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In recent years, it is a trend to integrate the ideas in game theory into the research

of multi-robot system. In this paper, a team-competition model is proposed to solve

a dynamic multi-robot task allocation problem. The allocation problem asks how to

assign tasks to robots such that the most suitable robot is selected to execute the most

appropriate task, which arises in many real-life applications. To be specific, we study

multi-round team competitions between two teams, where each team selects one of

its players simultaneously in each round and each player can play at most once, which

defines an extensive-form game with perfect recall. We also study a common variant

where one team always selects its player before the other team in each round. Regarding

the robots as the players in the first team and the tasks as the players in the second

team, the sub-game perfect strategy of the first team computed via solving the team

competition gives us a solution for allocating the tasks to the robots—it specifies how

to select the robot (according to some probability distribution if the two teams move

simultaneously) to execute the upcoming task in each round, based on the results of the

matches in the previous rounds. Throughout this paper, many properties of the sub-game

perfect equilibria of the team competition game are proved. We first show that uniformly

random strategy is a sub-game perfect equilibrium strategy for both teams when there

are no redundant players. Secondly, a team can safely abandon its weak players if it has

redundant players and the strength of players is transitive. We then focus on the more

interesting case where there are redundant players and the strength of players is not

transitive. In this case, we obtain several counterintuitive results. For example, a player

might help improve the payoff of its team, even if it is dominated by the entire other

team. We also study the extent to which the dominated players can increase the payoff.

Very similar results hold for the aforementioned variant where the two teams take actions

in turn.

Keywords: team competition, task allocation, multi-robot system, dominated players, sub-game perfect

equilibrium
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1. INTRODUCTION

In the past two decades, intelligent multi-robot systems are more
and more widely used in industrial manufacturing, agriculture,
hospital, fire rescue, cargo handling, entertainment, and many
other places. The efficiency of the systems is crucial to their
applications and it highly depends on the collaboration between
robots. One of the primary problem that occurs to the designer of
multi-robot systems is how to assign tasks to robots such that the
most suitable robot is selected to execute the most appropriate
task, which is usually referred to as the task allocation problem
and which arises in all kinds of real-life applications.

It is well-known that game theory lays the mathematical
foundation for the research of collaboration in multi-robot
system, and it is a trend to integrate the ideas and theoretical
results in game theory into the research of multi-robot system.
For example, market-based approaches to task allocation are
proposed in Botelho and Alami (1999), Gerkey and Mataric
(2002), Wang et al. (2004), Dias et al. (2006), Zlot and Stentz
(2006), and Wu and Shang (2020). In this paper, a team-
competition model, which is of interest by itself in game theory,
is proposed to solve a Dynamic Multi-Robot Task Allocation
(DMRTA) problem.

In our DMRTA problem, there are m robots and n pre-
described tasks, and the tasks are coming in T rounds, where T ≤

min{m, n}. One task will come in every round, and it would like to
be assigned to one robot immediately. Be aware that when T < n,
only T tasks, but not all the n tasks, will be assigned (as there are
only T rounds), and this means the set of tasks to be assigned
are not fully determined at the beginning in our problem. For
simplicity, assume that each pre-described task comes at most
once (this constraint can easily be removed by replicate the
task) and that each robot can take at most one task (as well,
this constraint can be removed by replicate the robot). Different
robots have different performances in solving different tasks, and
to describe this diversity we make the following assumption: if
the robot with index r (i.e., robot r) is to execute the task with
index s (i.e., task s), there is a probability pr,s that robot r succeeds
to complete its job—and a probability 1− pr,s that it fails to do its
job. The m × n probability matrix pr,s | 1 ≤ r ≤ m, 1 ≤ s ≤ n is
prior information—it is given to us before the allocation mission
starts. Roughly, our objective is that the number of successful
robots is as high as possible—in other words, the number of tasks
that have been solved successfully is as high as possible. Details of
the DMRTA problem will be elaborated right after we introduce
our team competition model in what follows.1

We investigate a type of team competitions where there are
two teams, each with a number of players, competing against
each other. The competition proceeds in a fixed number of
rounds. In each round, each team simultaneously sends out
a player to a match (We also consider a variant where one
team, say Team 2 without loss of generality, always takes actions

1This team competition model was introduced in the conference version of this

paper, which was accepted by the 2016 International Conference on Autonomous

Agents and Multiagent Systems (Jin et al., 2016) [Yet the conference version did

not discuss (1) its application in DMRTA and (2) the react-in-turn variant].

before the other team in each round. This variant will mainly be
discussed in section 3). The result of the match is then revealed
according to a probabilistic strength matrix between players.
The selected players cannot compete in the subsequent rounds.
The competition proceeds to the next round if there is one; or
terminated otherwise. The format of the competition and the
strength matrix are common knowledge to both teams. The final
payoff of each team is the number of matches it wins. To make
it more general, we also investigate another commonly seen form
where each team gets payoff 1 if it wins strictly more matches
than the other team, 0 if ties, and −1 if it wins less matches.
Clearly, this competition between two teams defines a standard
extensive-form game, or more precisely, a stacked matrix game
(Lanctot et al., 2014). We are interested in the sub-game perfect
equilibria of the game, i.e., a strategy profile that specifies for each
team which player to play at each round. A formal description of
our team competition model is given in the next section.

Our team competition model is first motivated by the Chinese
horse race story described in Tang et al. (2009) (see also
Wikipedia, 2015b). It represents one of the most popular forms
of horse races where each team ranks its horses to match
sequentially. Moreover, the Swaythling Cup, as known as World
Table Tennis Championships, follows the same model described
in our paper: each team adaptively selects a ranking of three
players and brings two additional substitutes. In fact, this has
been one of the most popular formats of team competition in
table tennis. In addition, the card game Goofspeil (Lanctot et al.,
2014; Wikipedia, 2015a) also falls into nearly the same model
as described in our paper. Last but not least, many military
engagements (like fighting between two groups of drones) may
also have this type of structure.

Obviously, we can regard the m robots as the players in the
first team and the n tasks as the players in the second team, and
the probability matrix pr,s | 1 ≤ r ≤ m, 1 ≤ s ≤ n can serve
as the probabilistic strength matrix in the team competition.
Then, the (sub-game perfect) strategy profile of the first team
we obtained via solving the team competition gives us a solution
for allocating the tasks to the robots—it specifies how to select
the robot (randomly according to some probability distribution
given by the strategy) to execute the upcoming task in each
round, based on the results of thematches in the previous rounds.

At this place, it is necessary to point out a feature of our
DMRTA problem inherited from the team competition model:
As the two teams shall send out their players simultaneously in
each round, in our DMRTA problem we shall select the robot
before the task in the corresponding round is revealed to us.
Nevertheless, if we would like to handle the case where we can
select the robot after the task in the corresponding round is
revealed, we only need to deal with the variant where Team 2
reacts before Team 1. Gladly, we will see in section 3 that many
results for this non-simultaneous variant are aligned with the
results for the original simultaneous case (In particular, most of
the results are the same. See Table 1 for a comparison). We first
discuss the simultaneous case because this case is typical and
more difficult.

Despite the aforementioned application in the DMRTA
problem, our team competition model is interesting by itself in
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TABLE 1 | Summarize of the results for simultaneous case and non-simultaneous case.

Simultaneous case Non-simultaneous case

n = m = T

The value of the game equals the average utility (of

Team 1) across all matchings. Moreover, the

uniformly random strategy is a SPE strategy

(Theorem 1).

The value equals the maximal utility that Team 1

can gain over all matchings. The pure strategy

ensuring the best matching for Team 1 is a SPE

strategy (Theorem 5).

Transitive strength

If Am ≤ . . . ≤ A1, AT+1, . . . ,Am can be removed. If

Bn ≤ . . . ≤ B1, BT+1, . . . ,Bn can be removed

(Theorem 2). Exactly the same result holds (Theorem 6).

For non-transitive strength: When other players

are weaker than the first T players in a team, can

the weaker players be removed?

For U = UE , the answer is YES as long as n = T.

For other utility functions U (e.g., UM ), the answer is

NO (Theorem 3).

For Team 1, the answer is YES as long as n = T

(this holds for any U). However, the answer is NO

for Team 2 (Theorem 7).

For non-transitive strength: How many dominated

players shall we recruit to achieve maximum

value?







T − 1 for U = UE ;

⌊T/2⌋ for U = UM.
(Theorem 4) Exactly the same result holds (Theorem 8).

game theory. We are particularly interested in a situation where
at least one team has more players than the number of rounds in
the competition. As a result, some players will never have chance
to participate in any match. A main agenda of this paper is to
understand to what extent can the presence of additional players
affect the payoff of both teams. In particular, we ask the following
questions: (1) Can the presence of additional weakest teammate, a
teammate whose row in the strength matrix is strictly dominated
by any other row, help increase the payoff of the team? (2) Can
the presence of additional dominated teammate, a teammate that
always loses to any player in the opponent team, help increase the
payoff of the team? It might appear intuitive that the answers to
both questions are negative. For the first question, it seems that
the weakest teammate will never have a chance to participate in
any match since one can always replace him by a better teammate
and increase payoff. For the second question, it might seemmore
obvious since the dominated teammate will lose anymatches thus
must be replaced by a better teammate. To our surprise, we find
that the answers to both questions are affirmative.

Our contributions to the team competition model are
summarized in the following. We first show that uniformly
random strategy is a sub-game perfect equilibrium strategy for
both teams when there are no redundant players (i.e., the number
of players in each team equals the number of rounds). The
uniformly random strategy always picks the unmatched player
uniformly at random in each round. Then, we consider the
general case where at least one team has redundant players. We
first study the case where the strength of players is transitive (see
Definition 2), which means that the players can be rearranged
in a queue so that each of them is weaker than its successor.
We prove that, a team can safely abandon its weak players if it
has redundant players and the strength of players is transitive.
Therefore, this case reduces to the case where there are no
redundant players. Finally, we focus on the case where there are
redundant players and the strength of players is not transitive.
In this case, we obtain a number of counterintuitive results.
Most importantly, a player might help improve its team’s payoff,

even if it is dominated by the entire opposing team. We give a
necessary condition for a dominated player to be useful, which
alternatively suggest that a particular utility function (named
UE below) is more reasonable in team competition. Our results
imply that a team can increase its utility by recruiting additional
dominated players. We further show that, the optimal number
of dominated players to recruit can scale with the number of
rounds. More precisely, this number can be 2(T) if there are T
rounds. Last but not least, we study the limitation of dominated
players. These results bring insights into playing and designing
general team competitions.

Team competition has been studied for years. Tang et al.
(2009, 2010) study a team competition setting where the number
of players equals the number of rounds and both teams
must determine the ordering of players upfront, before the
competition starts. They put forward competition rules that
are truthful while satisfy other desirable properties. The main
difference between their work and ours is that we do not
design new mechanisms but study game theoretical properties
of commonly used competition rules. The differences also lie
in that the strategies are adaptive in our setting and each
team can have more players than the rounds. The strategic
aspects of team competition have also been under scrutiny
of computer scientists due to a recent Olympic scandal in
badminton, where several teams deliberately throw matches
in order to avoid a strong opponent in the next round.
The phenomenon has been discussed in depth in a series of
algorithmic game theory blogposts by Kleinberg (2012) and
Procaccia (2013). A parallel literature has been concerned with
the strategic aspect of tournament seeding (Hwang, 1982; Rosen,
1986; Knuth, 1987; Schwenk, 2000; Altman et al., 2009; Vu
et al., 2009). It is well-known that there are cases where by
strategic seeding and structuring, any player can be winner
in knockout tournament. Various game theoretical questions,
such as player-optimal seeding, complexity of manipulation and
incentives to guarantee strategyproofness, have been investigated
in this literature.
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The study of various kinds of multi-robot task allocation
problem using game theory dates back to early 2000’s. Botelho
and Alami (1999), Gerkey and Mataric (2002), Wang et al.
(2004), Dias et al. (2006), Zlot and Stentz (2006), and Wu and
Shang (2020) make use of the theory of market economies to
determine how to allow robots to negotiate on responsibilities in
task allocation. In particular, they discuss how to manage bids
(robots communicate to bid for tasks according to their expected
contribution to the tasks), how to handle bids in parallel and how
to handle multiple tasks at once, and so on. Usually, heuristic
assignments are made by assigning every task to the robot that
can execute it with the highest utility.

2. MATERIALS AND METHODS

Team 1 has a set of m players {A1, . . . ,Am}. Team 2 has a set of
n players {B1, . . . ,Bn}. A competition between team 1 and 2 is a
tuple G(T, P,U) where,

1. T is the number of rounds.
2. In each round, each team simultaneously selects one of its

players that have not been selected yet.
3. P is a probabilistic matrix that describes the relative strength

between players, with Pi,j denoting the probability thatAi wins
against Bj and 1− Pi,j the probability for Ai to lose to Bj.

4. U :[T] → R denotes the utility function of each team. The
utility function only depends on the number of rounds t each
team wins, i.e., it can be represented by U(t). This also implies
that both teams have the same utility functions.

5. The parameters n,m,T, P,U are common knowledge to both
teams, and historical plays are perfectly observable. It is
assured that Pi,j ∈ [0, 1] for all i, j and that m ≥ T and n ≥ T
so that there are enough players to complete the competition.

The following utility functions UE and UM are two commonly
seen ones:

UE(t) = t − T/2. UM(t) =







1 t > T/2
0 t = T/2
−1 t < T/2

. (1)

In other words, UE describes a competition where a team’s utility
is exactly the number of rounds it wins (minus some constant
T/2); while UM(t) describes a competition where a team’s utility
is whether it wins more than its opponent. Notice that, when
U = UE or U = UM , we have U(t) + U(T − t) = 0, hence
both utility functions define a zero-sum game. In this paper we
always assume that U(T)+ U(T − t) = 0.

2.1. Example: Simultaneous Card Games
The models above formulates the standard team competitions
as commonly seen under the context of sports, but shall not be
limited to sports. The following is an instance of card games that
fall into our framework. Suppose that Alice and Bob each has a
deck of three cards. In each deck one card is in suit ♥ and two
cards are in suit ♠. They play three rounds; in each round Alice
and Bob select one card and they reveal the cards simultaneously.
If they select cards in same suit (both in ♥ or both in ♠), Alice

wins this round; otherwise Bob wins this round. The one who
wins two or three rounds gets utility 1; the other one wins zero or
one rounds and it gets utility−1.

This game can be conveniently represented in ourmodel using
the following parameters:

m = n = T = 3, P =





1 0 0
0 1 1
0 1 1



 ,U = UM .

For this game, applying our first theorem, a (sub-game perfect)
equilibrium strategy for both players exists, and it is to just to play
uniformly random. It follows that Alice and Bob have utilities
−1/3 and+1/3.

2.2. Extensive-Form Game With Perfect
Recall
Any particular instance G(T, P,U) of our team competition is an
extensive-form game. In this game, a history can be described by
a tuple (k, a, b, c) where:

• k indicates the number of rounds that has been played;
• a is a k-dimensional vector which stores the players selected by

Team 1 in the past k rounds;
• b stores the players selected by Team 2;
• c is a k-dimensional 0–1 vector which stores the results in the

first k rounds, where 0 corresponds to a lose by Team 1 and 1
corresponds to a win by Team 1.

A behavioral strategy in this game is a mapping from every
history to a probability distribution over actions. That is, at
each history, the strategy of each team is to pick the next
player according to a probability distribution. By Kuhn’ Theorem
(Kuhn, 1953; Osborne and Rubinstein, 1994), there is a sub-game
perfect equilibrium (SPE), in which both teams use behavioral
strategies. According to the SPE, a value V(H) can be defined for
each history H, which indicates the expected utility that Team 1
would get at the end of the game if it is now at history H. Note
that each history is the root of a sub-game and so the value of a
history is the same as the value of the sub-game.

2.3. Computing SPE
By backward induction, one can easily get

LEMMA 1. Two histories have the same value if they have selected
the same players to play (but may be in different orders) and
Team 1 won the same number of rounds.

Based on the above lemma, the histories can be partitioned to
equivalence classes, such that each equivalence class corresponds
to a four-tuple (k,X,Y ,w): k is a number in [T] which denotes
the number of past rounds; X is a subset of A of size k; Y is a
subset of B of size k; X,Y denote the players that have played; w
is a number in [k] which denotes how many rounds Team 1 has
won so far.

In the following, we show in detail how to compute the value
of each equivalence class via dynamic programming.

Let V[k,X,Y ,w] denote the expected utility of Team 1 when
the history belongs to class (k,X,Y ,w).
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Clearly, we have V[k,X,Y ,w] = U(w) when k = T.
When k < T, computing V[k,X,Y ,w] reduces to computing

the value of the matrix game M(k,X,Y ,w) where the matrix
M(k,X,Y ,w) is defined as follows:

It consists of m − k rows and n − k columns. Each
row corresponds to a player in A − X, and each column
corresponds to a player in B − Y . The cell corresponding to
Ai,Bj equals to the expect utility of Team 1 when Team 1 and
Team 2, respectively make action Ai and Bj on the current state
(k,X,Y ,w), which equals

V[k+ 1,X + {Ai},Y + {Bj},w+ 1] · Pi,j+

V[k+ 1,X + {Ai},Y + {Bj},w] · (1− Pi,j).

The reason behind the above definition of M(k,X,Y ,w) is as
follows. If the two teams select Ai,Bj in this round, Team 1 has
probability Pi,j to win this round and hence the history becomes
(k+ 1,X+{Ai},Y +{Bj},w+ 1); besides, Team 1 has probability
(1 − Pi,j) to lose this round and hence the history becomes
(k+ 1,X + {Ai},Y + {Bj},w).

We can compute the value of all equivalent classes of histories
according to the above induction. In fact, by computing these
values, we also find a sub-game perfect behavior strategy for
both players. To see this, suppose that (k,X,Y ,w) is a non-
terminal equivalent class of history. On solving the matrix game
M[k,X,Y ,w] we find the strategies for all the histories in the
history class (k,X,Y ,w).

2.4. Uniformly Random Strategies
The next theorem states that, if there are no redundant players,
uniformly random is an equilibrium strategy for the teams. It
holds for arbitrary utility function including UE and UM .

DEFINITION 1. The uniformly random strategy is a behavioral
strategy, in which a team always selects from the remaining players
uniformly at random in each round.

THEOREM 1. When both teams have no redundant players (i.e.,
n = m = T), then it is a SPE when both teams apply the uniformly
random strategy.2

We apply the following lemma for proving Theorem 1.

LEMMA 2. Suppose that there are no redundant players. Let S

denote the set of all perfect matchings between {A1, . . . ,AT} and
{B1, . . . ,BT}. If Team 1 or Team 2 applies the uniformly random
strategy, then the probability that the competition ends with any
fixed matching in S is exactly 1/(T!).

PROOF OF LEMMA 2: We only prove that the statement
holds when Team 1 applies the uniformly random strategy.
Symmetrically, the statement holds when Team 2 applies the
uniformly random strategy.

2Note that there could be other SPEs. For example, when players in Team 1 always

lose, any strategies for the two teams form a SPE.

First, suppose that Team 1 applies the uniformly random
strategy while Team 2 applies an arbitrary pure strategy.3 In this
case, we claim that the probability that the competition ends
with any fixed matching is exactly 1/(T!). This can be proved by
induction on the number of remaining τ rounds. In the stage with
τ remaining rounds, let M be any fixed matching between the τ

unused players in Team 1 and the τ unused players in Team 2. In
the next round, it occurs with probability 1/τ that some edge e of
M is chosen, because Team 1 will assign the player Bi selected
by Team 2 to a random player among the unused players in
Team 1. If this occurs, denote by M′ = M − {e} the matching
obtained by deleting e from M, which is chosen with probability
1/((τ − 1)!) by induction hypothesis. Thus, M is chosen with
probability 1/(τ !).

Finally, since a mixed strategy is a linear combination of the
pure strategies, our job is done.

PROOF OF THEOREM 1: Let S be the same set as in Lemma 2.
As there are no redundant players, a game will always end with
some matching in S. For any matching s ∈ S, let Zs denote the
event that the game ends with this matching. If Team 1 applies
the uniformly random strategy, it has expected utility

∑

s∈S

E(the utility of Team 1 | Zs)/ Pr
Team 1 uniformly random

(Zs)

=
∑

s∈S

E(the utility of Team 1 | Zs)/(T!)

The second equation is according to Lemma 2, which states
PrTeam 1 uniformly random(Zs) = 1/(T!).

Similarly, if Team 2 applies the uniformly random strategy, it
will get

∑

s∈S

E(the utility of Team 2 | Zs)/(T!)

=
∑

s∈S

−E(the utility of Team 1 | Zs)/(T!)

Therefore, it is a Nash Equilibrium if both teams apply the
uniformly random strategy. The argument can be similarly
extended to show that it is SPE.

In the remainder of this paper, we focus on the case where there
are redundant players.

CLAIM 1. If there are redundant players, then the uniformly
random strategy may not be a SPE strategy (For any team, a SPE
strategy for this team requires that it is optimal in each subgame).

This claim is obvious for a team with redundant players; but less
obvious for a team without redundant players. Here we give an
example in which the uniformly random strategy is not a SPE
strategy for a team with no redundant players.

3A pure strategy does NOT mean it determines the entire order of players at the

beginning. Instead, it means that at each possible history, some unmatched player

will be selected deterministically in the upcoming round. In this way, any mixed

strategy is a linear combination of the pure strategies.
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EXAMPLE 1. Let m = T = 2, n = 3, U = UE = UM (UE = UM

when T = 2), P =

(

0 0 1
1 1 0

)

.

According to method given in subsection 2.3, we can compute

that M(0,∅,∅, 0) =

(

−1 −1 1
0 0 −1

)

. Therefore, in the SPE,

the behavior for Team 1 on the initial state should be select A1

with probability 1/3 and select A2 with probability 2/3. This
guarantees (expected) utility−1/3. If to the contrary that Team 1
adopts the uniformly random strategy, it should select A1,A2

with probability 1/2, which would only guarantees (expected)
utility−1/2.

2.5. Transitive Strength
DEFINITION 2. Player Ai is weaker than its teammate Aj,
denoted by Ai ≤ Aj, if for any opponent Bk, the probability of
“Ai wins against Bk” is less than or equal to the probability of
“Aj wins against Bk.” Similar for Team 2. Team 1 {A1, . . . ,Am}

are transitive if there is a permutation π of 1, . . . ,m, such that
Aπ(1) ≤ . . . ≤ Aπ(m). Similar for Team 2.

DEFINITION 3. A utility function U is monotone if U(t + 1) ≥
U(t) for t ∈ 0, . . . T − 1.

THEOREM 2. Assume monotone utility function. Then, (1) If
Am ≤ . . . ≤ A1, Team 1 has a SPE strategy which only selects,
in each round, one of the players in A1, . . . ,AT . (2) Symmetrically,
if Bn ≤ . . . ≤ B1, Team 2 has a SPE strategy which only selects, in
each round, one of the players in B1, . . . ,BT .

By combining Theorem 1 and Theorem 2, we can immediately
get the following

COROLLARY 1. When players in each team are transitive and
U is monotone, there is a simple SPE strategy for both teams as
follows. Assume that Am ≤ . . . ≤ A1 and Bn ≤ . . . ≤ B1.
Then, the SPE strategy for Team 1 is to select an unused player
in A1, . . . ,AT uniformly random in each round; a SPE strategy
for Team 2 is to select an unused player in B1, . . . ,BT uniformly
random in each round.

Theorem 2 and Corollary 1 have many applications. In the real
word, the utility function is monotone, and in many situations,
such as in board or sport games, it is indeed the case that the
players are transitive.

We prove Theorem 2 (1) in the next; the claim
(2) is symmetric.

We first provide two basic terminologies which are necessary
for understanding the subsequent proof. Suppose that Am ≤

. . . ≤ A1 and that A′ is a subset of A and A′ = (Ai[1], . . .Ai[|A′|]),
where i[1] < . . . < i[|A′|]. Then, for any 0 ≤ C ≤ |A′|, the top C
players of A′ refers to {Ai[1], . . . ,Ai[C]}, and the rank C player of
A′ refers to Ai[C].

LEMMA 3. Suppose that U() is monotone.

1. Consider a pair of history classes H1 = (k,X1,Y ,w1) and
H2 = (k,X2,Y ,w2). We claim that, if the top T − k players
of A−X1 and the top T− k players of A−X2 are the same and
w1 ≥ w2, then V(H1) ≥ V(H2).

2. Let H = (k,X,Y ,w) be a non-terminal history class. Let Au be
the rank T − k player in A− X and Av be any player in A− X
that is not a top T − k player. Then, the row in M(k,X,Y ,w)
that corresponds to Au dominates the row that corresponds to
Av. As a result, there is an equilibrium strategy at history H (for
Team 1) which only selects the top T − k unmatched players
to play.

PROOF: Weprove it by backward induction.When k = T, Claim
1 holds according to the monotone property of U(); and Claim 2
naturally holds since it is a terminal history.

Now, we argue that, for 0 ≤ k < T, if the lemma holds for
k+ 1, it also holds for k.

First, we prove Claim 2. Let us compare the two rows
corresponding to Au and Av. Let us fix a column, say the one
corresponding to Br . The cell corresponding to (Au,Br) is

M[u, r] =V(k+ 1,X + {Au},Y + {Br},w+ 1)
︸ ︷︷ ︸

a

·Pu,r

+ V(k+ 1,X + {Au},Y + {Br},w)
︸ ︷︷ ︸

b

·(1− Pu,r)

The cell corresponding to (Av,Br) is

M[v, r] =V(k+ 1,X + {Av},Y + {Br},w+ 1)
︸ ︷︷ ︸

a′

·Pv,r

+ V(k+ 1,X + {Av},Y + {Br},w)
︸ ︷︷ ︸

b′

·(1− Pv,r)

Notice that the top T − k − 1 players in A − X − {Au} and
A − X − {Av} are the same. So, from the induction hypothesis,
a′ ≥ a ≥ a′ ≥ b ≥ b′ ≥ b, i.e., a = a′ ≥ b = b′.

Since that Au is the top T − k player while Av is not, player Av

is weaker than Au, which means that Pu,r ≥ Pv,r .
Combining the above arguments, we get that

M[u, r]−M[v, r] = (a− b) · (Pu,r − Pv,r) ≥ 0.

Therefore,M[u, r] ≥ M[v, r], and thus Claim 2 holds.
Then, we prove Claim 1. Let M1 denote M(k,X1,Y ,w1) and

M2 denoteM(k,X2,Y ,w2) for short. Suppose thatAu is a topT−k
player in A− X1 (which is also a top T − k player in A− X2) and
that Br is any player in B− Y .

We know

M1[u, r] =V(k+ 1,X1 + {Au},Y + {Br},w1 + 1) · Pu,r+

V(k+ 1,X1 + {Au},Y + {Br},w1) · (1− Pu,r)

M2[u, r] =V(k+ 1,X2 + {Au},Y + {Br},w2 + 1) · Pu,r+

V(k+ 1,X2 + {Au},Y + {Br},w2) · (1− Pu,r)

By induction hypothesis, it follows thatM1[u, r] ≥ M2[u, r].
Now, let σ denote the equilibrium strategy at H2 that only

selects the top T − k unmatched players to play (Such a strategy
exists according to Claim 2). Note that σ is also a legal strategy at
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H1. Let µ(H1, σ ) and µ(H2, σ ), respectively denote the utility of
Team 1 when it applies strategy σ on H1 and H2. Then,

µ(H1, σ ) = min
r :Br∈Y

∑

u :Au∈A−X1

σ (Au) ·M1(u, r),

µ(H2, σ ) = min
r :Br∈Y

∑

u :Au∈A−X2

σ (Au) ·M2(u, r).

From the inequality M1(u, r) ≥ M2(u, r), we get µ(H1, σ ) ≥

µ(H2, σ ). Moreover, we also have V(H1) ≥ µ(H1, σ ) and
V(H2) = µ(H2, σ ) (the equality is since that σ is the equilibrium
strategy on H2). Together, V(H1) ≥ V(H2).

Finally, Claim 2 of Lemma 3 implies Theorem 2 (1).

2.6. Non-transitive Strength
DEFINITION 4. A player is said to be weakest, if it is weaker than
all its teammates; and is said to be dominated, if it has 0 probability
to win against any player in the opponent team.

Assume that the utility function is monotone. In the previous
section, we show that if there are redundant players in Team 1
and if the strength of players of Team 1 are transitive, then
there is a SPE strategy for Team 1 which does not select the
weakest player. In other words, Team 1 can abandon the weakest
one without decreasing its utility. In this section, we show that
the transitivity is essential for this to hold. We start by the
following claim.

CLAIM 2. Suppose that Team 1 has redundant players, and some
player Au in Team 1 is weaker than all its teammate, and yet the
players in Team 1 are not transitive. Then, Team 1 might decrease
its utility by abandoning Au.

This is somewhat counterintuitive; it might be intuitive that
the weakest player has no chance to participate in any match
since one can always replace him by a better teammate and
increase utility.

Perhaps even more surprisingly, we have the following claim:

CLAIM 3. Suppose that Team 1 has redundant players, and some
player Au in Team 1 is dominated by the other team (i.e., has
no chance to win at all), and the players in Team 1 are not
transitive. Then, Team 1 might decrease its utility by abandoning
the dominated player Au.

The above claims confirm that, the weakest player or even
dominated player could help its team.

We would now like to state the organization of the remainder
of the section. In subsection 2.6.1, we give examples that verify
Claim 3, and we briefly explain the reason why we need
dominated players. In subsection 2.6.2, we identify a special case
where the weakest player can be abandoned without changing
the utility. In subsection 2.6.3, we consider the optimal number
of dominated players that we may need to achieve maximum
utility. In subsection 2.6.4, we discuss the limitations of the
dominated players.

2.6.1. Dominated Teammates Can Be Helpful
LetV(T, P,U) denote the value of gameG(T, P,U). Let P∗ denote
the sub-matrix of P by deleting the last row (thus G(T, P∗,U) is
the game where Team 1 has abandoned Am).

EXAMPLE 2. Let n = m = 3,T = 2, U = UE (recall that

UE(t) = t − T/2). P =





1 0 0
0 1 0
0 0 0



.

In Example 2, there are redundant players and the players in each
team are not transitive. Besides, A3 is a dominated player. We
argue the follows: (I) If A3 is abandoned, Team 2 can win both
rounds and hence V(T, P∗,U) = −1. (II) If A3 is in the team,
Team 2 cannot win both rounds with certainty and that means
V(T, P,U) > −1. Combining (I) and (II), we get V(T, P,U) >

V(T, P∗,U), which implies Claim 3.

PROOF OF (I): If A3 is abandoned, Team 2 can play as follows.
It chooses B3 to win the first round. If B3 defeated A1, it chooses
B1 in the second round to beat A2; otherwise, it chooses B2 in the
second round to beat A1.

PROOF OF (II): If Team 2 wants to win with certainty in
both rounds, it must select B3 to play the first round.
However, if Team 1 selects the dominated player A3 to play
the first round, Team 2 cannot win the second round with
certainty anymore.

From this example, we see why a dominated player might be
helpful for its team. The reason behind is similar to the horse race
story described at the beginning of Tang et al. (2010).

In the next, we give one more example. It gives, to our best
knowledge, the largest decrease of the value of the game by
abandoning a dominated player.

EXAMPLE 3. Let m = 4, n = T = 3. Let U = UE or U = UM .

Let P =







1 0 0
0 1 0
0 0 1
0 0 0






.

According the method shown in subsection 2.3, we can compute
that4

V(T, P,UM) = 0;V(T, P∗,UM) = −2/3;

V(T, P,UE) = −1/2;V(T, P∗,UE) = −1/2.

So, for the game G(T, P,UM), we will lose utility as much as 2/3 if
we abandon the dominated player.

In the following we explicitly state a SPE strategy for Team 1.
In the first round it selects the dominated player A4. Without loss
of generality, assume that it loses to B1. In the second round,
it selects A2,A3 uniformly random. So, there is 1/2 chance that
Team 1 wins this round. Furthermore, if Team 1 wins the second
round (say A2 beats B2) it can also wins the next (let A3 beat B3)

4The value of G(T,P∗,UM) and G(T,P∗,UM) can be simply computed according

to Theorem 1 since there are no redundant players in these games.
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and thus gets utility 1. By this strategy, there is 1/2 chance to get
utility 1 and 1/2 chance to get utility −1, so the expected utility
is 0.

However, for the game (T, P,UE), we do not lose any utility
by abandoning the dominated player. This is not a coincidence.
In fact, this example belongs to a special case where the
weakest player can indeed be abandoned. We show this in the
next theorem.

2.6.2. A Case Where the Weakest Player Can Be

Abandoned
We have seen that the weakest redundant player is useless when
the players are transitive (as proved in Theorem 2) but might
be useful when the players are not transitive (as shown in the
previous subsection). So, the next question is:

QUESTION 1. If the players are not transitive, in what cases can
the weakest player be abandoned?

We get the following result.

THEOREM 3. Suppose that Team 1 has redundant players but
Team 2 does not. So, m > T and n = T. Moreover, suppose
that each player in AT+1, . . . ,Am is weaker than each player in
A1, . . . ,AT . Let U = UE. Then, Team 1 can abandon all the
players in AT+1, . . . ,Am without losing its utility.

REMARK 1. According to Example 3, the claim in Theorem 3 fails
when U = UM . As a comparison, by recruiting extra dominated
players, a team can gain more utility when U = UM , but cannot
when U = UE. This may suggest that UE is more reasonable than
UM in team competition.

The condition m > n = T is important. If both team got
redundant players, the claim in Theorem 3 fails.

We need the following lemma in proving Theorem 3. It is a
technical statement of probability theory.

LEMMA 4. Assume that n = T and Ai,Bj are any pair of players
from the two teams. Let Qσ

i,j denote the probability that Ai meets Bj
in the game when Team 2 applies the uniformly random strategy
and Team 1 applies some strategy σ . Then, Qσ

i,j ≤ 1/T.

PROOF: We prove it by induction on n. The case n = 1 is trivial.
Suppose that the lemma holds for n − 1, and we now argue
that it also holds for n. Assume that by applying σ , Team 1 has
probability p to selects Ai in the first round. Then, the probability
that Ai meats Bj in the game is at most p 1

n + (1− p)(1− 1
n ) ·

1
n−1

(the term 1
n−1 is due to the induction hypothesis). Therefore,

Qσ
i,j ≤ p 1

n + (1− p) 1n = 1
n = 1

T .

PROOF OF THEOREM 3: We call AT+1, . . . ,Am the weak players.
When the weak players are abandoned, there are T remaining
players for each team. By Theorem 1, the uniformly random
strategy is a SPE strategy for Team 2. To prove Theorem 3, the
key idea is to show that even if Team 1 is allowed to select the
weak player, it will not gain more utility if Team 2 keep using
the uniformly random strategy. On the other hand, it is obvious
that Team 2 can’t gain more utility (when Team 1 is allowed

to select more players). Therefore, the value of game does not
change when the weak players are allowed to play.

First, we compute the utility U∗ of Team 1 when this team
abandons its weak players. As an application of Lemma 4, for
any pair of two players Ai,Bj (1 ≤ i, j ≤ T), they meet with
a probability no more than 1/T. It follows that this probability
equals 1/T, as the sum of all these T · T probabilities equals
T. Because Ai meets Bj with probability 1

T and Ai wins Bj
with probability Pi,j when they meet, it follows that the number

of rounds t that Team 1 wins equals
∑

j=1..T

∑

i=1..T
1
T Pi,j in

expectation. Therefore,

U∗ = (
∑

j=1..T

∑

i=1..T

1

T
Pi,j)−

T

2
.

We now state a formula of the utility Uσ of Team 1 when it
does not abandon its weak players and it applies some strategy
σ against the uniformly random strategy of Team 2. Let Qσ (i, j)
be defined as Lemma 4. Similar as above, the number of rounds
t that Team 1 wins equals

∑

j=1..T

∑

i=1..m Qσ
i,jPi,j in expectation.

Therefore,

Uσ = (
∑

j=1..T

∑

i=1..m

Qσ
i,jPi,j)−

T

2

We only need to prove that Uσ ≤ U∗, and it reduces to showing
that for any fixed j in 1..T,

∑

i=1..m

Pi,jQ
σ
i,j ≤

∑

i=1..T

1

T
Pi,j (2)

To prove (2), consider the following optimization problem:



















Variables: x = (x1, . . . , xm)
Parameters: c = (c1, . . . , cm)
Guarantee: ci ≥ ci′ (∀(i, i

′) such that i ≤ T < i′)

Constraint 1: 0 ≤ xi ≤
1
T (∀1 ≤ i ≤ m)

Constraint 2:
∑m

i=1 xi = 1
Objective: max f (x) =

∑m
i=1 cixi

Clearly, f (x) is maximized at x∗, where x∗i =

{
1
T i ≤ T
0 i > T

.

Noticing the following facts, we see that inequality (2) is just an
application of the above problem.

Qσ
i,j ≤

1
T (Applying Lemma 4)

∑m
i=1 Q

σ
i,j = 1 (According to the definition)

∀i ≤ T < i′, Pi,j ≥ Pi′,j (Since Ai′ is weaker than Ai)

2.6.3. Optimal Number of Dominated Players
Here we study the power of dominated players in another
direction. As we see in subsection 2.6.1, by abandoning a
redundant dominated player, Team 1 may decrease its utility.
In other words, Team 1 may increase its utility by recruiting
more dominated players. Note that the utility of Team 1 will
not decrease by recruiting more dominated players. However, it
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is unclear that the utility will strictly increase by doing so. For
example, recruiting T dominated players is the same as recruiting
T − 1 players — in any case, if any team uses T dominated
players in a competition, it gets the lowest utility! So, a natural
question is:

QUESTION 2. In order to maximize the expected utility of Team 1
(i.e., the value of the game), how many dominated players should
we recruit at least? Is it possible that we need as many as2(T) such
players?

The theorem below answers this question.

THEOREM 4.

1. Suppose U = UE. Recruiting T − 1 dominated players can be
better than T − 2, but recruiting T dominated players is the
same as T − 1. So, to achieve optimal utility, one may require
T − 1 dominated players. This number is tight.

2. Suppose U = UM . Recruiting ⌊T/2⌋ dominated players can be
better than ⌊T/2⌋ − 1, but recruiting ⌊T/2⌋ + 1 dominated
players cannot be better than ⌊T/2⌋. So, to achieve optimal
utility, one may require ⌊T/2⌋ dominated players, and this
number is tight as well.

One direction in these claims are rather trivial; we should never
useT dominated players whenU = UE or ⌊T/2⌋+1 players when
U = UM . To prove the other direction, we need to construct
some examples in which recruiting T − 1 (resp. ⌊T/2⌋) could
be better than T − 2 (resp. ⌊T/2⌋ − 1) when U = UE (resp.
U = UM). To construct such examples, an intuition is that we
should make the current players in Team 1 as weak as possible.
Our construction is as follows:

EXAMPLE 4. T ≥ 1,m = T, n = T + (T − 1),U = UE, Pi,j =
{

1 i = j
0 i 6= j

.

EXAMPLE 5. T ≥ 1,m = T, n = T + ⌊T/2⌋,U = UM , Pi,j =
{

1 i = j
0 i 6= j

.

The following claims together prove Theorem 4.

C1. In Example 4, if Team 1 only recruit T − 2 dominated
players, it can win no rounds and thus can get utility−T/2.

C2. In Example 4, if Team 1 recruit T − 1 dominated players, it
can win a positive number of rounds in expected and thus
gain utility more than−T/2.

C3. In Example 5, if Team 1 only recruit ⌊T/2⌋ − 1 dominated
players, it will always lose at least ⌊T/2⌋+1 rounds and thus
can only get utility−1.

C4. In Example 5, if Team 1 recruit ⌊T/2⌋ dominated players, it
can sometimes win at least ⌈T/2⌉ rounds and thus can gain
utility more than−1.

PROOF OF C1: In this case Team 2 can win all the rounds by
playing as follows: in the first T − 1 rounds, it selects the players
BT+1, . . . ,B2T−1 to play; and they all win. Then, since Team 1
only hasT−2 dominated players, at least one player inA1, . . . ,AT

has already played, denote it by Ai. In the last round, Team 2
select Bi and it definitely wins.

PROOF OF C3: In this case, by applying a strategy similar to C1,
Team 2 can win all the first ⌊T/2⌋ + 1 rounds.5

PROOF OF C2: For convenience, we denote the T−1 dominated
players by AT+1, . . . ,A2T−1. We argue that, if Team 1 applies the
uniform random strategy (that is, select one unused player in
A1, . . . ,A2T−1 uniformly random in each round), then, Team 2
has no strategy to win all rounds all the time. Suppose to the
contrary that Team 2 can do it, it must select a player from
BT+1 . . . ,B2T−1 to play in the first round; otherwise there is a
chance that it loses the first round. Note that, since Team 1 apply
the uniform random strategy, there is a chance that Team 1 select
a dominated player in the first round. If this happens, Team 2
must again select a player from BT+1 . . . ,B2T−1 to play in the
second round. Once again, Team 1 might still select a dominated
player in the second round. By induction, there is chance that
Team 1 select all the dominated players in the first T − 1
rounds while Team 2 consumes all its T − 1 invincible players
in BT+1 . . . ,B2T−1. Then, Team 2 cannot win with certainty in
the last round.

The claim C4 is the most non-trivial. To prove it we first state the
following lemma.

DEFINITION 5. For integers a, b,C such that

C ≥ 1, 0 ≤ a ≤ ⌈C/2⌉, 0 ≤ b ≤ ⌊C/2⌋, (3)

let ŴC
a,b

denote the following instance of team competition:

m = n = (C − a)+ (⌊C/2⌋ − b),

T = C − a− b, Pi,j =

{

1 i = j ≤ C − a
0 otherwise

.

The utility is as follows6: if Team 1 wins at least ⌈C/2⌉− a rounds,
it gets utility 1 and Team 2 gets −1; otherwise, Team 1 gets utility
−1 and Team 2 gets 1.

LEMMA 5. For integers a, b,C satisfying condition (3), Team 1 can
win utility larger than−1 in the game ŴC

a,b
.

PROOF: Consider three cases.

Case 1 a = ⌈C/2⌉. In this case, Team 1 always get utility 1, and
so ŴC

a,b
has value 1, which is larger than−1.

Case 2 b = ⌊C/2⌋. The game ŴC
a,b

can be restated as follows.

• m = n = C − a, T = ⌈C/2⌉ − a.
Player Ai can only defeat Bi for i in 1..m.
Team 1 gets utility 1 if it wins all the rounds; and −1
otherwise.

We argue that the uniformly random strategy guarantees
Team 1 an expected utility larger than −1. Equivalently
speaking, by applying the uniformly random strategy, Team 1

5In this case Team 2 can actually win all the T rounds.
6Here the utility functions for two teams are not identical. However, since it is still

a zero-sum game, SPE strategies for the teams exists as before. The requirement

that the utility functions are identical is not necessary in our model.
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has a chance to win all the rounds. The proof is as follows. In
the first round, there is a positive chance that Ai meets Bi for
some i. Then, in the second round, same thing happens with
a positive chance. This could happen for each round. When
these coincidences happen, Team 1 wins all the rounds.

Case 3 a < ⌈C/2⌉ and b < ⌊C/2⌋.
We use induction. Assume that ŴC

a+1,b
and ŴC

a,b+1
both have

value larger than−1, we argue that so does ŴC
a,b
. The following

facts follow from the definition of ŴC
a,b
.

Fact 1. If the two teams select Ai and Bi for i ≤ C − a in
the first round, it becomes a sub-game that is equivalent to
ŴC
a+1,b

.
Fact 2. If the two teams select Ai and Bi for i > C − a in

the first round, it becomes a sub-game that is equivalent to
ŴC
a,b+1

.

Combining them with the induction hypothesis, we get

Fact 3. If the two teams select players under the same index, it
becomes a sub-game whose value is larger than−1.

The value of ŴC
a,b

is equal to the value of the matrix game M,
whereM(i, j) indicate the value of the sub-game when Team 1
select Ai and Team 2 select Bj in the first round. Fact 3 implies
that all the utilities on the diagonal of matrixM are larger than
−1. So, by using uniformly random strategy over its players,
Team 1 can win a utility larger than −1. Therefore, ŴC

a,b
has

value larger than−1.

PROOF OF C4: Let G denote the revised game of Example 5, in
which Team 1 has recruited ⌊T/2⌋ dominated players. We could
observe that game G is almost the same as ŴT

0,0. To be more

specific, when T is odd, G is exactly ŴT
0,0; when T is even, the

parametersm, n,T, P in G and ŴT
0,0 are the same; but the utility U

is slightly different.
Suppose that the value of G is−1. Then, Team 2 has a strategy

which guarantees a expected utility−1. It means that Team 2 has
a strategy which can always win ⌊T2 ⌋ + 1 or more rounds. When

Team 2 applies this strategy, Team 1 can never win ⌈T2 ⌉ rounds.

It further implies that the value of ŴT
0,0 is also −1. However, this

contradicts with Lemma 5. Therefore, the value of G must be
larger than−1.

2.6.4. Limitations of the Dominated Players
Although the presences of dominated players can affect the value
of the game, we conjecture that it will not be too much. A
question is then,

QUESTION 3. By abandoning a dominated player, how much
value might be lost in the worst case? In other words, how much
extra (expected) utility can a team gain by recruiting dominated
players?

According to our simulations, we have the following conjecture
that we cannot prove at the moment.

CONJECTURE 1. If U = UM , we can gain at most 2/3 extra
(expected) utility (in other words, the value of the game increases by

at most 2/3) by recruiting arbitrary number of dominated players.
If U = UE, we can gain at most 1 extra (expected) utility by
recruiting arbitrary number of dominated players.

2.6.5. Throwing a Match and Discarding a Player
Recall the card game betweenAlice and Bob in subsection 2.1.We
shall point out that, recruiting a dominated player in this context
can be thought of applying a cheating action, which is to throw
a match by not placing any card in that round. In the mentioned
card game, if Alice and Bob are not allowed to throw a match,
Alice can get expected utility −1/3; if Alice is allowed to throw a
match, she can get expected utility 1/3. This can be computed
according to the method shown in subsection 2.3. Therefore,
throwing a match is profitable if permitted.

It may seem unnatural to let a team throw a match like this.
The following alternative cheating action called discarding, which
may seem more natural, is still profitable for the team.

Discarding is defined as follows. Alice (Team 1) is allowed
to discard one of its cards and agrees to lose in that round;
however the discarded card is never revealed to Bob (Team 2).
By discarding, Alice do not gain one more card at hand, unlike
the case of throwing a match.

However, if discarding is allowed, it may still be beneficial. We
give an instance in which onemay gain extra utility by discarding.
Formally, we have the following result.

CLAIM 4. For every integer K > 0, there exists a game G such that
VK(G) > VK−1(G), where VK(G) denotes the value of game G in
which Team 1 is allowed to discard at most K players.

EXAMPLE 6. m = K+1, n = 2K+1,T = K+1,U = UE, Pi,j =
{

1 i = j
0 i 6= j

.

The following claims together imply Claim 4.

C5 In Example 6, if Team 1 is only allowed to discard K − 1
times, it cannot win in any round.

C6 In Example 6, if Team 1 is allowed to discard K times, it can
win some rounds in expectation.

PROOF OF C5: Suppose that Team 1 is only allowed to use
discarding K − 1 times. Observer that, for any i in 1...m, after Ai

has played and revealed by Team 1, player Bi becomes invincible
that he would win with certainty if he plays in the next rounds.
Notice that there are K invincible players at beginning (which are
BK+2 . . .B2K+1) and Team 1 has only K − 1 chances to hide a
player by discarding. So, in any round, Team 2 has an invincible
player at hand. Therefore, Team 2 can win all the rounds.

PROOF OF C6: Consider the following strategy for Team 1. First,
Team 1 randomly chooses an order of the players (say, each order
with possibility 1/m!), and then randomly chooses exactly K of
its players so that these players will be discarded while playing.
We argue that this strategy guarantees Team 1 to win positive
rounds in expectation. It reduces to proving that no strategy of
Team 2 can win all the rounds against this strategy. Suppose that
Team 2 can do so. In the first round, it must select an invincible
player (i.e., a player in BT+1 . . .BT+K). Otherwise, there is a
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chance that it loses this round. And then, we know that there
is a chance Team 1 discards in the first round. If this happens,
Team 2 must also select an invincible player in the second round.
Again, it is possible that Team 1 still discards in this round.
Continuing this process we see that, it could happen that, in
the first K rounds Team 2 use all its K invincible players, while
Team 1 uses discarding K times. Then, Team 2 could lose in the
K + 1-th round.

3. MATERIALS AND METHODS (FOR A
VARIANT): TAKE ACTIONS IN TURN

We now turn to the aforementioned non-simultaneous variant
where Team 2 sends its player before Team 1 in each round. As
mentioned in section 1, our techniques for solving the original
simultaneous variant easily extends to the non-simultaneous
variant, and most of our results for the non-simultaneous variant
are aligned with the results stated in the previous section; see the
small difference in Table 1.

First, consider the easiest case where n = m = T. Recall that
S denotes the set of all perfect matchings between the T players
in Team 1 and the T players in Team 2 (defined in Lemma 2). A
key observation is that no matter what Team 2 does, Team 1 can
make sure that the matching result between the two teams equals
the one in S that benefits Team 1 the most (for a given utility
function U). Thus a simple SPE can be described easily based
on this particular matching (However, we do not declare that
there is always an efficient algorithm for computing this perfect
matching. For example, we are not aware of any good algorithms
for computing it whenU = UM . Yet there are efficient algorithms
for U = UE).

THEOREM 5. When both teams have no redundant players (i.e.,
n = m = T), then it is a SPE when Team 1 applies the strategy so
that the matching result is the same as the one that benefits Team 1
the most.

For the case of transitive strength, we have the following result
which aligns with Theorem 2.

THEOREM 6. Assume monotone utility function. Then, (1) If
Am ≤ . . . ≤ A1, Team 1 has a SPE strategy which only selects, in
each round, one of the players in A1, . . . ,AT . (2) If Bn ≤ . . . ≤ B1,
Team 2 has a SPE strategy which only selects, in each round, one of
the players in B1, . . . ,BT . (Be aware that (1) is not symmetric to (2)
for the non-simultaneous variant as Team 2 is no longer symmetric
to Team 1.)

Recall the history classes below Lemma 1 and the terminologies
introduced above Lemma 3. In addition, whenH = (k,X,Y ,w) is
a history class (as in the simultaneous case), letH(σ ) (σ ∈ B−Y)
denote the history class (in the non-simultaneous case) indicating
that Team 2 have sent player σ after arriving at H.

Proving Theorem 6 (1) reduces to proving the following
lemma which is similar to Lemma 3.

LEMMA 6. 1. Consider a pair of history classes H1 =

(k,X1,Y ,w1) and H2 = (k,X2,Y ,w2), where the top

T − k players of A − X1 and the top T − k players of A − X2

are the same. If w1 ≥ w2, we have V(H1) ≥ V(H2).
2. Consider a non-terminal history class H(σ ) where H =

(k,X,Y ,w) and k < T. Let Au be the rank T−k player in A−X,
and let Av be any player in A−X that is not a top T− k player.
Then, for Team 1, selecting Au is at least as good as selecting Av

to play against σ at H(σ ).

Our proof of Lemma 6 is analogous to our proof of Lemma 3.

PROOF: We prove it by backward induction. For k = T, claim 1
holds obviously and claim 2 holds naturally. Assume the lemma
holds for k+ 1, we now prove that it also holds for k.

Proof of claim 1. Clearly, V(H1) = minσ∈B−Y V(H1(σ )) and
V(H2) = minσ∈B−Y V(H2(σ )). Therefore, it reduces to proving
that V(H1(σ )) ≥ V(H2(σ )) for any σ that belongs to B− Y .

Applying claim 2 on H2(σ ), we obtain that there exists a top
T − k player Au in A− X2 such that

V(H2(σ )) =V
(

(k+ 1,X2 + {Au},Y + {σ },w1 + 1)
)

︸ ︷︷ ︸

a

·Pu,σ

+ V
(

(k+ 1,X2 + {Au},Y + {σ },w1)
)

︸ ︷︷ ︸

b

·(1− Pu,σ )

As the top T−k players in A−X1,A−X2 are the same, Au is also
a player in A− X1, and thus

V(H1(σ )) ≥V
(

(k+ 1,X1 + {Au},Y + {σ },w1 + 1)
)

︸ ︷︷ ︸

a′

·Pu,σ

+ V
(

(k+ 1,X1 + {Au},Y + {σ },w1)
)

︸ ︷︷ ︸

b′

·(1− Pu,σ )

By the induction hypothesis, a = a′ and b = b′. Altogether,
V(H1(σ )) ≥ V(H2(σ )).

Proof of Claim 2. The utilities of selecting Au and Av at the
history class H(σ ) are respectively

V = V
(

(k+ 1,X + {Au},Y + {σ },w+ 1)
)

︸ ︷︷ ︸

a

·Pu,σ

+ V
(

(k+ 1,X + {Au},Y + {σ },w)
)

︸ ︷︷ ︸

b

·(1− Pu,σ )

V ′ = V
(

(k+ 1,X + {Av},Y + {σ },w+ 1)
)

︸ ︷︷ ︸

a′

·Pv,σ

+ V
(

(k+ 1,X + {Av},Y + {σ },w)
)

︸ ︷︷ ︸

b′

·(1− Pv,σ )

Notice that a = a′ and b = b′ and a ≥ b according to the
induction hypothesis. Therefore,

V−V ′ = a(Pu,σ−Pv,σ )+b(Pv,σ−Pu,σ ) = (a−b)(Pu,σ−Pv,σ ) ≥ 0.

Briefly, (for the current round) it is by the definition that the
player Au with rank T − k performs better than any player Av
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with rank bigger than T − k, and (for the remaining rounds) the
set of the top T − (k + 1) players are the same regardless of who
we choose between Au and Av. Thus, Au dominates Av.

Theorem 6 (2) can be proved by a similar argument; we only
state a key lemma and omit its proof.

LEMMA 7. 1. Consider a pair of history classes H1 =

(k,X,Y1,w1) and H2 = (k,X,Y2,w2), where the top
T − k players of B− Y1 and the top T − k players of B− Y2 are
the same. If w1 ≥ w2, we have V(H1) ≥ V(H2).

2. Consider a non-terminal history class H = (k,X,Y ,w) (where
k < T). Let Bu be the rank T − k player in B − Y, and let Bv
be any player in B − Y that is not a top T − k player. Then,
for Team 2, selecting Bu is at least as good as selecting Bv in the
subsequent (k+ 1)-th round.

We now move on to the more challenging case where the
strength of the players is not transitive. For this case, our first
theorem is analogous to Theorem 3 in that it demonstrates
a special condition under which we can abandon some
weak players.

THEOREM 7. Assume the utility function is monotone.

1. Suppose m > T and each player in AT+1, . . . ,Am is weaker
than each player in A1, . . . ,AT . If n = T, Team 1 can
abandon all the players in AT+1, . . . ,Am without losing its
utility. However, if n > T, abandoning these weaker players
may decrease the utility of Team 1.

2. Suppose n > T and each player in BT+1, . . . ,Bn is weaker
than each player in B1, . . . ,BT . No matter m equals T or not,
abandoning the players BT+1, . . . ,Bm may decrease the utility
of Team 2.

According to Theorem 7, when a team has redundant weaker
players and its opponent team has no redundant players, whether
the weaker players can be abandoned depends on which team
takes action first.

PROOF OF THEOREM 7: 1. First, assume n = T. Among all
possible matching results between the m players in Team 1 and
the T players of Team 2 that give Team 1 the highest (expected)
utility, there exists a matching result s that matches A1, . . . ,AT to
the T players of Team 2 (because AT+1, . . . ,Am are weaker than
A1, . . . ,AT). Team 1 can gain the same utility (implied by s) even
if AT+1, . . . ,Am are abandoned.

If n > T and U ∈ {UE,Um}, abandoning the weaker players
may decrease the utility of Team 1.We prove this by constructing
an example in the following (this is basically Example 2 yet U is
more general).

EXAMPLE 7. m = n = 3,T = 2. U ∈ {UE,UM}. P =




1 0 0
0 1 0
0 0 0



.

For this example, Team 1 can win exactly 1 round and will lose
all rounds if A3 is abandoned.

2. We give two examples to prove this claim (one for m = T
and the other form > T).

EXAMPLE 8. m = 2, n = 3,T = 2. U ∈ {UE,UM}. P =
(

0 1 1
1 0 1

)

.

In this example, Team 2 can win exactly 1 round and will lose all
rounds if B3 is abandoned.

EXAMPLE 9. m = 4, n = 5,T = 3. U = UE. P =






1 0 0 1 1
0 1 0 1 1
0 0 1 1 1
0 0 0 1 1






.

In this example, Team 2 can win exactly 1 round and will lose all
rounds if B4,B5 are abandoned.

We now study the optimal number of dominated players. The
following theorem is a counterpart of Theorem 4. It says that for
U = UE we need T − 1 in the worst case, and for U = UM we
need ⌊T/2⌋ in the worst case. Interestingly, the same bounds hold
for Team 1 and Team 2 and for the simultaneous case.

THEOREM 8. The following hold claims for Team 1 and
Team 2.

1. Suppose U = UE. Recruiting T − 1 dominated players can be
better than T − 2, but recruiting T dominated players is the
same as T − 1. So, to achieve optimal utility, one may require
T − 1 dominated players. This number is tight.

2. Suppose U = UM . Recruiting ⌊T/2⌋ dominated players can be
better than ⌊T/2⌋ − 1, but recruiting ⌊T/2⌋ + 1 dominated
players cannot be better than ⌊T/2⌋. So, to achieve optimal
utility, one may require ⌊T/2⌋ dominated players, and this
number is tight as well.

PROOF: The proof of the two claims on Team 1 is easy and is
very similar to the proof of Theorem 4. Recall Example 4 and 5 in
the proof of Theorem 4. It can be observed that for Example 4
(where U = UE), Team 1 can win nothing when it recruits
T − 2 dominated players, and can win exactly one round when
it recruits T − 1 dominated players. This means that it needs
T − 1 dominated players to achieve the optimum utility (and
more than T − 1 dominated players is obviously not needed).
For Example 5 (where U = UM), Team 1 can win nothing when
it recruits ⌊T/2⌋ − 1 dominated players, and can win as many
as T − ⌊T/2⌋ rounds when it recruits ⌊T/2⌋ dominated players.
This means that it needs ⌊T/2⌋ dominated players to achieve
the optimum utility (and more than ⌊T/2⌋ dominated players is
clearly not needed).

The proof of the claims on Team 2 is also easy but have to use
different examples (Note that these examples are not symmetric
to the examples given in Example 4 and 5).

EXAMPLE 10. T ≥ 1,m = T + T − 2, n = T,U = UE, Pi,j =
{

1 i = j
0 i 6= j

.
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EXAMPLE 11. T ≥ 1,m = T+⌊T/2⌋−1, n = T,U = UM , Pi,j =
{

1 i = j
0 i 6= j

.

For Example 10 (where U = UE), Team 2 can win nothing
when it recruits T − 2 dominated players, and can win exactly
one round when it recruits T − 1 dominated players. Therefore
it needs T − 1 dominated players to achieve the optimum
utility (and more than T − 1 dominated players is obviously
not needed).

For Example 11 (where U = UM), Team 2 can win nothing
when it recruits ⌊T/2⌋ − 1 dominated players, and can win as
many as T − ⌊T/2⌋ rounds when it recruits ⌊T/2⌋ dominated
players. Therefore it needs ⌊T/2⌋ dominated players to achieve
the optimum utility (and more than ⌊T/2⌋ is clearly not needed).

4. DISCUSSION

In this paper, we study a novel game-theoretic model of situations
where two teams make sequential decisions about which of a set
of exhaustible actions to select in each round. These actions can
be interpreted as team members, cards in a hand, etc. This model
has applications in solving the DMRTA problem we introduced
at the beginning of this paper. We present a simple SPE for the
case where there are no redundant players or the strength of
players is transitive. For the other case, we exhibit evidence that
the redundant dominated players cannot be easily discounted
in their contribution to team performance, which may appear
counterintuitive. We investigate the power of the dominated
players in three directions: (1) When do they influence the
value of the competition? (2) If additional dominated players

can be recruited, how many should be required to attain the
maximum utility? (3) How much utility might be lost at most
if we abandon them? We obtain several non-trivial results that
fully or partially answer these questions. We believe that our
results are of particular interests to both designers and players
of team competitions.
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