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Abstract
Background. Abnormal mineral metabolism in chronic
kidney disease plays a critical role in vascular calcification
and arterial stiffness. The impact of presently used dialysis
calcium concentration (DCa) on arterial stiffness and aortic
pressure waveform has never been studied. The aim of the
present study is to evaluate, in haemodialysis (HD) patients,
the impact of acute modification of DCa on arterial stiffness
and central pulse wave profile (cPWP).
Method. A randomized Latin square cross-over study was
used to evaluate the three different concentrations of DCa
(1.00, 1.25 and 1.50 mmol/L) during the second HD of the
week for 3 consecutive weeks. Subjects returned to their

baseline DCa for the following two treatments, allowing
for a 7-day washout period between each experimental HD.
cPWP, carotido-radial (c-r) and carotido-femoral (c-f) pulse
wave velocities (PWV), plasma level of ionized calcium
(iCa) and intact parathyroid hormone (PTH) were mea-
sured prior to and immediately after each experimental HD
session. Data were analysed by the general linear model for
repeated measures and by the general linear mixed model.
Results. Eighteen patients with a mean age of 48.9 ± 18
years and a median duration of HD of 8.7 months (range
1–87 months) completed the study. In post-HD, iCa de-
creased with DCa of 1.00 mmol/L (−0.14 ± 0.04 mmol/L,
P < 0.001), increased with a DCa of 1.50 mmol/L (0.10 ±
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0.06 mmol/L, P < 0.001) but did not change with a DCa
of 1.25 mmol/L. Tests of within-subject contrast showed a
linear relationship between higher DCa and a higher post-
HD �c-f PWV, �c-r PWV and �mean BP (P < 0.001,
P = 0.008 and P = 0.002, respectively). Heart rate-adjusted
central augmentation index (AIx) decreased significantly
after HD, but was not related to DCa. The timing of wave
refection (Tr) occurred earlier after dialysis resulting in a
linear relationship between higher DCa and post-HD earlier
Tr (P < 0.044). In a multivariate linear-mixed model for
repeated measures, the percentage increase in c-f PWV and
c-r PWV was significantly associated with the increasing
level of iCa, whereas the increasing level of �MBP was
not significant. In contrast, the percentage decrease in Tr
(earlier wave reflection) was determined by higher �MBP
and higher ultrafiltration, whereas the relative change in
AIx was inversely determined by the variation in the heart
rate and directly by �MBP.
Conclusion. We conclude that Dca and acute changes in the
serum iCa concentration, even within physiological range,
are associated with detectable changes of arterial stiffness
and cPWP. Long-term studies are necessary to evaluate the
long-term effects of DCa modulation on arterial stiffness.

Keywords: arterial stiffness; calcium; haemodialysis; pulse wave
profile; pulse wave velocity

Introduction

The high prevalence of cardiovascular disease among
haemodialysis (HD) patients cannot be explained solely
by traditional cardiovascular risk factors. More recently, ar-
terial stiffness, as measured by carotido-femoral (c-f) pulse
wave velocity (PWV), has been shown to be an indepen-
dent predictor for cardiovascular morbidity and mortality
in a HD population [1,2]. Physiologically, increased stiff-
ness of the large elastic arteries leads to increased central
pulse pressure (PP), cardiac workload and left ventricular
hypertrophy [3–7]. The mechanism of arterial stiffness in
advanced chronic kidney disease (CKD) remains poorly
understood. Alteration of the vascular wall by chronic ef-
fects of hypertension, accumulation of advanced glycation
end-products and abnormal mineral metabolism are some
of the mechanisms that have been proposed to explain the
increased arterial stiffness in CKD [8–11]. The relationship
between calcium containing phosphate binders and vascular
calcification has raised concern about the long-term effects
of chronic positive calcium balance [12,13]. However, the
concerns about calcium containing phosphate binders have
overshadowed the importance of dialysate calcium con-
centration (DCa) in the overall calcium balance. Although,
DOQI guidelines recommend a DCa of 1.25 mmol/L, the
optimal DCa could also be determined by other factors such
as the use of specific phosphate binders, vitamin D or vita-
min D analogues.

Although logical, the direct relationship between arterial
calcification and arterial stiffness has recently been chal-
lenged [14,15]. The aim of the present study is to evaluate
the impact of acute modification of calcaemia, within the

physiological range, on arterial stiffness, as evaluated by
PWV, and on the central pulse wave profile (cPWP) in a
HD population. In this experimental protocol, each subject
underwent three experimental HD sessions with random
allocation of DCa of 1.00, 1.25 or 1.50 mmol/L.

Subjects and methods

Study design and patient population

This study took place at the Centre Hospitalier Universitaire de
Québec—L’ Hôtel-Dieu de Québec Hospital, over a 7-month period in
2007. This was a Latin square cross-over study using three different con-
centrations of DCa for the second HD of the week for 3 consecutive weeks.
Subjects returned to their baseline DCa for the following two treatments,
allowing for a 7-day washout period between each experimental HD. Each
subject was randomly assigned to one of the three different sequences
of DCa: sequence 1 (DCa of 1.00, 1.25, 1.50 mmol/L), sequence 2 (DCa
of 1.25, 1.50 and 1.00 mmol/L) and sequence 3 (DCa of 1.50, 1.00 and
1.25 mmol/L). No other parameters of the HD prescription or medication
were modified during these 3 weeks. Baseline and post-HD measurements
of arterial haemodynamic and biochemical parameters were obtained just
prior to the beginning and after termination of experimental HD. The
study protocol was approved by the ethics committee of the institution and
written consent was obtained from all study participants.

Patients were included if they were 18 years or older, were on chronic
HD for more than 3 months with stable dry weight and BP, stable doses
of antihypertensive medications and phosphate binders and without any
changes in dialysis prescription over the preceding month. Patients were
excluded if they had any clinical conditions that would hamper pre- or
post-dialysis haemodynamic measurements such as arterial fibrillation,
multiple intradialytic hypotensive episodes, severe vascular disease or
interdialytic weight gain of >5% of total body weight. Patients with a
history of parathyroidectomy or PTH levels of >800 ng/L were also ex-
cluded. Twenty-one chronic HD patients were enrolled. Three were ex-
cluded because of hypotension (n = 1), need to change blood pressure
(BP) medication (n = 1) and withdrawal of consent (n = 1). Eighteen
patients completed the study. HD was performed 3-times weekly with a
filter of 2.1 m2 surface area, a dialysis duration of 3–4 h per session and a
blood flow of 350–400 mL/min. A bicarbonate-based buffer dialysis solu-
tion was used with sodium concentrations of 138–142 mmol/L, potassium
concentrations of 1–4 mmol/L and a dialysate flow rate of 500–750 mL/
min. The causes of CKD were glomerulonephritis (n = 4), diabetic
nephropathy (n = 2), obstructive nephropathy (n = 4), interstitial nephritis
(n = 4), hypertensive nephroangiosclerosis (n = 2) and unknown (n = 2).
Patients suffered from hypertension (n = 14), atherosclerotic coronary
disease (n = 4) and peripheral atherosclerotic vascular disease (n = 1).
One had had a stroke and three had type 2 diabetes. The patients used
ACE inhibitors (n = 5), calcium-channel blockers (n = 10), AT1 receptor
blockers (n = 5), β-blockers (n = 6), central antihypertensive agents (n =
3), antiarrhythmics (n = 1) and α1-receptor antagonist (n = 1). Eight
patients took a mean of 6.25 tablets of sevelamer HCl (800 mg) daily, and
15 patients took a mean of 2.5 tablets of oral calcium carbonate (500 mg)
daily.

Haemodynamic measurements

The patient was positioned in the supine position and allowed to rest for
15 min prior to their haemodynamic measurements. Brachial artery BP
was recorded using an automatic sphygmomanometer BPM-100 (BP-Tru,
Coquitlam, Canada). BP was recorded six times, with a 2-min interval
between each measurement, and the average of the last five measurements
was used to determine the brachial systolic and diastolic blood pressure
(SBP) (DBP) [16].

The radial pulse wave profile (rPWP) was recorded by applanation
tonometry using the SphygmoCor system R© (AtCor Medical Pty. Ltd, Syd-
ney, Australia). The tonometer probe was positioned over the radial artery,
and a recording of rPWP was obtained for a 10-s period. The rPWP was
recalibrated with the systolic and diastolic brachial BP. Three consecutive
recordings were performed. A cPWP was then derived from the rPWP
using a generalized transfer function as previously validated [17]. Central
SBP, DBP, mean BP (MBP), PP and the time of return of the reflected wave
(Tr) were derived. Pressure and time of first peak (P1 and T1) and second
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Table 1. Biochemical and haemodynamic parameters

DCa (mmol/L) Repeated measures ANOVA Linear contrast

1.00 1.25 Ca × HD Ca HD HD × Ca HD × Ca

iCa (mmol/L)
Pre-HD 1.17 ± 0.05 1.16 ± 0.05 1.17 ± 0.06 <0.001 0.09 <0.001 <0.001
Post-HD � −0.14 ± 0.04 −0.02 ± 0.05 0.10 ± 0.06

PTH
Pre-HD 223 ± 170 220 ± 150 199 ± 145 <0.001 0.68 <0.001 <0.001
Post-HD � 237 ± 196 49 ± 205 −104 ± 103

Brachial SBP (mmHg)
Pre-HD 129 ± 18 125 ± 16 130 ± 19 0.003 0.29 0.001 0.001
Post-HD � −10 ± 19 −5 ± 15 3 ± 14

Brachial DBP (mmHg)
Pre-HD 79 ± 9 79 ± 11 79 ± 11 0.03 0.75 0.005 0.014
Post-HD � −2 ± 9 −3 ± 11 4 ± 8

Heart rate (b.p.m.)
Pre-HD 70 ± 12 70 ± 17 69 ± 10 0.20 0.74 0.46 0.28
Post-HD � 2 ± 13 0.4 ± 8 −0.7 ± 7

c-f PWV (m/s)
Pre-HD 11.6 ± 3.1 11 ± 1.8 11 ± 2.7 0.84 0.17 0.001 <0.001
Post-HD � −0.8 ± 1.4 0.9 ± 1.9 0.8 ± 0.9

c-r PWV (m/s)
Pre-HD 10.3 ± 1.9 9.8 ± 1.6 9.8 ± 1.7 0.87 0.003 0.028 0.008
Post-HD � 0.16 ± 1.3 0.99 ± 1.4 1.2 ± 1.4

DCa, dialysate calcium concentration; iCa, ionized calcium; PTH, parathyroid hormone; SBP, systolic blood pressure; DBP, diastolic blood pressure;
c-f PWV, carotido-femoral pulse wave velocity; c-r PWV, carotido-radial pulse wave velocity.

peak (P2 and T2), and central augmented pressure (AP) were obtained.
Central augmentation index (AIx) was computed (AP = P2−P1; AIx =
(AP/PP) × 100) and corrected for a heart rate of 75 beats/minute. The
mean cPWP for the entire group under each pre- and post-HD with vary-
ing calcium concentration was then constructed as a method to visually
assess the modification of cPWP under each experimental HD. This was
performed by computing group mean DBP, pressure at the end of systole
(ESP), pressure of the first and second pressure peak and their respective
timing, Tr and duration of cardiac cycle in pre- and post-HD.

Assessment of PWV was made using Complior R© SP (Artech Medical,
Pantin, France). We first recorded the carotido-radial (c-r) PWV by po-
sitioning one sensor over the radial artery and a second sensor over the
carotid artery. The distance between the two sensors was measured with
a measuring tape, and three consecutive recordings of both pulse wave-
forms were performed (8–10 heart beats for each recording). The Complior
software automatically detected the foot of each pulse waveform from the
two arterial sites and then measured the mean distance between the two
feet as being the travel time of the wave. PWV was then computed using
the following formula: PWV = travel distance/travel time, as previously
validated [18]. C-f PWV was also determined using the same technique
but positioning the second sensor on the femoral artery.

Biochemical measurements

Blood samples were obtained immediately before the start of each experi-
mental HD session and at the end of each of these sessions. Ionized calcium
(iCa), intact parathyroid hormone (PTH) and albumin were monitored. iCa
was measured with an ion-selective electrode on a Nova PhoxPlus anal-
yser. Intact PTH (1–84) was measured with the PTH stat assay from Roche
diagnostics using two antibodies reactive with epitopes in the amino acid
regions 26–32 and 37–42.

Data analysis

Data analysis was performed using the SPSS software (version 16.0 for
Windows, SPSS Inc., Chicago, IL, USA). Data were expressed as means ±
SD. To study the effect of HD, DCa and HD–DCa interaction on biochem-
ical and haemodynamic variables, we used general linear model two-way
analysis of variance for repeated measures. Sphericity was verified by
Mauchly’s test of sphericity, and in the case of sphericity deviation, the

P-value was corrected according to the Greenhouse–Geisser epsilon coef-
ficient for probability adjustment. This procedure was followed by a poly-
nomial within-subject linear contrast to study the linearity between DCa
and post-HD variation of biochemical and haemodynamic parameters. A
general linear mixed model showed no significant sequence or carryover
effects on haemodynamic parameters. To account for repeated observa-
tions, the general linear-mixed model was used to study the determinants
of relative changes of c-f PWV, c-r PWV, AIx and Tr by entering ultrafil-
tration, �heart rate, �MBP and �iCa and log of PTH ratio as covariates.
Bonferroni correction was used for multiple comparisons between treat-
ment groups when appropriate. A P-value of <0.05 was considered to be
statistically significant.

Results

Eighteen patients with a mean age of 48.9 ± 18 years and
a median duration of chronic HD of 8.7 months (range 1–
87 months) completed the study. The participants included
5 women and 13 men. Baseline DCa were 1.00 mmol/L
(n = 1), 1.25 mmol/L (n = 11) and 1.50 mmol/L (n =
6). Pre-HD levels of PTH, iCa, BP, c-r PWV, c-f PWV,
AIx and Tr were not significantly different between each
experimental HD session. The average ultrafiltration was
2.0 ± 1.0 L, 1.9 ± 1.1 L and 2.1 ± 1.1 L for DCa of 1.00,
1.25 and 1.50 mmol/L, respectively (P = 0.78 for repeated
measures ANOVA). There were no significant effects of
sequence on the extent of haemodynamic and biochemical
parameters. Therefore, the residual effects of the previous
DCa of one experimental HD session were considered to be
negligible on the subsequent experimental HD.

A two-way analysis of variance for repeated measures
was conducted to study the effects of HD, DCa and HD–
DCa interaction on biochemical and haemodynamic vari-
able. The results are presented in Tables 1 and 2.
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Table 2. Central pulse wave profile parameters

DCa (mmol/L) Repeated measures ANOVA Linear contrast

1.00 1.25 1.50 Ca HD Ca × HD Ca × HD

SBP (mmHg)
Pre-HD 120 ± 19 115 ± 15 120 ± 18 0.003 0.15 0.006 0.001
Post-HD � −10 ± 21 −7 ± 16 0.8 ± 15

DBP (mmHg)
Pre-HD 80 ± 10 80 ± 11 80 ± 11 0.024 0.71 0.007 0.018
Post-HD � −2 ± 9 −3 ± 11 3 ± 8

MBP (mmHg)
Pre-HD 97 ± 12 95 ± 12 97 ± 12 0.003 0.229 0.001 0.002
Post-HD � −6 ± 11 −5 ± 13 2 ± 10

ESP (mmHg)
Pre-HD 108 ± 16 105 ± 14 109 ± 16 0.002 0.59 0.001 0.001
Post-HD � −6 ± 17 −4 ± 15 5 ± 13

ED (ms)
Pre-HD 320 ± 20 317 ± 17 320 ± 19 0.75 <0.001 0.98 0.97
Post-HD � −49 ± 37 −48 ± 31 −49 ± 27

AIx (%)
Pre-HD 22 ± 10 22 ± 9 22 ± 9 0.51 0.004 0.73 0.97
Post-HD � −8 ± 14 −9 ± 11 −8 ± 11

Tr (ms)
Pre-HD 143 ± 11 145 ± 13 144 ± 12 0.10 <0.001 0.093 0.044
Post-HD � −4 ± 8 −6 ± 5 −9 ± 6

Pre-HD, pre-haemodialysis value; post-HD�, absolute post-dialysis variation of each parameter; DCa, dialysate calcium concentration; SBP, systolic
blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; ESP, end systolic pressure; ED, ejection duration; AIx, heart augmentation
index; Tr, time to the start of the reflected wave.

Biochemical parameters

HD per se had no significant effect on the levels of iCa
and PTH. DCa and HD–DCa interaction were statistically
significant for iCa and PTH (Table 1).

Arterial stiffness

HD was associated with the post-HD increase in c-r PWV
(P = 0.003). DCa had a significant effect on systolic and
diastolic BP (P = 0.003 and P = 0.03, respectively). There
was a significant relationship between DCa and post-HD
�c-f PWV and �c-r PWV (P = 0.001 and P = 0.028
for HD–DCa interaction). In addition, the tests of within-
subject contrast showed a linear effect of DCa on post-HD
�c-f PWV and �c-r PWV (P < 0.001 and P = 0.008,
respectively).

Central pulse wave profile

Table 2 shows the effects of HD, DCa and HD–DCa in-
teraction on central haemodynamic parameters as derived
from cPWP. HD was associated with the post-HD reduc-
tion in heart rate adjusted AIx (P = 0.004), ejection duration
(P < 0.001) and Tr (P < 0.001). DCa had a significant effect
on central SBP (P = 0.003), DBP (P = 0.024), MBP (P =
0.003) and ESP (P = 0.002). The HD–DCa interaction was
statistically significant for central SBP (P = 0.006), DBP
(P = 0.007), MBP (P = 0.001) and ESP (P = 0.001).

A representative example of a cPWP from a middle-age
patient suffering from CKD, as derived from the radial PWP,
is presented in Figure 1. Using the average BP at various
time points of cPWP, we constructed a pre- and post-HD

Fig. 1. Central pulse wave profile. The central pulse wave profile can be
broken into the following parameters: first peak of pressure (P1), second
peak of pressure (P2), time at P1 (T1), time at P2 (T2), time of return of
the reflection wave (Tr), diastolic blood pressure (DBP), systolic blood
pressure (SBP), pulse pressure (PP).

mean cPWP for the sample population under each experi-
mental HD (Figure 2). The use of DCa of 1.25 mmol/L did
not affect any of the pressures. The tests of within-subject
linear contrast showed a statistically significant effect of
DCa on post-HD �DBP, �P1, �P2, �ESP, �mean pressure
of diastole, �T1 and �Tr (P < 0.05). However, no rela-
tionship was observed between DCa and post-HD changes
in T2, ejection duration and heart rate.

Determinants of haemodynamic variation

In a multivariate linear-mixed model for repeated measures,
the percentage increase in c-f PWV and c-r PWV was
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Fig. 2. Mean pre- and post-haemodialysis central pressure waveform.
Using the mean pressure points at corresponding time points of each
patient (n = 18), the group’s central pulse wave profile (cPWP) was
constructed for each treatment group. The solid line and dotted lines
indicate the pre- and post-HD cPWP, respectively. The top, middle and
lower panels, respectively, refer to dialysate calcium concentrations of
1.00, 1.25 and 1.50 mmol/L.

significantly associated with the increasing level of iCa,
whereas the changes in the level of MBP were not sig-
nificant (Table 3). However, the percentage decrease in Tr
(earlier wave reflection) was determined mainly by higher
�MBP and higher degree of ultrafiltration. The relative

Table 3. Determinants of variation in arterial stiffness and wave reflection

Estimates of fixed effects

Estimate (95% confidence interval) P-value

%� c-f PWV
�iCa (mmol/L) 0.566 (0.018–1.114) 0.043
�MBP (mmHg) 0.002 (−0.002–0.006) 0.279

%� c-r PWV
�iCa (mmol/L) 0.654 (0.063–1.247) 0.031
�MBP (mmHg) 0.003 (−0.001–0.007) 0.131

%� Tr
�MBP (mmHg) −0.001 (−0.002–0.0008) 0.013
UF (L) −0.012 (−0.023 to −0.0003) 0.045

%� AIx
�MBP (mmHg) 0.597 (0.382–0.812) <0.001
�HR (b.p.m.) −0.420 (−0.660 to −0.179) 0.001

Linear-mixed model for repeated measure.
Covariates in the model include ultrafiltration (UF), changes in the heart
rate (�HR), ionized calcium (�iCa), mean blood pressure (�MBP) and
parathyroid hormone levels.

change in AIx was inversely determined by the variation in
the heart rate and directly with �MBP.

Discussion

In this study, we evaluated acute changes in arterial stiffness
and cPWP during 3 HD sessions differing only by the Dca
that ranged from 1.00 to 1.50 mmol/L, thereby modulating
serum iCa concentrations within the physiological range.
Our results show that a rise in serum iCa during one HD
session, even within the physiological range of calcaemia,
is associated with an increase in PWV of both muscular and
elastic type arteries. In addition, higher levels of calcaemia
were associated with a lesser decrease in post-HD central
BP and a more rapid return of the reflected wave (earlier
Tr) without any significant change in AIx. Our findings are
in keeping with previous studies comparing the haemody-
namic effects of Dca of 1.25 and 1.75 mmol/L. However,
in light of growing concern regarding positive calcium bal-
ance, the Dca of 1.75 mmol/L is no longer recommended for
standard three times weekly dialysis sessions [19]. There-
fore, there was a need to evaluate the haemodynamic effects
of the presently used DCa.

PWV is an established method of evaluating segmental
arterial stiffness and has repeatedly been associated with
clinical outcomes, especially in a HD population [20,21].
The acute changes of PWV in our study, however, were
transitory and so are believed to be functional changes as
it is highly unlikely that they would induce acute struc-
tural changes. They are most likely the result of variation in
vascular smooth muscle cell (VSMC) tone that is highly de-
pendent on the extracellular calcium concentration. Earlier
Tr could be explained by either an increase in PWV and/or
proximalization of the reflection sites. However, using a
linear-mixed model, we found no significant association
between the degree of increase in either c-rPWV or c-f
PWV and the degree of earlier wave reflection. Therefore,
it seems reasonable to assume that the proximalization of
arterial reflection sites is a greater determinant of earlier



Dialysis calcium and arterial stiffness 3793

wave reflection in this experimental study. The proximal-
ization of arterial reflection sites is also thought to result
from enhanced vascular tone, which leads to a greater re-
duction in the lumen of the branching arteries. The fact that
an earlier return of the wave reflection is positively associ-
ated with the degree of ultrafiltration during the HD session
is in keeping with this hypothesis. In this study, AIx seems
to be more influenced by variation in heart rate and MBP
than by the change in calcaemia. In fact, AIx is known to
be influenced by factors such as reflection sites, reflection
coefficient and heart rate, therefore limiting its utility as a
reliable marker of arterial stiffness [22,23].

Marchais et al. [24] have previously shown an increase in
both aortic and brancial PWVs with a DCa of 1.75 mmol/L,
but not with a DCa of 1.5 mmol/L. In addition, Kyriazis
et al. [25] found an increase in stiffness index after one
HD with Dca of 1.75 mmol/L as evaluated by digital pulse
volume, and Yoo et al. [26] observed an increase in carotid
compliance after switching from Dca of 1.75 to a Dca of
1.25 mmol/L for eight consecutive HD sessions. After
switching form a DCa of 1.75 to 1.25 mmol/L even for only
one HD session, some investigators have shown a signifi-
cant decrease in peripherial BP [27,28]. In contrast, Kyriazis
et al. [29] failed to confirm these observations with only
one HD session although they observed a reduction in PP
and MBP after switching from Dca 1.75 to 1.25 mmol/L for
10 consecutive HD sessions. There is compelling evidence
to support that high extracellular calcium concentrations
could induce arterial vasoconstriction in humans [30]. How-
ever, higher dialysate calcium concentrations have also been
shown to increase cardiac contractility, potentially leading
to a higher BP and different pulse profile through increased
cardiac output [27,28,31]. In the present study, higher DCa
was associated with a higher P1 and an earlier T1, suggest-
ing an increase in myocardial contractility within this range
of DCa. The only potential influence of cardiac contractility
on arterial PWV could be mediated through the degree of
change in arterial MBP. However, in multivariate analysis,
the degree of change in the iCa concentration was the only
significant determinant of relative change in c-r PWV and
c-f PWV.

The haemodynamic changes that were observed in our
study may not be solely attributed to the direct effects of
iCa on the cardiovascular system. Since iCa has an acute
effect on PTH concentrations, it may be possible that at least
some of the effect could be mediated through the actions
of PTH. Indeed, based on animal experiments, it has been
suggested that acute PTH administration can result in the
reduction of BP [32]. In this regard, PTH may act directly as
a vasorelaxant on VSMC via cAMP-dependent inhibition
of L-type Ca++ channel currents [33]. It could be argued
that in our study, the suppression of PTH by the acute rise in
serum calcium concentration could play a significant role in
the rise of BP. However, in multivariate analysis, the change
in the PTH level was not significantly related to changes in
arterial PWV.

In conclusion, this study showed that Dca and acute
changes in the serum iCa concentration, even within phys-
iological range, are associated with detectable changes in
arterial stiffness of both elastic (c-f segment) and muscular-
type arteries (c-r segment), and in the PWP of the aorta.

More studies are needed to evaluate the consequences of
these repetitive effects on the long-term function and struc-
ture of arteries in the uraemic milieu.
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Abstract
Background. Sevelamer carbonate is an improved,
buffered form of sevelamer hydrochloride developed for the
treatment of hyperphosphataemia in CKD patients. Seve-
lamer carbonate formulated as a powder for oral suspension
presents a novel, patient-friendly alternative to tablet phos-
phate binders. This study compared the safety and efficacy
of sevelamer carbonate powder with sevelamer hydrochlo-
ride tablets in CKD patients on haemodialysis.
Methods. This was a multi-centre, open-label, random-
ized, crossover design study. Thirty-one haemodialysis pa-
tients were randomly assigned to either sevelamer carbonate

powder or sevelamer hydrochloride tablets for 4 weeks fol-
lowed by a crossover to the other regimen for an additional
4 weeks.
Results. The mean serum phosphorus was 1.6 ±
0.5 mmol/L (5.0 ± 1.5 mg/dL) during sevelamer carbonate
powder treatment and 1.7 ± 0.4 mmol/L (5.2 ± 1.1 mg/dL)
during sevelamer hydrochloride tablet treatment. Sevelamer
carbonate powder and sevelamer hydrochloride tablets are
equivalent in controlling serum phosphorus; the geometric
least square mean ratio was 0.95 (90% CI 0.87–1.03). No
statistically significant or clinically meaningful differences
were observed in calcium × phosphorus product and lipid
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