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Unobserved confounding can seldom be ruled out with certainty in nonexperimental studies. Negative controls

are sometimes used in epidemiologic practice to detect the presence of unobserved confounding. An outcome is

said to be a valid negative control variable to the extent that it is influenced by unobserved confounders of the ex-

posure effects on the outcome in view, although not directly influenced by the exposure. Thus, a negative control

outcome found to be empirically associated with the exposure after adjustment for observed confounders indicates

that unobserved confounding may be present. In this paper, we go beyond the use of control outcomes to detect

possible unobserved confounding and propose to use control outcomes in a simple but formal counterfactual-

based approach to correct causal effect estimates for bias due to unobserved confounding. The proposed control

outcome calibration approach is developed in the context of a continuous or binary outcome, and the control out-

come and the exposure can be discrete or continuous. A sensitivity analysis technique is also developed, which can

be used to assess the degree to which a violation of the main identifying assumption of the control outcome cali-

bration approach might impact inference about the effect of the exposure on the outcome in view.

bias; case-control study; counterfactual; negative control outcome; observational study; unobserved confounding

Abbreviations: COCA, control outcome calibration approach; ETT, effect of treatment on the treated; OLS, ordinary least squares.

Unobserved confounding is a well-known threat to valid
causal inference, which can seldom be ruled out with cer-
tainty in an observational study. An approach that is some-
times used in epidemiologic practice to evaluate whether
empirical results are subject to confounding bias entails eval-
uating whether the treatment or exposure in view is associated
with a so-called negative control outcome upon adjustment
for observed confounders (1–4). An outcome is said to be a
valid negative control variable to the extent that it is influ-
enced by unobserved confounders of the exposure effects
on the outcome in view, although not directly influenced
by the exposure (3). Thus, a negative control outcome
found to be empirically associated with the exposure indi-
cates that unobserved confounding may be present for the pri-
mary outcome provided that, upon adjustment for observed
covariates, there is no unobserved confounder of the nega-
tive control outcome that does not also confound the primary
outcome (3).

Suppose that in an application, a negative control outcome
is found to be associated with the treatment in view, thus cor-
rectly indicating the presence of unobserved confounding.
Then, it may seem natural to consider the observed associa-
tion between the exposure and the control outcome as an es-
timate of bias due to unmeasured confounding, and one may
be tempted to simply correct the confounded estimate of the
exposure-outcome association by subtracting the estimated
bias. Although this ad hoc bias correction approach may
sometimes be appropriate, it often is not. A difficulty with
the approach is that it relies on the key assumption that the
bias observed for the negative control outcome is somehow
equivalent to the bias one would have observed between
the exposure and the primary outcome under the null hypoth-
esis of no causal effect of the exposure. A natural prerequisite
for this “bias equivalence” assumption is that the outcomes
are measured on comparable scales, which would be the
case if, for example, the control outcome was a preexposure
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measure of the outcome process. However, outside of this
special case, the assumption may not be appropriate if the
outcomes are clearly measured on different scales, such as,
for example, if the negative control outcome were dichoto-
mous and the primary outcome were continuous. The as-
sumption would then likely be violated because an additive
association of the exposure with the control outcome would
a priori be restricted by the binary nature of the outcome,
whereas the additive association of the outcome in view
with the exposure would not.
In this paper, we propose to use control outcomes in a sim-

ple but formal counterfactual or potential outcome–based
approach to correct causal effect estimates for bias due to un-
observed confounding, while avoiding the above assumption
of bias equivalence. The proposed control outcome calibra-
tion approach (COCA) is motivated by noting that the ulti-
mate set of unobserved confounders in an analysis relating
the exposure to the primary outcome entails the set of coun-
terfactuals for the outcome of interest under all possible treat-
ment values. This is because conditioning on the set of
counterfactuals for the primary outcome renders the latter
constant and, thus, independent of the treatment assignment,
a sufficient requirement for identification of a causal effect of
treatment on the outcome. Furthermore, when, as we have as-
sumed, there is no unobserved confounder of the treatment
effect on the control outcome that does not confound the
treatment effect on the primary outcome, it is natural to ex-
pect that the set of the observed covariates together with
the counterfactuals for the primary outcome under all possi-
ble treatment values also suffices to identify the effects of
treatment on the control outcome. This is the fundamental as-
sumption made when using the COCA. In the context of a
negative control outcome, the COCA produces an effect es-
timate of the association between treatment and the primary
outcome under an assumed causal model. This effect estimate
is obtained upon calibrating the parameters of the causal
model so that the set of all counterfactuals for the primary
outcome recovered from the observed data under the cali-
brated model suffices, together with the observed covariates,
to fully adjust for confounding in a regression analysis for the
negative control outcome and correctly recovers the null as-
sociation between the exposure and the control outcome. The
COCA is separately developed for a continuous outcome and
a binary outcome, and the control outcome and the exposure
in view can be either binary, a count, or continuous. Finally, a
sensitivity analysis technique is developed in the Appendix to
assess the extent to which a violation of the main identifying
assumption of the COCAmight affect inference about the ef-
fect of the exposure on the outcome in view.

THE COCA FOR ADDITIVE CAUSAL EFFECTS

We introduce the notation and definitions we will be using
throughout. Let A denote the exposure or treatment received
by an individual, let Y denote a posttreatment outcome, and
let C denote the value of a set of observed preexposure con-
founding variables of the effects of A on Y. LetU denote a set
of unmeasured preexposure confounders of the effects of A.
Let Z denote a negative control outcome variable. Then, the

relationships between these variables may be depicted as in
the causal diagram in Figure 1.
Figure 1 gives a graphical representation of the assumption

that adjustment for both C andUwould suffice to account for
confounding of the causal effects of A on Y and on Z, respec-
tively. The variables U1 and U2 on the graph represent the
possible presence of unobserved factors that correlate U
with A and Y with Z, respectively. Formally, this graph is a
causal directed acyclic graph representing the observed vari-
ables together with both observed and unobserved common
causes. As shown in Figure 1, Z is an ideal negative control
outcome because it is not directly influenced by exposure, but
it is influenced by the unmeasured confounders of the
exposure-outcome association (3).
We also consider counterfactuals or potential outcomes

under possible interventions on the treatment. Let Ya denote
a subject’s outcome if treatment Awere set, possibly contrary
to fact, to a. Also, let Za denote a subject’s counterfactual
value for Z if Awere set to a. By assumption, Za = Z, a = 0,1,
for a negative control outcome and, by the consistency as-
sumption usually made in the causal inference literature,
Ya = Y if A = a. The assumption encoded in Figure 1, that
{U, C} suffices to account for confounding of the causal as-
sociations between A and Y and between A and Z, respec-
tively, is equally expressed using counterfactuals

Ya ⊥⊥ AjfC;Ug and ð1Þ
Za ⊥⊥ AjfC;Ug; a ¼ 0,1: ð2Þ

Note that U is an unobserved confounder for the effects of A
on Y in the sense that, although equation 1 is satisfied, it is
also the case that

Ya 6⊥⊥ AjC; a ¼ 0,1;

so that C alone does not suffice to adjust for confounding,
whereas {U, C} does.
Focusing on negative control outcomes, one may formal-

ize its definition as follows.
Definition 1. Z is said to be a negative control outcome if

Za ¼ Z for all individuals, and

Z 6⊥⊥ AjC , Ya 6⊥⊥ AjC for all a.

Definition 1 formalizes the idea that the exposure–negative
control outcome association cannot be confounded by a

Y U C 

Z 

A 

U1 

U2  

Figure 1. Causal diagram depicting unmeasured confounding of the
A−Y association and the negative control outcome Z, where A repre-
sents exposure; Y represents outcome;U,U1, andU2 represent unob-
served confounders; and C represents observed confounders.
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variable that does not also confound the exposure-outcome
association. Although this assumption may suffice to detect
the presence of unobserved confounding, it does not suffice
to identify the causal effect of A on Y. To make progress, we
make an additional identifying assumption, depicted in the
graph in Figure 2, which is similar but more elaborate than
the graph in Figure 1, and which encodes the following
assumption.

Assumption 1: Let YA = {Ya : a∈A} denote the set of all
counterfactuals for the primary outcome under all possible
values of treatment in the set A. Then, the treatment assign-
ment is independent of Za conditional on {C, YA}, or

Z ¼ Za ⊥⊥ AjfC;YAg:
Assumption 1 states that, even though C may not suffice to
account for unobserved confounding to make correct infer-
ences about the relation between A and Z, that is,

Z ¼ Za 6⊥⊥ AjC;
enriching the adjustment set of covariates with the setYA suf-
fices to adjust for confounding. Note that in Figure 2, U rep-
resents unobserved predictors of the outcomes, whereas W
represents unobserved factors that may have influenced treat-
ment selection. Our causal model encodes an assumption that
these 2 factors are independent conditional on (Y0, Y1, C) and
not otherwise. Thus, if observed, (W, C) and (U, C) would
also suffice to account for confounding of the A − Y and
A− Z associations, respectively. An intuitive explanation of
assumption 1 is obtained upon noting that, when A is binary,
Y0 and Y1 can be viewed as baseline covariates that capture
all relevant information about an individual’s health status
prior to treatment assignment; thus, such variables are ideal
proxy measures of unobserved factors that may influence
treatment selection (i.e., W) and unobserved risk factors of
the outcomes (i.e., U).

To further ground ideas, it is helpful to consider the familiar
context of a point exposure study with A binary and where we
assume that the observed data (Y, Z, A, C) follow the model

Z ¼ g1ðU;CÞ; ð3Þ
A ¼ g2ðW;CÞ; and ð4Þ
Y ¼ Y0 þ ψ0A: ð5Þ

This model is consistent with the graph depicted in Figure 2.
The variables (U,W) are not observed, and under the consis-
tency assumption Y = YA, so that Ya is observed only for per-
sons with A = a, and Y1−A remains unobserved. The model
allows the relation between (U,C) and Z encoded by the func-
tion g1 to remain unrestricted and encodes the fact that A does
not directly influence Z. Likewise, the model allows the rela-
tion between (W, C) and A encoded by the function g2 to re-
main unrestricted. The parameter

ψ0 ¼ Y1 � Y0

encodes a constant additive individual causal effect of A on Y.
This is a strong assumption because it implies so-called rank-
preservation of individuals’ counterfactuals under treatment
versus control conditions. The assumption can be relaxed
somewhat by incorporating interactions of A with compo-
nents of C, and the assumption can be dropped entirely for
binary outcomes, as we later demonstrate. The model is con-
sistent with the graph in Figure 2, because Ya 6⊥⊥ AjC; and
therefore, the effect of A on Y is confounded due to depen-
dence between Ya, U, and W, even if one conditions on C.
Note that although the model specifies an additive causal ef-
fect, the relation between Y0 and (A, Z, C) is otherwise
unrestricted.

To describe the COCA, let Y(ψ) = Y − ψA, and note that
Y0 = Y(ψ0) and Y1 = Y(ψ0) + ψ0. Further note that under the
model, conditioning on Y0 is equivalent to conditioning on
the set YA = {Y0, Y1}, because the 2 counterfactuals in the
set are deterministically related. This, in turn, implies that
under assumption 1,

Z ⊥⊥ AjfC; YðψÞg

if and only if ψ = ψ0. This is the key insight by which the
COCA identifies ψ0. A regression-based approach to imple-
ment the COCA then entails searching for the parameter ψ
such that

EðZjA;C; YðψÞÞ ¼ EðZjC; YðψÞÞ: ð6Þ

For example, a simple implementation of the approach uses
linear models, whereby for each value of ψ, one obtains an
estimate of the regression model by using ordinary least
squares (OLS).

EðZjA;C; YðψÞÞ ¼ β1 þ β02C þ β3YðψÞ þ β4A; ð7Þ

with estimated coefficients ðβ̂1ðψÞ; β̂2ðψÞ; β̂4ðψÞÞ. Then, a
95% confidence interval for ψ0 consists of all values of ψ
for which a valid test of the null hypothesis β̂4ðψÞ ¼ 0 fails
to reject at the 0.05 type 1 error level. The latter hypothesis
test may be performed by verifying whether the interval
β̂4ðψÞ± 1:96cSEðβ̂4ðψÞÞ contains 0, with cSEðβ̂4ðψÞÞ the
OLS estimate of the standard error (SE) of β̂4ðψÞ:An alterna-
tive, potentially simpler, approach is obtained by evaluating

YA{Y0,Y1}

U

W

C

Z

Figure 2. Causal diagram depicting unobserved confounding by U
andW and the negative control outcome Z, where A represents expo-
sure; Y represents outcome; U and W represent unobserved predic-
tors of Z and A, respectively; C represents observed confounders;
and {Y0, Y1} are counterfactual outcomes for different exposure
values.
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the regression model 7 at ψ0 under model 5,

EðZjA;C; Yðψ0ÞÞ ¼ EðZjC; Yðψ0ÞÞ
¼ β1 þ β̂02C þ β3Yðψ0Þ;
¼ β1 þ β̂02C þ β3Y þ β̂�4A

ð8Þ

where β̂�4 ¼ �β3ψ0; assuming that β3 ≠ 0. The parameter ψ0

is then identified by regressing Z on (C, Y, A) via OLS, which
produces the estimate ðβ̂1; β̂2; β̂3; β̂�4Þ and

ψ̂ ¼ �β̂�4=β̂3:

A corresponding variance estimate can be obtained by a
straightforward application of the delta method, giving

var(ψ̂) ¼ σ̂23
β̂23

� 2β̂�4
σ̂34
β̂33

þ β̂�24
σ̂24
β̂43

;

where

σ̂23 σ̂34
σ̂34 σ̂24

 !

is the OLS estimate of the variance covariance matrix of
ðβ̂3; β̂�4Þ0.
The first COCA strategy described in the previous para-

graph is quite general in the sense that the regression model
E(Z|A, C,Y(ψ)) can be estimated using any appropriate re-
gression approach, including any generalized linear model
with appropriate link function, say, the logit link or the log
link for binary or count Z, respectively. Furthermore, for a
given choice of model, a statistical test of the null hypothesis
displayed in equation 6 can be performed using a standard
likelihood ratio test, a score test, or a Wald test statistic, re-
gardless of the underlying functional form of the regression.
In principle, a more flexible model could be used to estimate
the left-hand side of equation 6, including nonlinear terms
and interactions to improve the fit of the model. Note also
that our choice of a constant additive causal model (model
5) is made mainly for convenience, and that the underlying
causal model can be easily modified to incorporate possible
effect heterogeneity with observed covariates. For instance,
model 5 can be replaced with Y = Y0 + (A, A ×C 0 )ψ0, thus in-
corporating effect modification of the causal effect of A on Y
with respect to C.
Note also that the simplified second COCA strategy de-

scribed above is tailored to the linear functional form of
both models 5 and 6. Although the models make some sim-
plifying assumptions, the approach reveals a simple strategy
to test and correct for unmeasured confounding using the
COCA under the foregoing formalization. Under the sharp
null of no causal effect of A on Y, that is, ψ0 = 0, a straightfor-
ward test of no unmeasured confounding then entails assess-
ing whether Z and A are additively associated conditional on
Y and C. This strategy is reasonable, because under the sharp
null, Y = Y0 is a proxy of unmeasured common causes of Y

and A and therefore, adjustment for Y in the regression of Z
on A essentially amounts to adjustment for unobserved con-
founding to the extent that Z is a valid negative control out-
come for the effects of A on Y. The COCA formalizes this
basic idea so that it may be used equally both under and
away from the sharp null hypothesis, that is, even when
ψ0 ≠ 0, by leveraging the causal model to recover the
proxy measure of unobserved confounding Y0 to use for ad-
justment in the negative control outcome regression model.
This essentially describes the COCA, which accomplishes
the above task by calibrating the causal model by varying the
value of ψ until confounding control based on Y(ψ) in the
control outcome regression is satisfactory.

DATA EXAMPLE: CHROMOSOME DAMAGE FROM

CONTAMINATED FISH

We use the proposed approach in a reanalysis for the pur-
pose of illustration of a simplified version of a study con-
ducted by Skerfving et al. (5) on the relation between
consumption of contaminated fish and chromosome damage.
The authors studied 23 subjects who had eaten large quanti-
ties of fish contaminated with methylmercury (A = 1). These
subjects lived in different areas in Sweden and included fish-
ermen, fishermen’s wives, workmen, farmers, and clerks.
Each of the 23 exposed subjects reported eating at least 3
meals a week of contaminated fish for more than 3 years.
The comparison group included 16 subjects who were ex-
posed to substantially lower amounts of contaminated fish
and who reported consuming less fish of all kinds (A = 0).
These subjects were from the Stockholm metropolitan area
and included clerks, craftsmen, porters, workmen, and a
glass washer. The 2 outcomes of primary interest consist of
the amount of mercury found in the person’s blood, recorded
in ng/g and log transformed for the analysis (Y), and the per-
cent of cells exhibiting a particular chromosome abnormality
called Cu cells (Y*). Although the original study considered a
variety of chromosome abnormalities, we proceed as in the
report by Rosenbaum (2), who focused on these particular
outcomes to illustrate the use of negative control outcomes
to detect the presence of unobserved confounding. The neg-
ative control outcome in this example consists of a count of
other health conditions experienced by each of the 39 sub-
jects enrolled in the study (Z). This composite outcome in-
cludes other diseases such as hypertension and asthma,
drugs taken regularly, diagnostic radiography over the previ-
ous 3 years, and viral diseases such as influenza. Although
these outcomes were observed during the period when ex-
posed individuals consumed contaminated fish, one does
not expect that eating fish contaminated with methylmercury
causes influenza or asthma or prompts radiography of the hip
or lumbar spine. We make the additional assumption 1 (with
C the empty set), and thus assume that Z may be used to de-
tect and correct for unobserved confounding for the associa-
tion between A and Y using the COCA. Referring back to
Figure 1, our assumption is thus that there is no unobserved
common cause of A, and any chronic condition used to define
Z that does not also confound the relation between fish con-
sumption and mercury in the blood Y, and thus Z, may
be used to account for unobserved confounding for the
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association between A and Y using the COCA. Similar as-
sumptions are made about Y*. For each outcome, we assume
the constant additive effect model 5, that is, Y = Y0 + ψ0A and
Y� ¼ Y�

0 þ ψ�
0A; so that ψ0 encodes the causal effect of A on

Y and likewise for ψ�
0: For the COCA, we assume events con-

tributing to the count Z are mutually independent and take Z
to be Poisson distributed with conditional mean

log EðZjA; Yðψ0ÞÞ ¼ β1 þ β3Yðψ0Þ
¼ β1 þ β3Y þ βy4A

where, as before, βy4 ¼ �β3ψ0: Thus, we compute the
COCA estimator ψ̂ ¼ �β̂y4=β̂3, where ðβ̂1; β̂3; β̂y4Þ is obtained
by maximum likelihood. For comparison, we also compute
the standard OLS estimator ~ψ of the linear (crude) association
between A and Y*. Similar models were used for Y*.

The OLS crude estimate of ψ0 was 2.77 for Y (95% confi-
dence interval: 2.26, 3.27), and was comparable to the COCA
estimate of 2.32 (95% confidence interval: 1.36, 3.28), thus
indicating little empirical evidence of unobserved confound-
ing. In contrast, the OLS crude estimate of ψ0 was 1.70 for Y*
(95% confidence interval: 0.426, 2.97) and was considerably
smaller than the COCA estimate of 4.14 (95% confidence in-
terval: 0.08, 8.19). The large difference between the COCA
estimate and the OLS estimate is suggestive of unobserved
confounding; however, the COCA estimate of the causal ef-
fect was also considerably more variable than the OLS esti-
mate. To formally assess whether the OLS and COCA
estimates are within sampling variability of each other, that
is, that there was no bias due to unobserved confounding,
we implemented a Hausman test (6), which entails comput-
ing a confidence interval for the limiting value of ψ̂ � ~ψ
using the simple formula

ψ̂ � ~ψ ± 1:96 × fσ̂2ðψ̂Þ � σ̂2ð~ψÞg1=2

and verifying whether 0 falls in the above interval as would
be consistent with the null hypothesis of no confounding,
where σ̂2ðψ̂Þ and σ̂2ð~ψÞ are consistent estimates of the asymp-
totic variance of ψ̂ and ~ψ; respectively (6). Note that, al-
though under the null hypothesis of no unobserved
confounding, σ̂2ðψ̂Þ � σ̂2ð~ψÞ converges to a positive number
with increasing sample size, it can be negative in the ob-
served finite sample or if the null hypothesis is false, in
which case its square root is not a real number. In such
cases, it is recommended to instead use the nonparametric
bootstrap approach to estimate the variance of ψ̂ � ~ψ: The
above 95% confidence intervals were (−0.36, 1.268) for Y,
indicating no statistically significant evidence of bias due to
unobserved confounding for the crude association between
consumption of contaminated fish and level of mercury in
the blood; and (−1.40, 6.28) for Y*, indicating no statistically
significant evidence of bias due to unobserved confounding
for the crude association between consumption of large quan-
tities of fish contaminated with methylmercury and percent
chromosome abnormality. In closing, we should note that
the foregoing analysis and its conclusions may dismiss un-
observed confounding by certain, but not all, hidden vari-
ables. Assumption 1 may not be entirely credible if, say, an

ingredient other than methylmercury in contaminated fish
caused the chromosomal abnormalities, or if lack of eating
meat by fish consumers were the culprit. This is because
the unobserved confounder may no longer be shared between
the outcome and the negative control outcome, so that the
negative control outcome would have no power to detect un-
observed confounding, let alone correct for it. The analysis
should be interpreted with caution, particularly because no
additional covariates C were available for adjustment,
which would have helped to make the identifying assumption
more credible.

THE COCA FOR A DICHOTOMOUS OUTCOME

The foregoing presentation focused primarily on settings
in which the outcome in view is continuous. Dichotomous
outcomes are also quite common in epidemiologic practice;
thus, in this section, we extend the COCA to the context of a
binary Y, and we present similar methodology to estimate the
effect of treatment on the treated (ETT),

ETT ¼ EðY1 � Y0jA ¼ 1Þ:

To proceed, one may note that the observed crude difference
E(Y = 1|A = 1)− E(Y|A = 0) is biased for the ETT, with

Bias ¼ EðY ¼ 1jA ¼ 1Þ � EðY jA ¼ 0Þ � EðY1 � Y0jA ¼ 1Þ
¼ PrðY0 ¼ 1jA ¼ 0Þ � PrðY0 ¼ 1jA ¼ 1Þ:

Therefore, to nonparametrically identify the ETT, one must
identify Pr(Y0 = 1|A = 1). Suppose that Z satisfies assumption
1, with A = {0}, that is,

Z ⊥⊥ AjfC; Y0g:

Under the assumption, the conditional mean E(Z|A) may be
written as

EðZjAÞ ¼ EðZjA; Y0 ¼ 1ÞPrðY0 ¼ 1jAÞ
þ EðZjA; Y0 ¼ 0ÞPrðY0 ¼ 0jAÞ

¼ EðZjA ¼ 0; Y ¼ 1ÞPrðY0 ¼ 1jAÞ
þ EðZjA ¼ 0; Y ¼ 0Þð1� PrðY0 ¼ 0jAÞÞ

¼ PrðY0 ¼ 1jAÞfEðZjA ¼ 0; Y ¼ 1Þ
� EðZjA ¼ 0; Y ¼ 0Þg
þ EðZjA ¼ 0; Y ¼ 0Þ;

which gives

PrðY0 ¼ 1jAÞ

¼ EðZjAÞ � EðZjA ¼ 0; Y ¼ 0Þ
EðZjA ¼ 0; Y ¼ 1Þ � EðZjA ¼ 0; Y ¼ 0Þ ; ð9Þ

provided that

EðZjA ¼ 0; Y ¼ 1Þ � EðZjA ¼ 0; Y ¼ 0Þ ≠ 0:
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Thus,

Bias ¼ PrðY ¼ 1jA ¼ 0Þ

� EðZjA ¼ 1Þ � EðZjA ¼ 0; Y ¼ 0Þ
EðZjA ¼ 0; Y ¼ 1Þ � EðZjA ¼ 0; Y ¼ 0Þ

and

ETT ¼ PrðY ¼ 1jA ¼ 1Þ

� EðZjA ¼ 1Þ � EðZjA ¼ 0; Y ¼ 0Þ
EðZjA ¼ 0; Y ¼ 1Þ � EðZjA ¼ 0; Y ¼ 0Þ :

The result states that Pr(Y0 = 1|A = 1) is nonparametrically
identified by the ratio of differences displayed in equation
9, and because Pr(Y1 = 1|A = 1) = Pr(Y = 1|A = 1) by the con-
sistency assumption, this in turn implies that the ETT is non-
parametrically identified. Note that Z can be either discrete or
continuous, and that the approach easily incorporates ob-
served confounders C. In fact, by following similar steps as
above, one can show that

ETTðcÞ¼EðY1�Y0jA¼ 1;cÞ
¼PrðY ¼ 1jA¼ 1;cÞ

� EðZjA¼ 1;cÞ�EðZjA¼ 0;Y ¼ 0;cÞ
EðZjA¼ 0;Y ¼ 1;cÞ�EðZjA¼ 0;Y ¼ 0;cÞ ; ð10Þ

and the marginal ETT is given by

ETT¼
X
c

ETTðcÞPrðcjA¼ 1Þ:

Estimation could then proceed by fitting using standard max-
imum likelihood, parametric models for Pr(Y = 1|A, C) and
E(Z|A,C) and plugging the latter into equation 10. A straight-
forward application of the delta method could be used to
obtain standard errors for the resulting estimator, or alterna-
tively, the nonparametric bootstrap could also be used.
Note that when C is not empty, one may also write

EðZjA ¼ 1; cÞ ¼ EðZjA ¼ 1; Y ¼ 1; cÞPrðY ¼ 1jA ¼ 1; cÞ
þ EðZjA ¼ 1; Y ¼ 0; cÞ
× f1� PrðY ¼ 1jA ¼ 1; cÞg; ð11Þ

which may be used to evaluate equation 10. This would sim-
plify estimation by allowing the analyst to fit separate regres-
sion models for E(Z|A, Y, C) and Pr(Y|A, C), say, standard
logistic regression models if Z and Y are both binary, which
are ensured not to conflict with a model for E(Z|A = 1, C) ob-
tained using equation 11. Inference for the causal risk ratio
parameter

γða; cÞ ¼ PrðYa ¼ 1jA ¼ 1; cÞ
PrðY0 ¼ 1jA ¼ 1; cÞ

or for the causal odds ratio parameter

γða; cÞ ¼ PrðYa ¼ 1jA ¼ 1; cÞPrðY0 ¼ 0jA ¼ 1; cÞ
PrðYa ¼ 0jA ¼ 1; cÞPrðY0 ¼ 1jA ¼ 1; cÞ

can likewise be obtained by simply using the above expres-
sion for Pr(Y0 = 1|A = 1, C) as a baseline risk in a standard
(multiplicative or logistic) regression model. To fix ideas,
suppose that γ(a, c) = ψ0a on a given scale (either risk ratio
or odds ratio scale), so that we assume that the effect of treat-
ment is constant in the treated across levels of c. Then, one
can estimate ψ0 by fitting the regression model

gfPrðYa ¼ 1jA¼ a; cÞg ¼ ψ0aþ gfPrðY0jA¼ a; cÞg; ð12Þ

where g is either the logit link function or the log link func-
tion, and Pr(Y0 = 1|A = a, c) is estimated by evaluating equa-
tion 9. The “no interaction” assumption is easily relaxed by
replacing the causal model with a model incorporating inter-
actions between A and C.
Case-control studies are quite common in epidemiologic

practice, and the COCA extends to this context but requires
some modification to appropriately account for the study de-
sign, which is provided in the Appendix.

DISCUSSION

Some degree of unobserved confounding is almost cer-
tainly present in most observational studies. For this reason,
it was recently argued that researchers should routinely sup-
plement the primary analysis of such observational studies
with some form of negative control outcome (or negative
control exposure) analysis to demonstrate that exposure ef-
fects known not to be present in the population are in fact
not observed in the study sample (1, 3). The extent to
which such an analysis may reveal unobserved confounding
bias relies on the non–empirically verifiable assumption that
the negative control outcome is carefully chosen so that it is
solely influenced by observed and unobserved confounders
of the exposure-outcome relation in view. Here, we propose
to use a negative control outcome not only to detect, but also
to correct for unmeasured confounding bias. Some analytical
strategies are described for continuous and binary outcomes,
under the assumption that the primary outcome that would be
observed were exposure widthheld in the population suffices
together with observed confounders to completely account
for confounding of the exposure–negative control outcome
association. We leverage this assumption to calibrate the
causal effect, so that the assumption is empirically met. A
sensitivity analysis technique is also described in the Appen-
dix, which allows one to assess the degree to which a viola-
tion of the main identifying assumption, assumption 1, could
alter the results.
Though a regression-based calibration approach is empha-

sized, in the context of a continuous outcome, in principle,
upon obtaining the proxy measure of unobserved confound-
ing, one could evaluate the adjusted association between
the exposure and the control outcome using alternative ap-
proaches to the regression approach taken here without
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additional difficulty, for example, propensity score methods
or doubly robust estimation (7–9).

Time-to-event outcomes are also common in epidemio-
logic practice, and the methods developed in this paper
can, in principle, be extended to allow for a censored
time-to-event outcome. For example, the standard rank pre-
serving structural accelerated failure time model (10) relates
the log event time to the treatment using an additive model of
the form given by model 5 and, therefore, the methodology
described herein immediately applies for this model. How-
ever, one would have to ensure that the negative control out-
come and the primary outcome are not competing risks, and
one would also need to appropriately account for censoring.
Similar methodology for the Cox proportional hazards model
(11) or for the Aalen additive hazards model (12) still needs
to be developed.

A positive control outcome can be defined for an outcome
with a well-established nonnull causal association with the
exposure, which is confounded in the observed sample by a
subset of unobserved confounders for the exposure effects on
the primary outcome. Positive control outcomes can, in a
manner similar to negative controls, be used to detect unob-
served confounding by verifying whether the known associ-
ation is replicated in the observed sample. The methods
described in this paper could be extended for use with posi-
tive control outcomes.

Negative control exposures are also quite common in epi-
demiologic practice (3, 13, 14). These are observed expo-
sures known not to causally influence the primary outcome.
It may be possible to also develop an approach similar to that
given in this paper to leverage negative control exposures to
correct for unobserved confounding bias. This will be inves-
tigated elsewhere.
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APPENDIX

Extension to case-control design

Case-control studies are quite common in epidemiologic practice, and COCA extends to this context but requires some mod-
ification to appropriately account for the study design. Thus, suppose cases (with Y = 1) and controls (with Y = 0) are obtained in a
population with rare disease rate, and let S denote the indicator of selection into the case-control sample. The case-control design
typically oversamples cases for more cost-effective and statistically efficient inference.We propose to estimate the causal effect of
A via case-control COCA for a logistic regression model of the form given by equation 12 in the main text, upon redefining Pr
(Y0 = 1|A = a, c) as Pr(Y0 = 1|A = a, c, S = 1), where

PrðY0 ¼ 1jA ¼ a; c; S ¼ 1Þ ¼
PrðY ¼ 1jA ¼ 0; c; S ¼ 1Þ ¼ EðZjA ¼ 0; S ¼ 1; cÞ � EðZjA ¼ 0; Y ¼ 0; cÞ

EðZjA ¼ 0; Y ¼ 1; cÞ � EðZjA ¼ 0; Y ¼ 0; cÞ if a ¼ 0

EðZjA ¼ 1; Y ¼ 0; cÞ � EðZjA ¼ 0; Y ¼ 0; cÞ
EðZjA ¼ 0; Y ¼ 1; cÞ � EðZjA ¼ 0; Y ¼ 0; cÞ if a ¼ 1:
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The key insight justifying the approach is that E(Z|A = 1,Y =
0, c) approximates E(Z|A = 1, c) under the rare disease as-
sumption, and therefore Pr(Y0 = 1|A = 1, c, S = 1) approxi-
mates Pr(Y0 = 1|A=a, c), which suffices for identification of
ψ, and furthermore, this is the case even though Pr(Y = 1|A =
0, c, S = 1) fails to identify Pr(Y = 1|A = 0, c). If the disease is
not rare in the target population but the sampling fraction for
cases and control is known, a straightforward application of
inverse-selection-probability-weighting COCA estimation
may be used to recover the correct population inference.

Sensitivity analysis for an imperfect negative control

Heretofore, we have assumed a perfect negative control
outcome is available, such that assumption 1 holds exactly
in the observed data. We now propose to relax this assump-
tion, in order to allow for the possibility thatYA may not fully
account for unobserved confounding between A and Z. This
could happen, say, if there was an unobserved common cause
of A and Z that does not also confound the relation between A
and Y. If this were the case, COCA as developed in previous
sections would fail to unbiasedly estimate the causal effect of
A on Y, even if all fitted models are correctly specified. To ad-
dress this potential issue, a sensitivity analysis approach is
proposed, which may be used to assess the extent to which
inference about the causal effect of A on Y may be altered
by a violation of assumption 1.
To describe the sensitivity analysis technique, suppose that

Y, A, and Z are continuous, and to simplify the exposition,
suppose that there are no covariates (i.e., C is the empty
set). Furthermore, we shall suppose that the following linear
models generated the observed data:

A ¼ α0 þ α1Y0 þ Δ

Y ¼ Y0 þ ψ0A

Z ¼ β0 þ β1Y0 þ κ;

where Δ and κ are mean 0 error terms, uncorrelated with Y0.
Then, if assumption 1 holds, we have that κ and Δ are inde-
pendent, and therefore E(κΔ) = 0. To encode a violation of as-
sumption 1, we set

κ ¼ ρΔþ χ;

where χ is an independent error term, and ρ is a sensitivity
parameter that encodes the magnitude of unobserved con-
founding for the association between A and Z upon adjust-
ment for Y0. To implement the sensitivity analysis requires
an estimate of Δ = {A − E(A|Y0)}. For fixed ψ, let Δ̂ðψÞ de-
note the OLS residual from regressing A on Y(ψ) using a sim-
ple linear regression. Define ψ̂ (ρ) as the midpoint of the 95%
confidence interval corresponding to values ofψ such that the
null hypothesis of β2(ρ,ψ) = 0 fails to reject at the 0.05 α level
in the following regression model:

Z ¼ β0 þ β1YðψÞ þ β2Aþ ρΔ̂þ χ ð1Þ

with (ρ, ψ) fixed and (β0(ρ, ψ), β1(ρ, ψ), β2(ρ, ψ)) estimated
by OLS of Z on A with an offset equal to ρΔ̂: A sensitivity
analysis is then obtained by repeating the above steps for dif-
ferent values of ρ on an interval containing ρ = 0 (which re-
covers the analysis obtained under assumption 1). Although
we have motivated the sensitivity analysis technique assum-
ing continuous A, the approach equally applies for binary A,
upon replacing linear regression with binary regression, such
as, say, logistic regression, to fit E(A|Y(ψ)) and to construct
Δ(ψ) = A− E(A|Y(ψ)).Wealsonote that theparametricmodels
used above were specified primarily to simplify the exposi-
tion, and it is possible to more formally motivate the param-
etrization for the linear regression (1) using nonparametric
arguments along the lines of Robins et al. (7), allowing for
a more general functional form for the models and also incor-
porating covariates.
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