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ABSTRACT: Laser-induced fluorescence spectroscopy, Raman
scattering, and partial least squares regression models were
optimized for the quantification of samarium (0−150 μg mL−1),
europium (0−75 μg mL−1), and lithium chloride (0.1−12 M) with
a transformational preprocessing strategy. Selecting combinations
of preprocessing methods to optimize the prediction performance
of regression models is frequently a major bottleneck for
chemometric analysis. Here, we propose an optimization tool
using an innovative combination of optimal experimental designs
for selecting preprocessing transformation and a genetic algorithm
(GA) for feature selection. A D-optimal design containing 26
samples (i.e., combinations of preprocessing strategies) and a user-
defined design (576 samples) did not statistically lower the root
mean square error of the prediction (RMSEP). The greatest improvement in prediction performance was achieved when a GA was
used for feature selection. This feature selection greatly lowered RMSEP statistics by an average of 53%, resulting in the top models
with percent RMSEP values of 0.91, 3.5, and 2.1% for Sm(III), Eu(III), and LiCl, respectively. These results indicate that
preprocessing corrections (e.g., scatter, scaling, noise, and baseline) alone cannot realize the optimal regression model; feature
selection is a more crucial aspect to consider. This unique approach provides a powerful tool for approaching the true optimum
prediction performance and can be applied to numerous fields of spectroscopy and chemometrics to rapidly construct models.

1. INTRODUCTION
Optical spectroscopy and chemometric analysis are key
components for online monitoring applications in all fields of
chemical processing. Food processing and pharmaceutical
industries have applied this technology to improve process
efficiency, quality, safety, and compliance.1,2 Implementing
such technology to support chemical operations in restrictive
environments (e.g., radiochemical hot cells) has the potential
to modernize procedures often held up by the challenges
associated with traditional grab sample collection.3,4 In
addition to quantifying analytes, optical approaches can
simultaneously provide chemical insight into the system and
elucidate speciation, oxidation states, and complex chemical
interactions. Optical techniques are also flexible and can be
integrated into a variety of process batch or stream types. This
approach could benefit numerous fields in nuclear science and
technology (e.g., radioisotope production), but several
challenges must be addressed prior to adoption at the
industrial scale.5,6

The use of time-resolved laser-induced fluorescence spec-
troscopy (TRLFS) is well-established for the detection of
numerous lanthanides (e.g., Ce3+, Pr3+, Eu3+, Tb3+, Gd3+, Dy3+,
Sm3+, and Tm3+) and actinides (e.g., UO2

2+, Am3+, Cm3+, Cf3+,

Bk3+, and Es3+), species highly relevant to the nuclear field.7−18

Most research on lanthanide luminescence in aqueous
environments has been concerned with Eu(III) and Tb(III).
The other two visibly luminescent ions, Sm(III) and Dy(III)
have received less attention because they have inferior
luminescence quantum yields (i.e., more efficient nonradiative
relaxation). Although the time dimension provides a unique
fingerprint for various species, the analysis time is often ∼10−
15 min, which is too slow for processes requiring real-time
feedback.16 Laser-induced fluorescence (LIF) spectra can be
measured directly, using a charge-coupled device, to quantify
complex systems with overlapping bands, matrix effects,
chemical interaction(s), and baseline offsets using multivariate
chemometrics.17

One of the most robust supervised regression techniques,
partial least squares regression (PLSR),18 models the
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covariance between two matrices corresponding to the spectra
(X) and concentrations (Y) using combinations of latent
variables (LVs). PLSR models require a representative training
set that can be efficiently selected using design of experi-
ments.5,19−21 The regression analysis can be significantly
improved by applying preprocessing transformations (e.g.,
baseline, scatter, noise, and scaling) to the spectral data.22−24

However, this process is often subject to user bias and is time-
consuming; typically, the researcher manually tests thousands
of potential combinations by trial and error or settles for
something far less than the true optimum. Several studies have
attempted to address this bottleneck using design of experi-
ments or machine learning algorithms to select preprocessing
strategies.20,25,26 However, the work discussed here advances
both preprocessing and feature selection so that it can readily
adapt to disparate data sets and increase the breadth and ease
of model development while improving predictive capabilities.

Here, we automate the optimization of PLSR models, built
from LIF measurements, by combining experimental design for
selecting preprocessing transformations and a genetic algo-
rithm (GA) for feature selection.20,27,28 This new approach
improves the timeliness of the model development process
while preserving reasonable computing power, resulting in
prediction performance that approaches the true optimum.
Calibration and validation fluorescence spectral data sets were
selected by determinant-optimal (D-optimal) designs to
minimize the samples required in the training set, which
spanned Sm(III) (0−150 μg mL−1), Eu(III) (0−75 μg mL−1),
and LiCl (0.1−12 M) concentrations, conditions highly
applicable to monitoring LiCl anion exchange column effluent
streams for the 252Cf Program at Oak Ridge National
Laboratory.29 The approach can also be extended to
monitoring lanthanide fission product species throughout the
nuclear fuel cycle. Three points of scientific advancement are
covered in this work: (1) multivariate analysis enables
quantitative Sm(III) and Eu(III) predictions without recording
luminescence lifetimes, (2) D-optimal design (DOD)
combined with a GA efficiently optimizes preprocessing and
feature selection, and (3) this adaptable selection strategy is
automated and provides a robust workflow for rapid model
optimization. This state-of-the-art approach can assist both
chemometricians and nonspecialists in their quest to find the
ultimate regression model in many applications within and
beyond the nuclear field.

2. EXPERIMENTAL SECTION
All chemicals were commercially obtained (ACS grade) and
used as received unless otherwise stated. Lithium chloride
(99% purity) was purchased from VWR Scientific, and 37%
hydrochloric acid was purchased from Sigma Aldrich. Certified
samarium (10,000 ± 30 μg mL−1) and europium (10,000 ± 54
μg mL−1) inductively coupled plasma optical emission
spectroscopy standard solutions in 4% hydrochloric acid
were purchased from High-Purity Standards. Samples were
prepared using deionized water with Milli-Q purity (18.2 MΩ
cm at 25 °C).
2.1. Sample Preparation. Calibration and validation

samples contained samarium (0−150 μg mL−1), europium
(0−100 μg mL−1), and LiCl (0.1−12 M) and covered the
anticipated solution conditions. Sample concentrations were
chosen using experimental designs built with Design-Expert
(v.11.0.5.0) by Stat-Ease Inc., within the Unscrambler software
package by Camo Analytics. D-optimal samples were chosen

using both point and coordinate exchange and a quadratic
process order and evaluated by assessing the fraction of design
space.30,31 Samples were prepared gravimetrically, using a
Mettler Toledo model XS204 balance, with an accuracy of
±0.0001 and volumetric glassware. Sample concentration
uncertainties were determined by standard error propagation
methods described in the Supporting Information. The average
relative standard deviation of each sample concentration was
1.0, 1.7, and 0.64% for Sm(III), Eu(III), and LiCl
concentrations, respectively. Each sample was prepared in
individual 2 mL plastic microcentrifuge tubes (VWR Scientific,
525−1160). A micro-volume (100 μL) UV fused quartz
fluorescence cuvette made by ThorLabs (CV10Q1FE) was
used for each measurement. The cuvette was stored on lint-
free Kimwipes and periodically rinsed with dilute HCl. For
each measurement, the cuvette (Z-height of 8.5 mm) was
placed in a Quantum Northwest qpod 2e temperature-
controlled sample compartment holder purchased from
Avantes (CUV-UV/Vis-TC). The compartment had two
collimating lenses (CUV-TC-QCL-UV) placed at 90°.
Fluorescence measurements were performed at a constant
temperature (22 °C) with an accuracy of ±0.05 °C.
2.2. Fluorescence Spectroscopy. Laser fluorescence and

Stokes Raman spectra were collected with a fully automated
imaging iHR 320 spectrometer (Horiba Scientific). A
continuous-wave LBX 405 nm laser (Oxxius) operating at
100 mW was used as the excitation source. Thorlabs
multimode fibers�a 105 μm core diameter (M105L02S-A)
and a 600 μm core diameter fiber (M134L01)�were used on
the excitation and emission sides, respectively. Each spectrum
comprised 5585 data points. Static measurements were
recorded in triplicate from 410 to 790 nm using a 600 groove
mm−1 grating and a 100 μm slit size.

Lifetimes were measured using a Fluorolog-QM spectrom-
eter (Horiba), a single-channel R928P PMT, and a DeltaTime
kit. Lifetimes were recorded using multichannel scanning mode
and a SpectralLED-390 (394 nm, fwhm 14 nm) with the
DeltaHub. The operational frequency range for the pulsed
diode SpectralLED light source is 0.1−2.9 kHz. The excitation
wavelength overlapped the Eu(III) 7F0 → 5L6 transition.
Lifetimes were calculated using a fitting algorithm D(t) with
the one-to-four exponential PowerFit-10 application in Horiba
software by eq 1

i
k
jjjjj
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zzzzz=D t a

t
( ) expi

i (1)

where ai is the preexponential factor, t is time, and τi is the
fluorescence lifetime.
2.3. Preprocessing and Feature Selection. Several well-

chosen preprocessing strategies were chosen for this work
based on a previous study.20 Transformations included
standard normal variate (SNV) analysis, mean centering
(MC), and Savitzky−Golay (SG) filters to account for
scattering, scaling, and noise/baseline issues, respectively. SG
filters contained 3 derivative levels, 4 polynomial order levels,
and 29 smoothing point levels (Table S1). Preprocessing
combinations were applied as follows: (1) scatter correction
(SNV analysis), (2) noise/baseline (SG), and (3) scaling
(MC). Additional details for each technique are provided in
the Supporting Information.

A GA, a metaheuristic optimization approach developed
based on natural selection concepts, was used for spectral
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feature selection. The specific GA employed was developed in
Python 3 and is described in detail elsewhere.27 Briefly, a
population of 30 binary arrays, or filters, of equal length to the
spectra wavelength was randomly generated. Iteratively, the
spectra matrix was multiplied by each binary array, where 1
corresponds to the wavelength being modeled, and 0 removes
that portion of the spectra. The filters were built with a 10 nm
resolution (i.e., spectra were filtered on/off every 10 nm) to
ensure proper feature selection. The modified spectra were
then used to build a PLSR model and evaluated with a test set
to determine how well the filtered data could be modeled. The
filters were then sorted based on how well they performed.
Next, a new generation of filters was developed by combining
various parts of the previous filters together. The cross-over
strategies employed are detailed elsewhere.27 The top-
performing filters are passed onto the next generation without
modification. Random mutation (i.e., flipping a 1 to 0) of the
filters was done with a 5% probability. This served to help
break away from local optimal points. If no improvement was
seen in 30 generations, the GA underwent a soft reboot,
wherein the top 10% of the filters were retained, and the
remaining 90% of the filters were replaced with new random
arrays. This is another strategy to overcome local optimal
points. With the new population of filters, the next generation
begins, and the process repeats until the defined number of
generations is reached. The number of generations is defined
by the user and typically selected by performing a feature
selection with a large number of generations and evaluating
when an optimal filter was reached.
2.4. Partial Least Squares Regression. PLSR, one of the

most popular multivariate modeling methods, performs well
for regressing spectra where the number of independent
variables (X spectral matrix) is significantly larger than the
number of samples. PLSR transforms spectra and a matrix of
analyte concentrations into a latent space. Then vectors,
referred to as LVs, are iteratively solved to explain the most
covariance between the spectra and the analyte concentrations.
More variance in the response matrix is explained as more LVs
are added to the model until additional LVs begin to overfit
the data and reduce the accuracy by modeling noise.

LV selection is typically performed using a set of test
samples to evaluate model performance. This set of test
samples can be either from cross-validation or an independent
set and was never included in model construction. The latter
option was implemented in this study because all calibration
samples were needed from the optimal design. To investigate
model performance versus LVs, the models were reconstructed
with a different number of LVs and then used to estimate the
concentrations in the validation set. Here, a prediction error
metric can be compared to the number of LVs to identify an
optimal number of LVs. Unfortunately, there is no definitive
rule of thumb for selecting the number of LVs, and many
studies are largely subject to user decision. This study employs
an automated LV selection script. All regression models and
data preprocessing were completed in Python 3 using modules
from the Scikit-Learn library.32

2.5. Statistical Comparison. The root mean squared error
(RMSE) was used as the primary metric for prediction error,
defined in eq 2 as

=
y y

n
RMSE

( )i i
2

(2)

where yi is the known concentration, ŷi is the model predicted
concentration, and n is the total number of samples.33 The
RMSE of prediction (RMSEP) measures the dispersion of
samples not included in the training set (i.e., validation set)
about the regression line. It is typical to discuss RMSE values
in terms of percentages to ease comparisons. For this, the
RMSE value is divided by the median of the model
concentration range (RMSEP %). Lower RMSE values indicate
improved model performance.

In this study, the number of LVs in PLSR models was
selected using the following procedure: (1) RMSEP values
were iteratively determined for PLSR models with LVs in the
user-defined range (1−10) using the validation sample set, (2)
the percent reduction in RMSEP compared with the previous
minimum RMSEP was calculated for each subsequent LV
included in the model, and (3) the number of LVs was selected
to be the last LV corresponding to a percent reduction ≥10%.
This procedure was based on previous studies with LV
selection and allowed for automation when building and
evaluating PLSR models.17,27

Model prediction performance was compared using Tukey−
Kramer significance tests.34,35 Full details are provided
elsewhere.19,21 The Tukey−Kramer method performs a
pairwise comparison of model RMSEPs for each analyte,
assuming the null hypothesis that the mean predictions for
each model are equal. The bias and standard error of
prediction (SEP) ratio confidence intervals were determined
for each model using a 95% confidence interval. The prediction
performance of the two models was considered statistically
similar when both the bias confidence interval and the SEP
ratio contained 0 and 1, respectively. Additional details on the
Tukey−Kramer analysis are provided in the Supporting
Information.

3. RESULTS AND DISCUSSION
3.1. Fluorescence Measurements. Laporte forbidden f−f

transitions lead to f-elements (e.g., lanthanides) with unique
spectral fingerprints corresponding to specific elements and
oxidation states.7,8 Though f-elements typically have small
Stokes shifts and band broadening, minor changes in their
coordination environment can lead to small perturbations in
their emission spectra.9−12 Even though f-element absorption
and emission spectra are described as “line-like,” the fine
structure of these spectra has proven to be useful for
determining the symmetry and coordination environment of
lanthanide species.15,17

The emission spectra of Eu(III) and Sm(III) in differing
concentrations of LiCl (3−12 M) exhibit numerous lines
between 550 and 725 nm (Figure 1). The emission spectra are
likely affected by long-range interaction between the cations
and solvent molecules and outer-sphere complexation with
chloride anions.36,38 Increasing the LiCl concentration had the
most notable effect on the fine structure of the Sm(III)
emission line near 645 nm given from 4G5/2 → 6H9/2. The
6H9/2 band changed the most in shape and relative intensity to
the other peaks in the spectrum. Band intensities increased
with a more coordinating environment as LiCl concentration
increased, which suggests that the transitions have an electric
dipole (ED) character.17

Several Eu(III) lines were ascribed to transitions from the
first excited 5D0 state to the 7F0−4 Stark levels. Increasing the
LiCl concentration led to more changes in the fine structure
and the emergence of lines not seen at lower concentrations.
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The 5D0 → 7F1 transition has a magnetic dipole character and
changes minimally with changing LiCl concentration. The 5D0
→ 7F0,3 transitions are due to ligand field effects while the
transitions 5D0 → 7F2,4 have ED character and are allowed due
to the lack of symmetry at the Eu(III) site. These peaks grow
significantly with increasing LiCl concentration. Changes in
the fine structure for these transitions (5D0 → 7F2,4) are
thought to be associated with changes in the coordination
environment as the concentration of Cl− increases, with the
most notable change being the sharp peak near 612.4 nm.15 A
small peak appeared at 653.9 nm next to the 5D0 → 7F3
transition near 650.1 nm at the highest LiCl concentration.
The small, sharp peak near 579 nm appeared with increasing
LiCl. The presence of one 5D0 → 7F0 transition indicates the
presence of at least one Eu(III) local environment.11 This peak
is associated with 5D0 → 7F0, a nondegenerative forbidden
transition that can gain intensity through J-mixing in different
symmetries such as Cs, Cn, and Cnv.12 Typically, this
transition is seen only when Eu(III) cations are in an
extremely asymmetric environment.

Comparing emission peak areas is a useful indicator for both
inner-sphere and outer-sphere ligand environments for Eu(III).
The slight change in the Eu(III) peak area ratio (A2/A1) of the
5D0 → 7F2 (A2) and 5D0 → 7F1 (A1) transitions indicates a
decrease in the coordination symmetry and the formation of
outer-sphere chloro complex(s) < 9 M LiCl. The A2/A1 ratio at
higher LiCl concentrations ≥9 M indicates inner-sphere

complexation with chloride (Cl−) anions.15,37 Comparing the
relative Sm(III) peak areas from the 4G5/2 → 6H9/2 and 4G5/2
→ 6H11/2 transitions, after normalization (e.g., SNV), could
provide a similar indicator for the formation of inner-sphere
chloride complexation at higher LiCl concentrations.

The luminescence lifetime for Eu(III) in 12 M LiCl solution
(110 ± 1 μs) was consistent with published values.36,37 We
also report lifetimes for Sm(III) in 3, 6, and 12 M LiCl
solutions of 2.70, 2.87, and 3.06 μs (±0.05 μs), respectively.
Minimal change in Sm(III) luminescence lifetime as a function
of electrolyte concentration is consistent with Eu(III) and
suggests that the number of inner-sphere water molecules
surrounding these cations slightly changes. Although lifetimes
provide valuable information, they do not provide explicit
information regarding inner-sphere complexation with chloride
ions.37 Decay curves are provided in the Supporting
Information (Figures S2 and S3). Pinpointing the exact nature
of the coordination environment for Sm(III) and Eu(III) in
this case with luminescence data alone is difficult. Techniques
such as X-ray absorbance spectroscopy coupled with known
solid-state structures would help determine exact speciation.14

Stokes Raman scattering peaks corresponding to the O−H
stretching and bending regions were also identified from
fluorescence measurements. The most intense band corre-
sponded to the O−H stretching region, which consists of
multiple overlapping bands.17,18 The intensity of this band
increased with increasing LiCl concentration, and an isosbestic
point was located near 464.4 (Figure S1). The Raman water
band is sensitive to any perturbation that impacts water
structure (e.g., ionic strength and temperature), but it was
insensitive to Sm(III) and Eu(III) at the low concentrations
evaluated in this study.
3.2. Selecting Sample Concentrations. Multivariate

regression models were built using the calibration and
validation sets shown in Table 1. The Sm(III), Eu(III), and
LiCl concentration ranges covered those expected in the
expected application. Each sample was selected by D-optimal
experimental design, a useful approach for minimizing the
number of samples required in spectral training sets. One-
factor-at-a-time methods are more commonly used for
selecting samples.38 For example, a three-factor set varied at
five levels would require 125 samples (53). Ten required model
points were augmented with 15 lack-of-fit (LOF) points. LOF
samples fall within the factor space (i.e., no vertex points) and
were included as either calibration or validation samples. LOF
fit points maximize both the distance to other runs and the
determinant of the information matrix X′X while satisfying the
optimality criterion. Here, the calibration set contained 15
samples, while the validation set contained 10 samples
covering the factor space for each variable.
3.3. Selection of Optimal Preprocessing Combina-

tions. Multivariate regression models benefit from preprocess-
ing strategies that remove artifacts (i.e., unwanted variation)
from spectral data.20,22−26 Removing artifacts highlights the
relevant structure within a spectrum, making the data more
amenable to regression analysis. Numerous techniques are
available, but preprocessing strategies are often selected
through trial and error or experience.23 There are no clear
guidelines for when to use specific techniques or combinations
of techniques. In our previous study, the DOD of experiments
was used to determine an optimal preprocessing combination
with fewer trials than evaluating all possible combinations (26
vs 576).20 The D-optimal approach provides a simple approach

Figure 1. Emission spectrum for (a) Sm(III) and (b) Eu(III) at 100
ppm in 3−12 M LiCl. Spectra were processed using a linear baseline
correction.
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to testing a reasonable number of combinations without
requiring specialized coding experience. This study replicates
this preprocessing strategy using a different analyte and
spectroscopy system and then expands this approach by
applying a GA for feature selection.

PLSR models were built using multiple preprocessing
strategies. The simplest strategy, namely no preprocessing
(NP), was used to benchmark the improvements afforded by
the advanced strategies. The DOD strategy included 26 unique
SNV, SG, and MC preprocessing combinations, whereas the
user-defined design (UDD) included all possible SNV, SG, and

MC preprocessing combinations (576 samples). Details for
each design are provided in Table S1 and elsewhere.20

A Python script was developed to first build an NP PLSR
model and determine the optimal number of LVs based on the
CV procedure detailed in Section 2.4. A similar script was
developed to iteratively build PLSR models using the DOD or
UDD preprocessing combinations and automatically select the
optimal number of LVs in each case. The number of LVs was
limited to ≤10 LVs. Although the Y matrix comprised three
concentrations (i.e., LiCl, Sm, and Eu), the Sm and Eu spectral
intensity and shape changed as a function of LiCl
concentration due to the formation of chloride complexes.
Therefore, it was reasonable to consider more than three LVs.
All PLSR models were evaluated by comparing the predictions
of the validation samples to their known concentrations, as
represented by the RMSEP % value. Each analyte was modeled
individually (e.g., PLS-1) to better identify preprocessing
strategies particular to each correlated behavior and make
model comparisons more concise.

The NP PLSR model used 10 LVs to model Sm(III)
concentration and resulted in an RMSEP % of 7.13%. The
best-performing DOD and UDD models both used SG
smoothing and derivatives for preprocessing. Both the DOD
and UDD smoothing used a window of 61 points and a third-
order polynomial. The DOD model used a second-order
derivative, while UDD selected the first-derivative trans-
formation. The Sm(III) DOD and UDD models both used 9
LVs and resulted in similar RMSEP % values of 6.41 and
6.21%, respectively. For Eu(III), the NP PLSR model used 9
LVs and had an RMSEP % value of 5.26%. DOD smoothing
used a window of 27 points and a fifth-order polynomial,
whereas UDD smoothing used a window of 13 points and a
third-order polynomial. The DOD model performed similarly
to the NP model, resulting in a model with 9 LVs and an
RMSEP of 5.22%. The UDD selection built a model with a first
derivative, resulting in a model with fewer LVs (6) and a lower
RMSEP % of 4.41%.

The LiCl NP model used 8 LVs and had an RMSEP % value
of 7.05%. The best-performing DOD model utilized SG
smoothing with a window of 61 points, a third-order
polynomial, and a second-order derivative. The LiCl DOD
model used 7 LVs and had an RMSEP % of 6.50%. The top
UDD model used SG smoothing with a window of 45 points
and a fifth-order polynomial and, again, a second-order

Table 1. D-Optimal Selected Analyte Concentrations With
Space and Build Typesa

run
Sm(III)

(μg mL−1)
Eu(III)

(μg mL−1)
LiCl
(M)

space
type

build
type

1* 66.0 75.0 10.6 plane LOF
2 0.0 45.0 4.9 plane model
3 24.8 34.9 0.1 plane LOF
4 89.6 0.0 4.9 plane model
5 16.5 0.0 5.4 plane LOF
6 150 0.0 12.0 vertex model
7 150 26.6 0.1 edge model
8* 150 41.4 9.5 plane LOF
9* 150 50.6 4.0 plane LOF
10* 65.3 7.5 0.1 plane LOF
11 53.6 75.0 0.1 edge model
12 89.3 44.6 12.0 plane model
13 0.0 75.0 12.0 vertex model
14* 24.5 75.0 6.3 plane LOF
15* 42.8 21.8 9.0 interior LOF
16* 91.5 70.1 4.8 nterior LOF
17 0.0 0.0 12.0 vertex model
18* 90.0 34.9 5.5 interior LOF
19 91.5 45.8 0.1 plane LOF
20* 133 75.0 0.1 edge LOF
21 0.0 0.0 0.1 vertex model
22* 0.0 40.5 12.0 edge LOF
23 150 75.0 7.8 edge model
24 150 13.5 6.3 plane LOF
25 80.3 0.0 12.0 edge LOF

a*LOF points included in the validation set. Required model points
are bolded. Abbreviations include LOF.

Table 2. Model Information and Comparison of Predictive Performance before and after GAa

model information unfiltered GA-filtered

Sm(III) Run No. SNV, SG, MC LVs RMSEP RMSEP % RMSEP RMSEP %

NP 10 5.346 7.13 0.852 1.14
DOD 15 0,(2,3,61),0 9 4.805 6.41 0.680 0.91
UDD 506 0,(1,3,61),0 9 4.661 6.21 0.844 1.13
Eu(III) Run No. SNV, SG, MC LVs RMSEP RMSEP % RMSEP RMSEP %

NP 9 1.971 5.26 1.314 3.50
DOD 16 0,(0,5,27),0 9 1.959 5.22 1.334 3.56
UDD 303 0,(1,3,13),0 6 1.654 4.41 1.333 3.55
LiCl Run No. SNV, SG, MC LVs RMSEP RMSEP % RMSEP RMSEP %

NP 8 0.423 7.05 0.221 3.68
DOD 15 0,(2,3,61),0 7 0.390 6.50 0.128 2.14
UDD 373 0,(2,5,45),0 6 0.240 4.00 0.180 3.00

aModel information notation refers to SNV (0 = off and 1 = on), SG (derivative order, polynomial order, and window length), and MC (0 = off
and 1 = on).
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derivative. The LiCl UDD model used 6 LVs and had a lower
RMSEP % of 4.00%. Details on the top-performing models are
provided in Table 2. The various model predictions are
compared to the known concentration values of the validation
samples for each analyte in Figure 2.

For Sm(III), the DOD and UDD models resulted in lower
RMSEP % values than the NP model, as well as a reduction in
LVs. Additionally, the RMSEP % values for each top-
performing DOD and UDD model appeared to be similar,
likely a result of similar preprocessing strategies. However,
RMSEP % values can be deceiving. A Tukey−Kramer test
revealed no statistical difference between the three Sm(III)
models at a 95% confidence level. Although this reveals that
preprocessing may not be needed when modeling Sm(III) in
this study, it does reveal that the DOD approach to
preprocessing selection does result in a preprocessing
combination which is not different from that of the UDD
approach, offering significant time savings and favoring
automated model construction.

For Eu, the UDD model resulted in a lower RMSEP % with
fewer LVs, but the Tukey−Kramer test revealed there was no
statistical difference between the three models. For LiCl, the
RMSEP % values were decreased by the DOD- and UDD-
selected preprocessing approaches, which were similar to
derivative/smoothing SG filters. For LiCl, the Tukey−Kramer
tests revealed that the preprocessed models were not
statistically different from the NP model; however, the DOD
and UDD models were. Additionally, the number of LVs used
in the models decreased when preprocessing was applied.
From this, we can infer that preprocessing may help to make
models more resistant to issues with overfitting and robust to
potential artifacts encountered in application versus the lab
setting (e.g., baseline drift).
3.4. GA Feature Selection. Feature selection provides

another strategy to improve model performance. In its simplest
form, this can involve trimming the spectra prior to modeling
to remove wavelength regions where there is little spectral
response. At a much higher level, feature selection can involve
filtering spectra to permit the modeling of only distinct spectral
regions. Although PLSR models are well known for modeling
data sets with high dimensionality, the removal of regions with
weak correlations to the response matrix (i.e., concentrations)
allows the model to better weigh the highly correlated regions
and be less impacted by secondary effects.27 Five 150-
generation GAs were applied to the NP, top DOD, and top
UDD models for each analyte. The top filter, out of the five
GA runs, was selected for final testing. 150 generations were
sufficient to achieve an optimal GA filter, and the GA-derived

filters in all five runs generally agreed (see Figures S4 and S5).
The number of LVs was held equal to those discussed
previously as the GA-derived filters were developed.

The final GA filters were developed for the Sm(III), Eu(III),
and LiCl NP models in Figure 3a−c, respectively. The colored
regions correspond to the spectral features, which were
selected by the GA to be regressed by PLSR models. These

Figure 2. Comparison of NP, DOD, and UDD model predictions to reference values for Sm(III), Eu(III), and LiCl. The 1:1 dashed line represents
a perfect match.

Figure 3. GA-selected features for (a) Sm(III), (b) Eu(III), and (c)
LiCl to be regressed by PLSR models. The shown filters are for NP
models to allow for better visualization without varying the
preprocessing of the impacting signal shape. The spectrum shown is
that of Sample 20.
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regions correspond to analyte peaks, peaks of matrixed analytes
that need to be incorporated into the models, or baseline
regions that help the model adjust accordingly. Each species
has a unique filter, suggesting that it would be unrealistic for
users to manually select the optimal regions through trial and
error. The filters were overlaid with the spectra from sample 20
to visualize shared analyte features but comparing the GA
filters to the pure spectra shown in Figure 1 offers additional
insight. The PLSR x-weights for the three GA-filtered NP
models are shown in Figure S6.

In Figure 3a, the entire 650 nm peak was selected by the
filter as it experienced little interference, and the regression
coefficients indicated this as the major regression feature
selected for the Sm(III) regression model. Several regions
between 475 and 550 nm were also selected, likely to help the
model normalize the spectra being regressed to a shifting
baseline. The Eu(III) filter selected many similar regions to the
Sm(III) filter. This is indicative of the similar emission signals
and the models’ ability to deconvolute these emissions. Here,
the filters appeared to serve the purpose of removing signals

Figure 4. Confidence intervals for (a) bias and (b) SEP for all comparisons. Prediction performance is statistically similar between designs when
the confidence interval crosses the dashed vertical line for bias and SEP. The model key is as follows: (1) NP, (2) DOD, (3) UDD, (4) GA-NP, (5)
GA-DOD, and (6) GA-UDD, where (1,5) is a comparison of the NP and GA-DOD models.
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irrelevant to the model, thereby increasing the models’
regression efficacy.

The upper portion of the 600 nm Sm(III) peak was selected
as the lower half was convoluted with a Eu(III) peak. Likewise,
the lower half of the 700 nm peak was selected as this peak was
convoluted with a Eu(III) emission peak. At the center of the
700 nm peak, the regression coefficients logically reveal that
the Eu(III) model weighing this emission is far greater than
that of Sm(III). The Eu(III) filter contained the lower half of
the Raman water band which also weighed moderately in its
regression coefficients.

The LiCl filter selected greater portions of the spectrum. It
utilized the entire Raman water band as expected (Figure S1),
along with many other portions of Sm(III) and Eu(III) peaks.
The x-weights (Figure S6) show that these emission peak tails
and baselines were included in the LiCl model because they
are highly sensitive to LiCl concentration (Figure 1). These
results demonstrate the power of GA feature selection; not
only does the method improve prediction performance, but it
can also inform the user about the modeling interactions.

The GA-filtered models resulted in significant RMSEP %
reductions for each species. The RMSEP values are provided in
Table 2. For Sm(III), the GA filters reduced RMSEP % values
by −84.1, −85.9, and −81.9% for the NP, DOD, and UDD
models, respectively. The true RMSEP value for the GA-
filtered Sm model is likely best represented by the analyte
uncertainty, as described in Section 2.1. For Eu, the GA filters
reduced RMSEP % values by −33.3, −31.9, and −19.4% for
the NP, DOD, and UDD models, respectively. For LiCl, the
GA filters reduced RMSEP % values by −47.8, −67.1, and
−25.1% for the NP, DOD, and UDD models, respectively.

The Tukey−Kramer test statistically compared each of these
models. The bias and SEP ratio confidence intervals are plotted
in Figure 4. When comparing models, if both the bias and SEP
ratio confidence intervals crossed the vertical reference lines,
they were considered statistically equivalent. For Sm(III), the
GA-filtered NP, DOD, and UDD models were statistically
different from their unfiltered counterparts. These three
models were not statistically different from one another,
indicating that applying GA feature selection to NP, DOD, or
UDD preprocessing strategies produced equivalent prediction
performance. Applying feature selection may provide a more
direct way to optimize a model compared to preprocessing.
Even though the prediction performance was statistically
equivalent when comparing NP to DOD and UDD,
preprocessing adds the benefit of protecting the model against
effects such as scattering or baseline drift. Therefore, the DOD
approach is recommended to efficiently identify optimal
preprocessing strategies.

For Eu(III), the GA-filtered models were statistically
different from the unfiltered versions, but they were equivalent
amongst themselves and to other unfiltered models which used
different preprocessing strategies. This was due to the bias
confidence intervals (Figure 4). These results argue for the
direct application of the GA feature selection to the NP model.
The results for the LiCl models were equivalent to those of the
Sm(III) models.

These results validate previous findings that DOD and UDD
arrive at equivalent models, although feature selection provides
a far more impactful change in model performance.20 Again, it
should be stated that while preprocessing may be unnecessary
in this case because it did not significantly lower RMSEP,
many literature reports indicate that processing improves the

robustness of a model to changing conditions, making it
worthwhile to investigate.3,4,18,20,22−26 These findings are
crucial considering future automation in even more complex
systems. UDD preprocessing selection requires ∼4 min of
computation time vs. the ∼13 s required for the DOD
preprocessing selection routine. As these routines become
looped in a greater automation scheme, the difference in time
becomes significant. To rapidly construct quantification
models, the authors recommend investigating both an NP
model with a GA-derived filter and a DOD preprocessing
selection combined with GA feature selection.

The limits of detection (LODs) for the top-performing
models were estimated to benchmark their performance for
future comparisons. Here, a pseudounivariate approach
(LODpu) was used to estimate the LODs for the PLSR
models. This approach, as detailed by Ortiz et al., extends the
univariate LOD recommendations of the International Union
of Pure and Applied Chemistry (IUPAC) to multivariate
models.39 The LODpu definition and equation are provided in
the Supporting Information, along with results from a
univariate approach (Table S2). The LODpu values calculated
for the top models were 2.95 μg mL−1 for Sm (DOD/GA),
1.66 μg mL−1 for Eu (NP/GA), and 0.287 M for LiCl (DOD/
GA). It is important to note that these LODpu values are
estimates and have been shown to be either consistent with or
conservative when compared to more involved LOD
confidence bands.40

4. CONCLUSIONS
In this work, multivariate regression models were developed to
quantify Sm(III), Eu(III), and LiCl concentrations based solely
on spectral variations (i.e., without recording lifetimes). A
rapid workflow in Python combined DOD preprocessing
selections and GA-selected spectral features to optimize
prediction performance. The reduction in RMSEP shows the
benefit of GA feature selection. The novel preprocessing and
feature selection strategy will increase the breadth and ease of
spectroscopy monitoring applications and improve their
predictive capabilities. It is critical to streamline each aspect
of the model development process, performance optimization,
and implementation to fully adopt this approach in the
challenging environments encountered in nuclear industry
applications. These needs were addressed by reducing the
quantity of materials in the training set and establishing an
automated system to calibrate and optimize regression
performance. In essence, the trial-and-error methodologies of
the past evolved, with the help of intelligent design, into a
resourceful method that will extend into future generations.
The next steps will include applying this strategy to disparate
data sets.
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(25) Gerretzen, J.; Szymanśka, E.; Jansen, J. J.; Bart, J.; van Manen,

H.-J.; van den Heuvel, E. R.; Buydens, L. M. C. Simple and effective
way for data preprocessing based on design of experiments. Anal.
Chem. 2015, 87, 12096−12103.
(26) Storey, E. E.; Helmy, A. S. Optimized preprocessing and

machine learning for quantitative Raman spectroscopy in biology. J.
Raman Spectrosc. 2019, 50, 958−968.
(27) Andrews, H. B.; Myhre, K. G. Quantification of lanthanides in a

molten salt reactor surrogate off-gas stream using laser-induced
breakdown spectroscopy. Appl. Spectrosc. 2022, 76, 877−886.
(28) Myakalwar, A. K.; Spegazzini, N.; Zhang, C.; Anubham, S. K.;

Dasari, R. R.; Barman, I.; Gundawar, M. K. Less is more: Avoiding the
LIBS dimensionality curse through judicious feature selection for
explosive detection. Sci. Rep. 2015, 5, 13169.
(29) Robinson, S. M.; Benker, D. E.; Collins, E. D.; Ezold, J. G.;

Garrison, J. R.; Hogle, S. L. Production of Cf-252 and other
transplutonium isotopes at Oak Ridge National Laboratory. Radio-
chem. Acta 2020, 108, 737−746.
(30) Smucker, B.; Krzywinski, M.; Altman, N. Optimal experimental

design. Nat. Methods 2018, 15, 559−560.
(31) Zahran, A.; Anderson-Cook, C. M.; Myers, R. H. Fraction of

design space to assess prediction capability of response surface
designs. J. Qual. Technol. 2003, 35, 377−386.
(32) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;

Thirion, B. Scikit-Learn: Machine learning in Python. J. Mach. Learn.
Res. 2011, 12, 2825−2830.
(33) Westad, F.; Marini, F. Validation of chemometric models�A

tutorial. Anal. Chim. Acta 2015, 893, 14−24.
(34) Fearn, T. Comparing standard deviations. NIR News 1996, 7,

5−6.
(35) Cederkvist, H. R.; Aastveit, A. H.; Næs, T. A comparison of

methods for testing differences in predictive ability. J. Chemom. 2005,
19, 500−509.
(36) Nehlig, A.; Elhabiri, M.; Billard, I.; Albrecht-Gary, A. M.;

Lützenkirchen, K. Photoexication of europium(III) in various
electrolytes: Dependence of the luminescence lifetime on the type
of salts and the ionic strength. Radiochim. Acta 2003, 91, 37−44.
(37) Tanaka, F.; Yamashita, S. Luminescence lifetimes of aqueous

europium chloride, nitrate, sulfate, and perchlorate solutions. Studies
on the nature of the inner coordination sphere of the europium(III)
ion. Inorg. Chem. 1984, 23, 2044−2046.
(38) Czitrom, V. One-factor-at-a-time versus designed experiments.
Am. Stat. 1999, 53, 126−131.
(39) Ortiz, M. C.; Sarabia, L. A.; Herrero, A.; Sánchez, M. S.; Sanz,

M. B.; Rueda, D.; Giménez, M. E.; Meléndez, M. E. Capability of
detection of an analytical method evaluating false positive and false
negative (ISO 11843) with partial least squares. Chemom. Intell. Lab.
Syst. 2003, 69, 21−33.
(40) Allegrini, F.; Olivieri, A. C. IUPAC-Consistent Approach to the

Limit of Detection in Partial Least-Squares Calibration. Anal. Chem.
2014, 86, 7858−7866.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c06610
ACS Omega 2023, 8, 2281−2290

2290

https://doi.org/10.1016/j.trac.2020.116045
https://doi.org/10.1016/j.trac.2020.116045
https://doi.org/10.1016/j.trac.2013.04.015
https://doi.org/10.1016/j.trac.2013.04.015
https://doi.org/10.1039/c3ay42270d
https://doi.org/10.1039/c3ay42270d
https://doi.org/10.1021/acs.analchem.5b02832?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.5b02832?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jrs.5608
https://doi.org/10.1002/jrs.5608
https://doi.org/10.1177/00037028211070323
https://doi.org/10.1177/00037028211070323
https://doi.org/10.1177/00037028211070323
https://doi.org/10.1038/srep13169
https://doi.org/10.1038/srep13169
https://doi.org/10.1038/srep13169
https://doi.org/10.1515/ract-2020-0008
https://doi.org/10.1515/ract-2020-0008
https://doi.org/10.1038/s41592-018-0083-2
https://doi.org/10.1038/s41592-018-0083-2
https://doi.org/10.1080/00224065.2003.11980235
https://doi.org/10.1080/00224065.2003.11980235
https://doi.org/10.1080/00224065.2003.11980235
https://doi.org/10.1016/j.aca.2015.06.056
https://doi.org/10.1016/j.aca.2015.06.056
https://doi.org/10.1255/nirn.378
https://doi.org/10.1002/cem.956
https://doi.org/10.1002/cem.956
https://doi.org/10.1524/ract.91.1.37.19009
https://doi.org/10.1524/ract.91.1.37.19009
https://doi.org/10.1524/ract.91.1.37.19009
https://doi.org/10.1021/ic00182a013?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ic00182a013?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ic00182a013?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ic00182a013?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1080/00031305.1999.10474445
https://doi.org/10.1016/s0169-7439(03)00110-2
https://doi.org/10.1016/s0169-7439(03)00110-2
https://doi.org/10.1016/s0169-7439(03)00110-2
https://doi.org/10.1021/ac501786u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac501786u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c06610?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

