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ABSTRACT

N6-methyladenosine (m®A) is a prevalent RNA methy-
lation modification involved in the regulation of
degradation, subcellular localization, splicing and lo-
cal conformation changes of RNA transcripts. High-
throughput experiments have demonstrated that
only a small fraction of the m®A consensus motifs
in mammalian transcriptomes are modified. There-
fore, accurate identification of RNA m®A sites be-
comes emergently important. For the above pur-
pose, here a computational predictor of mammalian
mPA site named SRAMP is established. To depict
the sequence context around mfA sites, SRAMP
combines three random forest classifiers that ex-
ploit the positional nucleotide sequence pattern, the
K-nearest neighbor information and the position-
independent nucleotide pair spectrum features, re-
spectively. SRAMP uses either genomic sequences
or cDNA sequences as its input. With either kind of
input sequence, SRAMP achieves competitive per-
formance in both cross-validation tests and rigor-
ous independent benchmarking tests. Analyses of
the informative features and overrepresented rules
extracted from the random forest classifiers demon-
strate that nucleotide usage preferences at the distal
positions, in addition to those at the proximal po-
sitions, contribute to the classification. As a pub-
lic prediction server, SRAMP is freely available at
http://www.cuilab.cn/sramp/.

INTRODUCTION

With recent advances in genomics and molecular biology,
the catalogue and functional importance of RNA modifica-

tions are being revealed (1). Among ~150 types of known
RNA modifications (2), N°-methyladenosine (m°A), the
methylation modification on the nitrogen at the 6th posi-
tion of the adenosine base, stands out due to its prevalent
existence and extensive functional impacts (3,4). The preva-
lence of m®A is two-folded: on the one hand, m®A appears
in nearly all kinds of RNA transcripts, whether coding or
non-coding (5-7); on the other hand, m°A is enriched near
the stop codon (5,6), but also dispreads along all parts of
a pre-mRNA, including coding sequence, un-translated re-
gions (UTRs) and introns (8-10). At the same time, as a
versatile molecular tag, m®A modification is involved in a
variety of important biological processes, including but not
limited to RNA localization and degradation (11), RNA
structure dynamics (12), alternative splicing (9), primary
microRNA processing (7), cell differentiation and repro-
gramming (13,14) and regulation of circadian clock (15).
Knowledge about the positions of m°A sites plays essen-
tial roles in investigating the mechanisms and functions of
this modification. Independent evidence has emerged to val-
idate the DRACH (where D=A, Gor U;R = A or G; H
= A, C or U) consensus motif and the GAC consensus mo-
tif surrounding the m®A sites from mammalian and yeast
transcriptomes, respectively (5,6,16-18). However, as such
short motifs can be frequently observed in one genome,
identifying exact positions of m®A sites in transcripts is
still challenging. Currently, high-throughput experimental
identifications of m°A sites heavily rely on next-generation
sequencing-based techniques like MERIP (5) and m®A-seq
(6). Such techniques are able to detect tens of thousands
of m®A-containing sequence fragments of ~100 nt length
from the transcriptome, but their resolutions are not fully
satisfying, i.e. these methods cannot exactly point out which
adenosine is methylated (19). As a result, until recently,
there was no computational tool available for predicting
mPA site from sequences, due to the lack of gold standard
datasets. In 2013, Schwartz et al. further improved these
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techniques to produce a near single-nucleotide resolution
map of m°A sites in yeast genome (16). With this higher
resolution data, they proposed a computational method to
predict m®A sites using the nucleotide composition, local
secondary structure stability and relative position in gene
as the input features (16). This method achieves promis-
ing performance in cross-validation tests, but no public
tool implementing this method has been made available.
Subsequently, Chen et al. have established two yeast m°A
site prediction servers, i.e. m6Apred (20) and iRNA-Methyl
(21). Both predictors are support vector machine-based but
trained with different sequence encoding scheme: m6Apred
considers chemical property of nucleotide and accumulated
nucleotide frequency as its input features (20), while iRNA-
Methyl represents RNA sequences using pseudo nucleotide
composition features (21). It has been shown that both
predictors exhibit considerable accuracy in cross-validation
tests on yeast datasets, but whether they can predict mam-
malian m°A sites has not been tested.

More recently, He and co-workers have significantly im-
proved the resolution of m®A detecting techniques by devel-
oping the PA-m6A-seq technique (18). Subsequently, Jaf-
frey and co-workers have devised a novel technique termed
miCLIP (17) and provide the single-nucleotide resolution
map of the m°A sites across human transcriptome, giving
us an unprecedented opportunity to construct a computa-
tional m®A site predictor. In this study, we establish a mam-
malian m°A site predictor named SRAMP (sequence-based
RNA adenosine methylation site predictor) under the ran-
dom forest machine learning framework. As its name im-
plies, SRAMP considers the sequence-derived features only,
including the positional binary encoding of nucleotide se-
quence, the K-nearest neighbor (KNN) encoding and the
nucleotide pair spectrum encoding. Nevertheless, SRAMP
shows promising performance in both cross-validation tests
and independent benchmarking tests. Analyses of the infor-
mative features and rules extracted from the random for-
est classifiers demonstrate that the non-random nucleotide
usage, at both the proximal and the distal positions, plays
roles in distinguishing mC®A sites. In the following sections,
we will first describe how the SRAMP was established. The
performance assessment and server implementation will be
subsequently described.

MATERIALS AND METHODS
Datasets

The positive samples (mC®A sites) were extracted from the re-
cently published single-nucleotide resolution maps of mam-
malian mSA sites (17,22), and only the m°A sites that con-
form to the DRACH consensus motifs were retained. We
further mapped these m®A sites to the human and mouse
transcripts recorded by the ENSEMBL database (http://
www.ensembl.org, queried in July 2015). If multiple tran-
scripts from the same locus harboured m°A sites, only the
longest transcript with the largest number of m°A sites was
retained. As for the negative samples (non-m°A sites), the
non-methylated adenosines that conform to the DRACH
motif were randomly selected from the same set of methy-
lated transcripts. Because the m®A sites are not randomly
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distributed along the transcripts (3.,4,22), to avoid promi-
nent bias, we assigned 10-fold likelihood to be chosen as the
negative sample to a non-mCA site near a known m°A site,
enabling position-corrected sets of negative samples. Con-
sidering the fact that there are much more non-m°A sites
than mPA sites, we kept a 1:10 positive-to-negative ratio in
our dataset, such a highly unbalanced ratio coordinates the
dataset coverage and computational burden. Note that, two
prediction modes were built in SRAMP, i.e. the full tran-
script mode and the mature mRNA mode. The full tran-
script mode used the genomic sequences as its input, while
the mature mRNA mode sequences considered cDNA se-
quences instead. For either mode, the training samples were
extracted from the same 13 500 transcripts (i.e. randomly se-
lected 80% of the total), while samples from the other 3391
transcripts were allocated to the independent testing dataset
(see Supplementary Tables S1-4 for these datasets). To test
the potential influence of sequence redundancy, we also em-
ployed CD-HIT-EST tool (23) to remove the redundant in-
dependent testing samples. One testing sample was consid-
ered as redundant one if it shares high sequence identity ei-
ther with a training sample or with another testing sample.
Four sequence identity thresholds, i.e. 95, 90, 85 and 80%,
were applied, among which the 80% identity is the most rig-
orous threshold provided by CD-HIT-EST.

To compare SRAMP with previously published yeast
mPA site predictors m6Apred (20) and iRNA-Methyl (21),
we compiled two benchmarking datasets for yeast and
mammalian, respectively. As for the yeast benchmarking
dataset, we downloaded the m6Apred’s independent test-
ing dataset and retained the samples which met two crite-
ria: (i) the sample should map onto one yeast cDNA se-
quence and (ii) there should be a 51-nt sequence window
(25 nt on each side) available surrounding the central adeno-
sine, as required by iRNA-Methyl server. Consequently, the
yeast benchmarking dataset contains 370 positive samples
and 1750 negative samples (Supplementary Table S5). The
mammalian benchmarking dataset was extracted from the
independent testing dataset for the mature mRNA mode
predictor of SRAMP. We noted that yeast samples conform
to the GAC consensus motif surrounding the central adeno-
sine, but mammalian samples allow either the GAC or the
AAC consensus motifs. To ensure fair comparison, an addi-
tional criterion, i.e. the sample should conform only to the
GAC consensus motif, was applied to filter the mammalian
samples, resulting in a mammalian benchmarking dataset
containing 8378 positive samples and 65 562 negative sam-
ples (Supplementary Table S6).

We also tested whether SRAMP can predict the bind-
ing sites of YTHDF1 and YTHDF2, two known RNA-
binding proteins that preferentially recognize m®A modifi-
cation sites (11,24). DRACH motifs inside the experimen-
tally identified YTHDF binding regions were assigned as
the positive samples. If multiple motifs existed in the same
region, we only considered the one with the highest predic-
tion score. Negative samples were randomly picked outside
the YTHDF binding region, keeping the 1:10 positive-to-
negative ratio (see Supplementary Tables S7 and S8).
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Feature encoding scheme

Generally speaking, SRAMP encoded an m®A /non-m°®A
site by extracting sequence or predicted secondary structure
features from a W nt flanking window where the m®A /non-
mPA site settled at the central position. The window size
W varied between different encoding schemes and different
prediction modes, and were optimized through 5-fold cross-
validation tests. The optimized window sizes were listed in
Supplementary Table S9. Note that, if an m®A /non-m°A
site appeared near one terminus of the transcript, the flank-
ing window was truncated at the transcript terminus for
the nucleotide pair spectrum encoding, but completed with
gaps in the cases of the other encodings to ensure flanking
windows of the fixed size. Details about each encoding are
described below:

Positional binary encoding of nucleotide sequence (binary en-
coding). This encoding exactly depicts the nucleotide at
each position in the flanking window. The A, C, G, U and
the gap character filling the sequence termini were trans-
lated as a binary vector of (1,0,0,0), (0,1,0,0), (0,0,1,0),
(0,0,0,1)and (0,0,0,0), respectively. Therefore, the binary en-
coding of a W nt flanking window should result in a W*4-
dimensional feature vector.

K-nearest neighbor encoding (KNN encoding). This en-
coding depicts how much the flanking window of one query
sample resembles those of other m®A sites. Due to the huge
size of the training dataset (~0.5 million samples), it was
computational prohibitive to compare query samples with
every training sample. Instead, the training samples were
first grouped according to their 21 nt flanking windows,
and 5000 reference positive samples and 50 000 reference
negative samples were randomly selected from the training
dataset, keeping the fraction of each group. Then the flank-
ing window of the query sample was firstly compared with
all reference samples to obtain pair-wise similarity scores:

w
Pair—wise similarity = Z NUC44 (¢;, r;) (1)
i=1

where ¢; and r; are the nucleotides at the ith position of the
query sample and the reference sample’s flanking windows,
respectively. W is the window size. The NUC44 is a com-
mon nucleotide similarity scoring matrix given as +5 when
matched, -4 when mismatched, -2 when one is terminal gap
and -1 when both are terminal gaps. Then, the fraction of
positive samples (FoP) in the top K most similar reference
samples was taken as the KNN feature. The considered Ks
were preliminarily optimized as (50, 100, 150, ..., 1350) for
the full transcript mode, corresponding to the (1%, 2%, 3%,
..., 30%) of the total of positive reference samples. For ma-
ture mRNA mode, the considered Ks were (50, 100, 150, ...,
1500).

Nucleotide pair spectrum encoding (spectrum encoding).
This encoding depicts the sequence context of an m®A /non-
mCA site by calculating the frequencies of all possible d-
spaced nucleotide pairs (e.g. UxxxG is a three-spaced nu-
cleotide pair) inside a flanking window. That is, this encod-
ing examines throughout the nucleotide pair spectrum in a
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flanking window. Just like the analogous encoding scheme
for the amino acid sequence (25,26), the frequency of a
spaced nucleotide pair np; was calculated as

C(np;)
W—d—1

where C(np;) is the count of np; inside a flanking window,
W is the window size and d is the space between two nu-
cleotides, ranging from 0 to dp,x. Therefore, the nucleotide
pair spectrum encoding would denote the flanking window
as a 4*4* (dpaxt+1) dimensional vector. The optimized dpax
was 3 for both prediction modes.

Frequency (np;) = 2

Predicted secondary structure pattern. For a preliminary
test of RNA secondary structure features, we employed this
encoding to depict the predicted secondary structure sta-
tus at each position. The secondary structures were pre-
dicted by the RNAfold tool (version 2.1.9) in ViennaRNA
package (27) with default parameters. Because it is very
time-consuming to predict the secondary structures of full
RNA transcripts, we instead extracted a 2001-nt local se-
quence window (truncated at transcript termini) centred
at an m®A/non-m°A site, as the input to RNAfold. The
RNAfold tool outputted the predicted secondary structure
in dot-bracket notation where unpaired and paired posi-
tions were denoted as dots and brackets, respectively. To
obtain a more specific description of RNA secondary struc-
tures, the secondary structures were further classified into
hairpin loop (H), multiple loop (M), interior loop (I), paired
(P) and bulged loop (B). Finally, the secondary structure
status H, M, I, P, B and the terminal gap were encoded
as the binary vectors as (1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0),
(0,0,0,1,0), (0,0,0,0,1) and (0,0,0,0,0), respectively. There-
fore, the predicted secondary structure pattern of a W nt
flanking window constituted a W*5 dimensional feature
vector.

Random forest classifier training and performance assess-
ment

In brief, SRAMP integrates multiple random forest clas-
sifiers that were trained with different feature encodings
(Figure 1). We noted that the positive-to-negative ratio of
our training datasets was highly unbalanced (1:10). Such
an unbalanced training dataset was an unfavourable choice
for machine learning classifiers. Therefore, for each train-
ing dataset encoded by one specific encoding scheme, we
created 10 subsets of training data with 1:1 positive-to-
negative ratio by randomly splitting the negative samples
into 10 parts. Subsequently, 10 random forest models (sub-
classifiers) were trained and the average output score from
these 10 sub-classifiers was taken as the prediction score
of the random forest classifier. The random forest sub-
classifiers were trained by the randomForest package in R
(28), and the tree number in each sub-classifier was prelim-
inarily optimized to 300. Finally, the prediction scores of
the random forest classifiers trained with different feature
encodings were combined using the weighted summing for-
mula below:

Scombined = ZT a;-S (3)
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Figure 1. The computational framework of SRAMP. Two prediction modes have been built in SRAMP, i.e. the full transcript mode and the mature mRNA
mode. Both prediction modes adopt the same computational framework. First, for a DRACH motif presented in the query sequence, its flanking sequence
window is extracted and represented using the three sequence-based encodings. Then the encoded features will be submitted to the corresponding random
forest classifiers. Each random forest classifier summarizes the output scores from 10 sub-classifiers, which were trained on all positive samples and a
distinct subset of negative samples in the training dataset. Finally, the prediction scores of the random forest classifiers are combined through weighted
summing formula. Four stringency thresholds correspond to the 99%, 95%, 90% and 85% specificities in 5-fold cross-validation test that are used to judge
the classification and associated confidence. If analysing secondary structure function is enabled, the secondary structure context of the predicted m°A

sites will be also provided.

where the S; and «; are the prediction score and the weight
for the classifier trained with the ith encoding, respectively.
n is the total number of the classifiers taken into account.
The optimized weights were also listed in Supplementary
Table S9.

Once the random forest classifiers were trained, we em-
ployed both 5-fold cross-validation tests on the training
dataset, and the independent tests to assess our predictors.
We used sensitivity, specificity and Matthews correlation co-
efficient (MCC) to measure the predictor’s performance at
certain thresholds. These parameters read

TP
Sensitivity = ——— 4
ensitivity TP+ FN 4)
TN
Specificity = ——— 5
pecificity TN £ FP (5)
MCC TP x TN — FP x FN (6)

~ /(TP + FP) x (TP 1 FN) x (IN + FP) x (IN + FN)

where TP, TN, FP and FN represent the counts of true pos-
itive, true negative, false positive and false negative predic-

tions, respectively. We also plotted the ROC curves (which
plot sensitivity against 1-specificity) for the predictors and
calculated the area under ROC curve (AUROC) to evalu-
ate the overall performance of the predictors. The AUROC
ranges from 0 to 1. An AUROC near 1 implies perfect pre-
dictions while the AUROC of random guess is 0.5. Finally,
the area under precision-recall curve (AUPRC) was calcu-
lated to examine the performance of predictors when re-
stricting low false positive rates. The precision-recall curves
plot precision (the fraction of TP in all predicted positives)
against recall (sensitivity). This curve is more sensitive to
false positives than ROC curve.

Extraction of overrepresented rules and informative features

By definition, a random forest model is comprised by a se-
ries of decision trees (29). One decision tree contains sin-
gle root node, several leaf nodes that denote the final deci-
sions and many intermediate nodes that describe the con-
ditions supporting the final decisions (30). A path from
the root node to the leaf node is called a rule. Intuitively,
a rule depicts how a set of features collaborate to classify
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the samples. We extracted the rules from the random forest
models by using the inTrees package in R (https://cran.r-
project.org/web/packages/inTrees). Due to the limitation of
our computational resource, we only considered rules that
contained 15 or less intermediate nodes. To obtain a non-
redundant, overrepresented set of rules that predict m°A
sites, we first discarded the rules which covered <100 m°A
sites or showed no more than 2-fold enrichment for m®A
sites. Then the significance of a retained rule was evaluated
by Fl-score given by
F1 — score = 2> TP (7)
2x TP+ FP+FN
Finally, if there were two redundant rules, only the one
with higher Fl-score was retained. The redundancy be-
tween two rules R; and R, was measured by the Jaccard
index (JI) given by

_PLU P

- "= 8
[Py N P ®)

where P; and P; are the subsets of m°A sites covered by the
rules R} and Ry, respectively. Any pair of rules shares a JI
larger than 0.001 would be considered as redundant ones.

We also extracted the informative features from the spec-
trum encoding-based random forest classifier. After one
random forest sub-classifier was trained, an importance
score was assigned to each feature. We used the average im-
portance score from the 10 sub-classifiers to measure how
much a feature is informative.

Online server construction

The SRAMP online server was built under the
‘Linux+Apache+Django’ framework. The visualiza-
tion of the structural context of the predicted m°A sites
was powered by the VARNA structure visualization tool

(31).

RESULTS AND DISCUSSION
Establishment of the predictors

As mentioned in the ‘Materials and Methods’ section, two
prediction modes were built in SRAMP, i.e. the full tran-
script mode and the mature mRNA mode. We focus on de-
scribing the establishment of the predictor for the full tran-
script mode, as the predictor for the mature mRNA mode
was established in the same way.

The training dataset is comprised the experimentally
identified m®A sites and randomly selected non-mCA sites
from the same transcripts. Both m°A sites and the non-
m®A sites conform to the DRACH consensus motif. To dis-
tinguish methylated DRACH motifs from non-methylated
ones, an intuitive way is to describe the flanking nucleotide
sequence as is. The positional binary encoding of nucleotide
sequence (binary encoding) exactly translates the nucleotide
at each position into a binary vector and has been widely
employed to build predictors for the protein and RNA mod-
ification sites (32-35). Here, the binary encoding is intro-
duced to depict the nucleotide sequences in the 61 nt (30
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nt on each side of the m°®A/non-m°A sites) flanking win-
dows. The random forest classifier using the binary encod-
ing achieves encouraging performance in the 5-fold cross-
validation test on the training dataset (Figure 2A; AUROC
= 0.813). When focusing on the performance at low false
positive rate, the performance of binary encoding classifier
is also competitive (Figure 2B; AUPRC = 0.374), indicating
that the positional sequence pattern is a strong predictor of
mPA site. Indeed, two sample logos that visualize the rel-
atively more or less favoured nucleotide also demonstrate
a weak but prevalent nucleotide usage preference around
mPaA sites (Supplementary Figure S1A). The binary encod-
ing describes such weak nucleotide usage preference at in-
dividual position, and the random forest classifier further
exploits their combinations, enabling more powerful classi-
fications. For a straightforward demonstration of the work-
ing principle underlying the random forest classifier, we ex-
tracted the overrepresented rules from it (see ‘Materials and
Methods’ section for details). Each rule can be interpreted
as a specific combination of feature value conditions that
discriminate m°A sites from non-m°A sites. After removal
of redundant rules, 37 overrepresented rules were obtained
(Supplementary Table S10). The most profound nucleotide
preferences observed in the two sample logos (Supplemen-
tary Figure S1A) are also observed among the rules. For
example, G at the —2 and —1 positions and U at the +2 po-
sition are frequently presented as one of the conditions that
constitute a rule. The rules also indicate the favoured com-
bination of nucleotides at different positions. For example,
the two sample logos indicate that the A at the -1 position is
less favoured when compared with negative samples. Never-
theless, when checking through the proximal sequences that
are more favoured by m°A sites than non-m°A sites (Sup-
plementary Figure S1B), one can easily point out that A at
the -1 position is certainly allowed, especially when a G or A
is presented at the —3, —2, +3 or +4 position. Such specific
combinations can also be captured by the overrepresented
rules (e.g. rules #6, #10, #12, #16, #26 and #30), indicating
the prediction capability of our classifier for the AAC sites.
Indeed, the binary encoding predictor predicts AAC sites
equivalently well as the GAC sites (AUROC = 0.813 and
0.814, respectively). Finally, the rules also clearly demon-
strate the contribution of nucleotide preference at the distal
positions, as the nucleotide preferences at —29, —28, —23,
=21, -7, +13, +16, +20, +26, +29 positions are considered
by at least 9 out of 37 overrepresented rules. Generally, the
requirements for nucleotide usage at distal positions are re-
laxed, but exceptions also exist. For example, rule #14 ex-
actly required a U presented at the -28 position and an A at
the —14 position. Last but not least, as indicated by the F1-
scores, it is not possible for any single rule to accurately pre-
dict mOA sites. It is the random forest model that integrates
a large ensemble of rules to achieve the robust performance.

The above analysis of non-redundant overrepresented
rules also indicates that the m®A sites tend to form diverse
clusters among which the similar sequence pattern is fol-
lowed. The binary encoding is not straightforward enough
to demonstrate the sequence similarity between the m°A
sites. Therefore, we introduced the KNN encoding, which
has been successfully applied for predicting protein phos-
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Figure 2. The overall performances of the full transcript mode classifiers based on the results from 5-fold cross-validation tests. The performances are

illustrated by the ROC curves (A) and the precision-recall curves (B).

phorylation and ubiquitination sites (36,37). For a query
sample, the KNN feature depicts the FOP among its K most
similar reference samples, in other words, the FoP among its
K-nearest neighbors in the reference dataset (a representa-
tive subset of training dataset, see ‘Materials and Methods’
section for details). As K increases, the KNN encoding can
reflect weak but non-random sequence similarity between
the m°A sites at different levels. We adopted a series of Ks
from 50 to 1350, which corresponds to 1-27% of the posi-
tive reference samples. The random forest classifier trained
with the KNN encoding exhibits a competitive performance
in cross-validation (AUROC = 0.781, AUPRC = 0.297).
Incorporation of the KNN encoding-based classifier also
results in performance improvement (Figure 2; AUROC =
0.830, AUPRC = 0.393). We further analysed the overrep-
resented rules extracted from this classifier (Supplementary
Table S11). Because the positive-to-negative ratio is 1:10 in
our datasets, for a query m°A site, FoP around 1/11 =0.091
can be expected if this site exhibits random similarities to
both positive samples and negative samples. Supplementary
Table S11 clearly demonstrates the prevalent requirement of
FoP larger than 0.091, indicating the non-random sequence
similarity between m°A sites. However, for a query m°A site,
the enrichment of positive training samples among its near-
est neighbors is not always necessary. Sixteen out of 44 rules
require prominent enrichment of positive samples when K =
50 or 100, implying tightly clustered positive samples. But
for other rules, the higher FoPs are only required when K
is large, indicating many positive samples are loosely clus-
tered. Direct clustering of positive samples may ignore such
loosely clustered positive samples, but such information can
be recognized by the KNN features with larger Ks. In all,
by reflecting the (often weak) clustering tendencies between
positive samples, the KNN encoding can distinguish the
mPA sites from random background.

Both the binary encoding and the KNN encoding ex-
ploit positional sequence patterns. Nevertheless, position-

independent sequence information may also be helpful. For
example, an RNA motif may be presented in the flanking
window of an m°A site, but its relative position to the m°A
sites may not be fixed. Exhaustive sampling of the overrep-
resented motifs around m°A sites is time-consuming and
sensitive to noise. An alternative solution is to use the fre-
quency of short nucleotide words as a cryptic representa-
tion of position-independent sequence pattern. Here, the
frequencies of d-spaced nucleotide pairs constitute the spec-
trum of possible nucleotide words, where any nucleotide
pair spaced by d nucleotides in-between can be considered.
Our preliminary test has indicated that considering d from
0 to 3 is enough to achieve stable prediction performance.
The random forest predictor based on this spectrum encod-
ing achieves an overall performance as good as the binary
encoding (AUROC = 0.812, AUPRC = 0.340). After in-
tegrating the spectrum encoding, a major augment of per-
formance is observed (Figure 2; AUROC = 0.891, AUPRC
=0.523), indicating this position-independent sequence en-
coding indeed supplements the position-dependent encod-
ings. For a more straightforward illustration, we picked the
top 20 informative features from the spectrum encoding-
based random forest classifier and mapped them onto the
flanking window of m°A sites. As illustrated in Supplemen-
tary Figure S2, most of the informative features do not show
strong positional bias along the flanking windows. Even
when focused on more proximal positions, only the spaced
nucleotide pairs that constitute the DRACH consensus mo-
tif (e.g. GA, AC) exhibit prominent enrichment near the
central position. These results suggest that the spectrum en-
coding, at least partly, reflects the positional independent
features of m°A sites, and therefore could enhance the po-
sitional sequence pattern-based classifiers.

Finally, it has been indicated that the (predicted) RNA
secondary structures can serve as informative features for
predicting RNA functional sites like those targeted by mi-
croRNA (38,39) or vulnerable to deleterious mutations
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(40). Moreover, it has been also suggested that some m°A
sites favour specific secondary structure context to exert
their regulatory roles (9). Therefore, we also trained a ran-
dom forest classifier based on the positional patterns of pre-
dicted RNA secondary structures. However, this classifier
shows only weak accuracy in 5-fold cross-validation test
(AUROC =0.618), and cannot improve the predictor. Thus,
current SRAMP does not consider such secondary struc-
ture features. Nevertheless, analysing the overrepresented
rules from this random forest classifier could provide inter-
esting suggestions (Supplementary Table S12). On the one
hand, these rules clearly demonstrate the contribution of
the secondary structure preference at the distal positions, in
addition to those at proximal positions. On the other hand,
the proximal secondary structure pattern also exhibits an
interesting property: while the central m®A sites could be
in loops, one proximal position should be paired (as ob-
served in rules #11, #12 and #13), indicating that some
mPA sites tend to locate near the boundary of stem-loop
transition. Therefore, to facilitate the investigation of rela-
tionship between m®A sites and RNA structural elements,
SRAMP also allows users to analyse the local structural
context of the predicted m°A sites. Finally, Spitale et al. have
recently demonstrated that the RNA structural imprints
as a powerful predictor of m®A sites (41). We found their
structural data could not cover our dataset sufficiently, and
such data remained difficult to be handled by non-specialist.
Thus, at current stage, SRAMP does not consider experi-
mental RNA structural imprints, though such data should
be promising with augmented coverage and convenience in
the future.

Though the above shown performance of the full tran-
script mode predictor is encouraging, there is also one pro-
found limitation: the genomic sequences are required by
this prediction mode. Unlike cDNA or mRNA sequences,
the genomic sequence is usually not available in public nu-
cleotide sequence database. To facilitate the users, we have
also established a mature mRNA mode predictor, which
considers cDNA or mRNA sequences as its input. The pre-
dictor of mature mRNA mode was established under an
analogous framework to that of the full transcript mode. It
is noteworthy that accurate prediction m®A sites in cDNA
or mRNA sequences are more challenging. First, there is
evidence supporting the idea that (at least a considerable
fraction of) RNA m®A modification events are occurred at
the pre-mRNA level (8,9,17). Discarding all introns may
disrupt the original sequence context of an m®A site and
therefore reduce the discriminative capability of the m®A
site predictor. Second, the distance between an m°A site
and a non-mPA site generally becomes closer in a cDNA
sequence compared with that in the corresponding genomic
sequence. As a result, the sequence features of m®A sites and
non-mPA sites become less distinguishable because of the
more overlapped flanking sequence windows. As expected,
the predictors of mature mRNA prediction mode show a
decreased performance in 5-fold cross-validation (Supple-
mentary Figure S3, AUROC = 0.797, AUPRC = 0.312).
Nevertheless, such performance is still competitive and ac-
ceptable for users who prefer cDNA or mRNA sequences
as the input.
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Assessment of the SRAMP’s performance with independent
datasets

To rigorously evaluate our predictors, we further tested our
method on the independent testing datasets. The results
from the independent tests generally agreed well with those
from the cross-validation tests. When all three sequence-
based random forest classifiers are combined, the full tran-
script mode and mature mRNA mode predictors achieve
AUROC:s of 0.871 and 0.794, respectively (Supplementary
Figure S4A and B). The combined predictors predict GAC
and AAC sites equivalently well (AUROC = 0.861 and
0.784 for GAC sites, AUROC = 0.873 and 0.790 for AAC
sites). We noted that the sequence redundancy may result in
overestimations of the prediction performance. To address
this issue, we employed CD-HIT-EST tool (23) to remove
the redundant testing samples. As shown in Supplementary
Figure S5, for both predictors, the performances are largely
stable after different identity thresholds have been applied.
Even when the most rigorous threshold provided by CD-
HIT-EST is applied (i.e. 80% sequence identity), the full
transcript mode predictor and the mature mRNA predic-
tor exhibit only ~0.02 and 0.01 decrease of AUROC respec-
tively, indicating that these predictors are robust to sequence
redundancy. In terms of the AUPRC, the performances
of SRAMP also remain acceptable (AUPRC = 0.449 and
0.321, respectively; Supplementary Figure S4C and D). To
assess the performances more precisely, we have applied
four stringency thresholds corresponding to the 99%, 95%,
90% and 85% specificities in the cross-validation tests, re-
spectively. In line with the intuitive observation from the
ROC curves and precision-recall curves, the predictors also
exhibit competitive performance with different false pos-
itive rate control, as indicated by stable MCCs for most
thresholds (Table 1). Moreover, we also compare the distri-
bution of the experimentally identified m°A sites and that
of the predicted m°A sites (Supplementary Figure S4E and
F). On pre-mRNAs, the experimentally identified m®A sites
show a prominent enrichment near the stop codon and a
weak enrichment near the start codon, similar to the previ-
ous observations (3). On mature mRNAs, the experimen-
tally identified m°A sites also exhibit strong tendency to
be located near the stop codon. The predicted m°A sites
could largely recapitulate these biased distributions. Since
no site position or topology information has been consid-
ered, these results indicate that SRAMP could recognize
the specific sequence features of the m°A-enriched regions
and provide reasonable prediction results. Finally, during
the independent tests, we also observed that the full tran-
script mode and the mature mRNA mode predictors tend
to predict highly overlapped but not identical subsets of
m°A sites (Supplementary Figure S6). This observation, at
least partly, supports the above-mentioned idea that both
confounding sequence features among positive and nega-
tive samples, and the altered sequence context in mRNAs
contributed to the performance discrepancy between two
prediction modes of SRAMP.

We further assessed our predictors by external datasets.
YTHDF1 and YTHDF2 are two RNA-binding proteins
that selectively recognize m®A-modified mRNAs, where
YTHDF!1 promotes protein translation and YTHDF2
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Table 1. Performance of SRAMP predictors on the independent testing dataset at various stringency thresholds

Predictor Stringency Sensitivity Specificity MCC
Full transcript mode Very high 25.7% 98.7% 0.373
High 50.3% 93.7% 0.414
Moderate 64.5% 88.1% 0.405
Low 72.8% 83.0% 0.385
Mature mRNA mode Very high 11.0% 99.1% 0.211
High 29.6% 95.0% 0.273
Moderate 44.0% 90.0% 0.293
Low 54.2% 85.3% 0.294

The very high, high, moderate and low stringency thresholds correspond to the 99%, 95%, 90% and 85% specificities in 5-fold cross-validation tests,

respectively.

modulates mRNA stability (11,24). If SRAMP could pre-
dict bona fide m®A sites, it should at least partly recog-
nize the DRACH motifs inside the YTHDF protein bind-
ing sites. The full transcript mode predictor clearly discrim-
inates YTHDF binding sites from DRACH motifs outside
the binding sites (Supplementary Figure S7; AUROC =
0.855, AUPRC = 0.485), validating its prediction capabil-
ity. The mature mRNA mode can also recognize YTHDF
binding site with medium accuracy (Supplementary Fig-
ure S7; AUROC = 0.720, AUPRC = 0.251). Though the
performance of the mature mRNA mode predictor on the
YTHDF binding site dataset is not quite satisfactory, it
does not imply that the mature mRNA mode predictor
cannot predict bona fide m°A sites. To validate the accu-
racy of the mature mRNA mode, we benchmarked it on a
golden standard dataset, from which the methylated/non-
methylated status of each site was rigorously examined by
the SCARLET method (42). As shown in Figure 3A, the
predictor correctly identified all of the hona fide m°A sites at
the very high or high confidence thresholds. We noted that
only 9, 14, 12 and 3 m°A sites were predicted as m°A sites
above the high confidence threshold along the transcripts
of MALATI, TUGI, TPTI and BSGI, respectively, indi-
cating that the predictor could find bona fide m°A sites with
acceptable false positive rate. Indeed, there are totally three
false positive predictions at the high confidence threshold
within the golden standard negative sites (Figure 3A), sug-
gesting the false positive rate is well controlled. Neverthe-
less, the predictor usually predicts twice to triple more m°A
sites when using the low confidence threshold. Though no
more false positive predictions within the golden standard
dataset are produced after relaxing the threshold, there
should be higher false positive rates with the relaxed thresh-
olds. Therefore, for users who wish to predict m®A sites with
high reliability, only predictions above the high confidence
threshold should be considered.

Recently, Chen et al. have proposed two yeast m°A site
predictors: m6Apred (20) and iRNA-Methyl (21). It is
therefore interesting to interrogate the cross-species perfor-
mance of SRAMP and these yeast-centric predictors. Be-
cause the yeast predictors were trained on the yeast mRNA
m®A dataset (16), for a fair comparison, we then only com-
pared these predictors with the mature mRNA mode pre-
dictor of SRAMP. Moreover, we built a mammalian bench-
marking dataset by filtering against the samples that cannot
be processed by yeast predictors. Especially, all mammalian
samples in the independent testing dataset that conform to

the mammalian-specific AAC consensus motif have been
removed (see ‘Materials and Methods’ section for details).
On the filtered mammalian benchmarking dataset, SRAMP
still exhibits robust performance (Figure 3B and C; AU-
ROC = 0.784, AUPRC = 0.342). By contrast, yeast-centric
predictors cannot effectively predict mammalian m°A sites
(AUROC = 0.649 and 0.597, AUPRC = 0.192 and 0.158
form6Apred and iIRNA-Methyl, respectively). These results
confirm that the construction of a mammalian-specific pre-
dictor is necessary and crucial.

On the other hand, SRAMP did not accurately predict
yeast m°A sites as well. We curated a yeast benchmarking
dataset from the independent dataset of m6Apred (see ‘Ma-
terials and Methods’ section for details). On this dataset,
the m6Apred ranks the best (Figure 3D and E; AUROC
= 0.684, AUPRC = 0.329). The overall performances of
iRNA-Methyl and SRAMP are comparable (AUROC =
0.633 and 0.612, AUPRC = 0.253 and 0.243, respectively).
Given the fact that there is no universally best predictor
that accurately predict mammalian and yeast m°A sites at
the same time, we would like to nominate SRAMP as a
mammalian-centric m°A site predictor. For users who are
interested in predicting yeast m®A sites, the yeast-centric
predictor like m6Apred should be their first choice.

At last, since the m®A sites of the SRAMP’s training
dataset were identified from the five tissues (HEK?293 cell,
CD8+ T cell, A549 cell, brain and liver), it is interesting
to check to what extent a predictor trained with data from
one tissue recognizes the m®A sites from another tissue. For
either prediction mode, we have trained five tissue-specific
predictors using tissue-specific m®A sites and tested them
on the independent datasets from other tissues. The intra-
and cross-tissue independent test performances are summa-
rized in Supplementary Figure S8. The cross-tissue predic-
tion performance is generally acceptable, indicating that the
SRAMP’s generic predictors that exploit all m®A data could
robustly predict m®A sites across different tissues. On the
other hand, the intra-tissue performances are superior to
cross-tissue performances for the most cases. Therefore, for
better prediction of m®A from a specific tissue, the tissue-
specific predictors have also been made accessible at our on-
line SRAMP server.

The SRAMP server

To facilitate the community, the SRAMP predictors have
been made freely available as an online server (http://www.
cuilab.cn/sramp/). The prediction webpage of SRAMP is
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Figure 3. The performances of different m®A site predictors on the gold standard dataset and the benchmarking datasets. (A) Prediction results on the
golden standard dataset. The gene identifiers and site positions are in lines with the original publication by Liu ez a/. (42). Experimental reference sites and
predicted sites are denoted in the E and P columns, respectively. Experimentally verified m°A sites and non-m°A sites are indicated by deep red and grey
boxes, respectively. Predicted very high confidence m°A sites, high confidence m°A sites and non-m°A sites are indicated by red, purple and grey boxes,
respectively. (B) The ROC curve illustrating the performances on the mammalian benchmarking dataset. (C) The precision-recall curve illustrating the
performances on the mammalian benchmarking dataset. (D) The ROC curve illustrating the performances on the yeast benchmarking dataset. (E) The
precision-recall curve illustrating the performances on the yeast benchmarking dataset.

shown in Supplementary Figure S9. SRAMP only requires
nucleotide sequences for running a prediction. Users can se-
lect either the full transcript mode or the mature mRNA
mode, depending on if they have the genomic or the cDNA
sequence at hand, and if they are interested in the intronic
mCA sites. Users can also decide whether the RNA sec-
ondary structure should be analysed or not. Analysis of
RNA secondary structures provides text and graphical rep-
resentation of the local structure around the predicted m°A

site (see Figure 4 as an example), but also consumes much
more time. For an intuitive evaluation, SRAMP finished the
prediction task on a 1000-nt RNA sequence in 90 s without
analysing secondary structure, but took about 4 min when
secondary structures were considered. For a quicker predic-
tion, the ‘analysing RNA secondary structure’ option is by
default disabled in SRAMP server. But this option can be
easily enabled when submitting new prediction task.
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Figure 4. A sample SRAMP prediction result. The genomic sequence of a representative A PRT transcript (ENST00000378364) was used as the input to the
full transcript mode predictor, and the analysis of secondary structures was enabled. (A) The overview of result page. The exhibition of the query sequences
is truncated, and only the detailed results for the first predicted m°A site and those near the pathogenic mutation site (G2246->C) are shown. The H,
M, I, B, P in the secondary structure strings mean hairpin loop, multiple loop, interior loop, bulged loop and paired residues, respectively. In addition to
such string, a graphical representation of the local secondary structure will be generated when click on the ‘draw’ button. (B) A graphical representation
of the local secondary structure context around the mutation site. This graphical representation was generated by SRAMP server exploiting the VARNA
structural visualization tool. We focused on the local secondary structure in proximal to the mutation site for clarity.

After the query sequence is submitted to SRAMP, the
user will be redirected to the ‘processing’ webpage which
is automatically refreshed in each 30 s to check if the pre-
diction is finished. Users can also bookmark the ‘process-
ing’ webpage and check the progress later. Once the pre-
diction task is finished, the result page will be automat-
ically presented in the same window of the ‘processing’
webpage. Figure 4 provides a sample screenshot of the re-
sult webpage using the genomic sequence of APRT tran-
script (ENST00000378364) as the input. The result page
consists of three sections. In the first section, basic infor-

mation about the prediction task is listed. The second sec-
tion contains a link to download the prediction results (in
the tab-delimited text format) and a plot illustrating the
distribution of the predicted m°A sites along the query se-
quence. The third section is a table showing the detailed re-
sults about each predicted m°A site in the query sequence.
The index of predicted DR ACH motif, position in the query
sequence, the flanking sequence and the prediction scores
are shown. When the ‘analysing RNA secondary structure’
option is enabled, a string describing the secondary struc-
ture context and a ‘draw’ button to generate graphical rep-
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resentation of the local secondary structure are also avail-
able. SRAMP predicts totally 2, 3, 3 and 3 m°A sites at the
very high, high, moderate and low confidence thresholds,
respectively. Here we only focused on the discussion about
the prediction result of position 2247. It was reported that
a mutation of its upstream G to C (rs387906584) results in
APRT deficiency which makes patients vulnerable to kid-
ney and urinary tract stone (43,44). According to the record
from the ClinVar database (44), the most prominent result
of this mutation is the loss of stop codon. Interestingly, how-
ever, it has been also found that this mutation significantly
reduces in vivo APRT mRNA level, in addition to the dis-
ruptions of APRT proteins (43). Here, we note that position
2247 has been predicted as an m®A site with very high con-
fidence (Figure 4A), and mutation of its upstream G to C
will eliminate the DRACH consensus motif of this potential
mPA site. So the pathogenic mechanism may also be related
to the m®A modification. Moreover, as indicated by the lo-
cal secondary structure information provided by SRAMP
server (Figure 4B), this site settles inside an RNA junction.
Given the expected roles of m®A modification in regulating
RNA structures and RNA stability (9,11,12), abolishment
of this m°A site may destroy the local structure in 3’ UTR
and/or alter the stability of APRT mRNA. This hypothesis
would be further experimentally tested in the future.

Current limitations and future perspectives

We have presented SRAMP as a mammalian m°®A site pre-
diction server. To ensure the wider applicability of this
tool, only the sequence-derived features are considered and
no external -omics data is required. On the one hand,
sequence-based predictors show encouraging prediction
performance. On the other hand, it is clear that the cur-
rently omitted -omics data could also be helpful for m®A
site prediction. For example, it has been demonstrated that
the m°A sites are enriched near the stop codon and in
the longest exons, and overrepresented in the regions tar-
geted by microRNAs and specific RNA-binding proteins
(6,9,13,14). Incorporating such -omics features will be the
next step to improve the predictors’ performance.

Moreover, it is well known that the m®A modification
is reversible, dynamic and sometimes tissue- or condition-
specific (3,4,19). Currently, SRAMP exploits only a few set
of high-throughput data from five tissues (though of the
highest resolution), and it is therefore inevitably biased to-
ward m°A sites presented under specific conditions. For ex-
ample, SRAMP showed decreased performance when pre-
dicting YTHDF-binding m°A sites identified from HeLa
cell (11,24), a tissue currently not covered by SRAMP (Sup-
plementary Figure S7). In addition to tissue or condition
specificity, the m°A sites identified by different experimen-
tal techniques would also vary from each other (16-18), and
it is known that the m°A antibodies used in these high-
throughput experiments are somewhat biased (16). There-
fore, more high-resolution m®A site maps are still urgently
demanded. On the one hand, such data will calibrate the
m®A site predictors. On the other hand, they will also be
helpful to recognize the m®A sites from other tissues for bet-
ter interpretations of their biological functions.
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Finally, according to our benchmarking tests, a yeast
mPA site predictor usually fails to accurately predict mam-
malian m°A sites and vice versa (Figure 3). Nevertheless,
the cross-species performance of both the m6Apred (built
for yeast) and our SRAMP (built for mammalian) is clearly
better than random guess (Figure 3B and D, AUROC >
0.6), indicating that there are still chances to build a univer-
sally applicable m®A site predictor. Specially, we note that
the best performance on the yeast benchmarking dataset is
not as impressive as that on the mammalian benchmarking
dataset, indicating the sequence pattern around the yeast
m®A site has not been fully described. This is largely due to
the lack of single-nucleotide resolution map of yeast m°A
sites, which will enable unambiguous representation of the
sequence context of yeast m°A sites. It can be expected that
a more powerful yeast m®A site predictor and ultimately a
universally applicable m®A site predictor will be established
when more high-resolution data becomes available.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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