyte provides conductivity. In order to
determine the primary charge carrier, transference number (TNM) was evaluated at an
applied voltage of 0.2 V. Figure 6 depicts polarization of the highest conductivity for the
CS:MC:NH4NO3:glycerol system. It is obvious that at the beginning of the polarization
process, the conduction of ions and electrons results in a significant current of 1.5 µA. As
already mentioned, the evaluation is based on the SS electrode, owing to blocking the
ions and permitting the electrons to pass. Therefore, as the time increases, the current
minimizes up to a plateau at 0.1 µA. This steady-state current indicates the occurrence
of a polarization process of the electrolyte. Thus, cations and anions are adsorbed at the
negative electrode and the positive electrode, respectively [72,73]. At this stage, the current
is only carried by electrons. The te value of 0.07 and the ti value of 0.93 were obtained. Since
ti is higher than te, the dominant charge carriers of CS:MC:NH4NO3:glycerol electrolyte
are the ions [74]. The accumulation of these ions on the surface electrodes allows EDLC
applications. For the ammonium salt-based SPE reported by Vijaya et al. [75], the ti values
were in the range of 0.90 to 0.99. Samsi et al. [76] obtained the ti value of 0.916 for cellulose
acetate (75 wt.%)-NH4I (25 wt.%) system. In another work, the ions are also dominated
(i.e., 0.85 out of 1) in ammonium based-poly(ethyl methacrylate) system [77]. Alia et al. [78]
revealed the ti value of 0.905 for SPE of proton-based biopolymer with polycarbonate
electrolyte as the plasticizer and zinc sulfate as the filler.

3.4. LSV Study

EDLC is known as a high cycle supercapacitor, thus it is crucial to investigate the
working voltage range, frequently referred to as potential stability [79]. The study em-
ployed LSV, facilitated by SS electrodes, to identify the potential stability of every poly-
mer electrolyte, and Figure 7 illustrates a normal LSV graph for the highest conducting
CS:MC:NH4NO3:glycerol blend electrolyte. The finding indicates that, from the EDLC ap-
plication viewpoint [80], the potential stability is in the satisfactory working voltage range
of 1.87 V. According to Monisha et al. [81], the threshold voltage is that the current passes
through the cells. The potential stability obtained for this work is comparable to other
reports with ammonium salts as the ionic provider. A complexation of ethylene carbonate,
NH4NO3, and CS yield potential stability of 1.8 V [82]. A system of MC:NH4Br is reported
to decompose beyond 1.53 V [19]. In another report, poly (ε-caprolactone) (PCL)-based
polymer electrolytes are stable up to 1.4 V as ammonium thiocyanate is added [83].
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Figure 7. Linear Sweep Voltammetry (LSV) graph of the highest conducting electrolyte at 0.02 V/s.

3.5. Charge-Discharge Study

Figure 8 shows the charge-discharge cycle of the fabricated EDLC. An ideal capacitor
will show a triangle curve due to polarization. Unlike conventional batteries where the
discharge curve is non-linear due to the process of inter-and de-intercalation. Figure 9
shows the Vd and ESR of the EDLC in this work. Vd is energy loss and highly dependent
on the internal resistance. Vd can be observed before every discharging process where the
calculated average value is 0.0631 V. The value of Vd throughout the 500 cycles is quite
stable at 125th and 475th cycles. This could be due to changes in ionic transportation
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pattern and the formation of the charge-double layer is disturbed. In addition to that,
the ESR is also stable up to 500 cycles with an average of 63.1 ohms. A low value of ESR
indicates that the constituents of EDLC have an excellent contact.
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Figure 9. Equivalent series resistance (ESR) and drop voltage of the EDLC for 500 cycles of charging
and discharging.

Figure 10 illustrates the Cs and efficiency as a function of cycle number for the fabri-
cated EDLC at 0.5 mA/cm2. The Cs value increases from 50.2 F/g at the 1st cycle to 68 F/g
at the 150th cycle, followed by almost unchanging value after the 175th cycle upwards and
reached an average value of 75 F/g when 500 cycles are completed. A rapid build-up of
the double layers in EDLCs/supercapacitors is a main reason that the capacitance value is
relatively low at the 1st cycle.
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Figure 10. Cs and efficiency of the EDLC against the cycle number at 0.5 mA/cm2.

Negatively and positively charged ions are still employed to get used to the conduction
pattern at the initial stage [84,85]. Table 4 shows an example of reported works related to
the application of EDLC using various types of polymer electrolytes and materials. Many
aspects have to be considered such as salts, polymer, filler, plasticizer, and electrodes used.

Table 4. Various types of electrochemical double-layer capacitor (EDLC) with their relative electrodes
and specific capacitance value.

System Active Materials C (F/g) Reference

hydroxylethyl cellulose + MgTf2 +
EMIMT + silica nanoparticles Activated carbon 25.1 [1]

PVA + CH3COONH4 + BmImCl Activated carbon 31.3 [86]
MC + NH4NO3 + PEG PEG/Activated carbon 38.0 [87]

PVA/polystyrene Carbon 40.0 [88]
Cellulose + Na2SO4 Cellulose nanofiber + graphite 43.0 [89]

CS + MC+ NH4NO3 + glycerol Activated carbon 50.2 Present work

The efficiency of the EDLC is illustrated in Figure 10. The high value of efficiency
signifies that the discharging part is equal to or longer than the charging time. The
efficiency of 74% can be observed at the first cycle. Usually, the charging process lasts
longer in comparison with discharging. By subjecting the current, cations and anions begin
approaching the electrode and become familiar with the conduction trend. A low efficiency
is given at this stage. The efficiency is varied in the range of 80–99%. These findings of the
present work reveal that the EDLC possesses good cycling stability and contact as well as
less charge drop up to 500 cycles.

Figure 11 depicts the variation of E and P over 500 cycles, respectively. The E value
was found to be 6.79 Wh/kg at the first cycle and then reached 9.52 Wh/kg. Beyond
175 cycles, E is clearly started to stabilize at an average value of 10.38 Wh/kg all over the
500 charge–discharge cycles. This fact clarifies that both NO3

− anions and NH4
+ or H+

cations in the polymer chains of the CS:MC blend move towards the electrode surface
at an almost similar energy barrier [90]. Winie et al. [91], demonstrated that a CS-based
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EDLC has energy density from 0.57 to 2.8 Wh/kg as the current density changes from 2 to
0.6 mA/cm2, respectively. The low ion aggregation is due to stability in energy density
and capacitance pattern. The EDLC shows a higher power density than batteries owing
to the absence of the intercalation/deintercalation process in the former one. This needs
more energy and a longer distance for ions to move back to the electrolyte. P value at
the 1st cycle was found to be 1941 W/kg and minimized to 1633 W/kg at the 150th cycle.
Yassine et al. [92], mentioned that the power density is largely linked to internal resistance;
therefore, the P pattern will be opposed to the ESR pattern. An increase in the ESR value
leads to a drop in the value of P. After the 175th cycle, the P pattern remained almost
unchanged with an average value of 1642 W/kg.
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4. Conclusions

In conclusion, structural, impedance, ion transport parameters, and device perfor-
mances of the prepared electrolyte have been examined. The transport parameters and
DC conductivity estimated from the EIS study reveals the suitability of the electrolyte
for device fabrication. The FTIR results and their significant deconvolution were used to
detect the interaction that occurs among polymer electrolyte components and determine
the transport parameters. The transport properties completed from FTIR analysis is close
enough to that achieved from EIS data. The dominant role of ion to the total conductivity
was proven from transference number measurement (TNM) as the ionic was found to
be 0.93. CS-MC-NH4NO3–glycerol electrolyte was potentially stable up to 1.87 V. The
EDLC was tested for 500 complete charge–discharge cycles. The specific capacitance has a
pattern that is similar to that of the energy density as both of them are quite related and
the values are stabilized beyond 175th cycles. The specific capacitance and energy density
of the EDLC at the first cycle are 50.2 F/g and 6.97 Wh/kg, respectively. Meanwhile, the
internal resistance and power density of the EDLC have a similar trend. The average power
density and internal resistance of the EDLC throughout the 500 cycles are 1642 W/kg
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and 63.14 ohms, respectively. The performance of the EDLC can be improved by other
researchers via the modifications of electrodes and electrolytes.
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