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The decline in the mass and function of bone and muscle is an inevitable consequence

of healthy aging with early onset and accelerated decline in those with chronic

disease. Termed osteo-sarcopenia, this condition predisposes the decreased activity,

falls, low-energy fractures, and increased risk of co-morbid disease that leads to

musculoskeletal frailty. The biology of osteo-sarcopenia is most understood in the

context of systemic neuro-endocrine and immune/inflammatory alterations that drive

inflammation, oxidative stress, reduced autophagy, and cellular senescence in the

bone and muscle. Here we integrate these concepts to our growing understanding

of how bone and muscle senses, responds and adapts to mechanical load. We

propose that age-related alterations in cytoskeletal mechanics alter load-sensing

and mechano-transduction in bone osteocytes and muscle fibers which underscores

osteo-sarcopenia. Lastly, we examine the evidence for exercise as an effective

countermeasure to osteo-sarcopenia.

Keywords: bone, muscle, microtubules, mechanotransduction, sarcopenia, cytoskeleton, osteopenia,

osteoporosis

INTRODUCTION

With advancing age, a threshold of decline in the mass and function of bone and muscle marks
the onset of musculoskeletal frailty. This loss of muscle and bone quality, collectively called
osteo-sarcopenia, initiate changes in lifestyle, and activity levels that start a sequence of events that
lead to significant morbidity and even mortality. Indeed, muscle and bone health are remarkably
predictive of biological health. Muscle mass or performance, including grip strength and gait speed,
and bone mass or hip fracture have all been correlated to increased morbidity and mortality (1–10).
Likewise, the incidence of low impact fractures steeply inclines in the osteo-sarcopenia population,
contributing to reduced mobility and independence, increased mortality, and corresponding to
increased financial burdens (10–13).

Both men and women experience peak bone mass around 30 years of age, with a steady decline
for the rest of life thereafter (14). In parallel, muscle strength substantially declines with age
followed by declines in muscle mass too (15). When overlaid, the loss of bone mineral density
(BMD), muscle strength, and muscle mass, occurs concomitantly suggesting the processes happen
in parallel, or are interdependent (16). Since bone and muscle are known to regularly remodel
in response to ever changing mechanical cues, cellular dysfunction caused by aging results in
a significant decrease in musculoskeletal formation, thus favoring catabolic processes leading to
osteopenia and sarcopenia (osteo-sarcopenia).
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Aging related changes to musculoskeletal tissues are
multifactorial and include reduced activity levels, chronic low-
grade inflammation, oxidative stress, and impaired autophagy,
among others. Together, these factors conspire to initiate a feed
forward loop of global changes in bone and muscle cell gene
expression (17, 18), tissue composition, and tissue functions that
exacerbates osteo-sarcopenia (19–21) termed the cycle of frailty
(Figure 1). The initiation of the cycle of frailty poses a “chicken
or the egg” paradox when it comes to reductions in activity, bone
mass, and muscle mass. It has yet to be determined whether the
onset of the cycle of frailty starts as aging-related changes to
bone and muscle which cause individuals to become less active,
or if inactivity causes aging-related declines in muscle and bone.
What can be said with certainty is that the cycle is a feed-forward
loop where inactivity, regardless of the reason, causes disuse of
bone and muscle, thusly reducing strength, weakening balance,
and increasing fracture risk, ultimately furthering inactivity.
Accordingly, therapeutic targets to improve bone and muscle
mass and function have tremendous potential to disrupt this feed
forward cycle and lead to better patient outcomes.

Bone and muscle sense and respond to their mechanical
demands by adjusting their mass and quality. This permits the
musculoskeletal system to adapt to changing activity levels to
accommodate function. Muscle must be sufficiently robust to
be able to mediate daily activities, which can vary dramatically
based on lifestyle. Likewise, within this range of typical activity,
bone must be sufficiently strong to bear load without failure

FIGURE 1 | Intersection of the mechano-transduction pathway and the cycle of frailty. (A) Responsive mechano-transduction in youth. Mechanical load is sensed by

a pliable cytoskeleton initiating the anabolic responses of both muscle and bone. (B) Impaired mechano-transduction in aging. Mechanical load is sensed by a rigid

cytoskeleton, influenced by changes to the microtubule network, a consequence of aging related phenomena, leading to sarcopenia and osteopenia. These

musculoskeletal pathologies feed into the cycle of frailty, where reduced strength and mobility, and reduced physical activity propagate the feed forward cycle.

(fracture). This ability of cells to sense mechanical events and
translate them into biological signals that dictate cell and tissue
function is termed mechano-transduction. At an accustomed
amount of mechanical loading (i.e., typical daily activity and
exercise) bone and muscle operate to maintain function around
this homeostatic set point, maintaining and repairing the tissue.
This homeostatic setpoint at which slight variance in activity does
not prompt net increases or decreases in bone or muscle mass is
sometimes referred to as the lazy zone (Figure 2). When muscle
and bone experience unaccustomed loads such as a sudden,
sustained change in lifestyle (e.g., a rigorous strength training
regimen), the cells of these tissues sense and respond to this
change activating a mechano-transduction pathway to enter an
anabolic phase where new tissue is deposited to accommodate
this new stimulus. Eventually, bone and muscle will fully adapt
to the new mechanical demands and, if these demands remain
sustained and static, this mechanical environment will become
an accustomed load and a new homeostatic set point defined at
this level of musculoskeletal mass and quality. The converse is
true in disuse. A sustained decrease in activity and loading (e.g.,
bedrest) will be sensed by the cells of bone andmuscle and initiate
a catabolic phase where the musculoskeletal system adapts to its
newmechanical environment by reducing bone andmusclemass,
setting a new homeostatic set point around the adapted activity
inactivity levels. Indeed, anyone with a limb immobilized in a cast
for 12 weeks has experienced the rapid adaptation of muscle mass
to disuse through atrophy.
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FIGURE 2 | A diagrammatic representation of musculoskeletal catabolic, neutral, and anabolic zones. The solid line represents how load (bottom triangle) influences

bone and muscle loss (left), maintenance (center), and creation (right) in youth. The dashed line indicates the apparent shift in load sensitivity (shifted right) and

loss/gain magnitude (shifted up/down, respectively) associated with aging.

An insidious feature of aging is that this exquisitely adapted
ability to sense and adapt to a changing mechanical environment
begins to unravel. In both bone and muscle, the ability to
respond to loading is impaired with increasing age (22–24). In
rodent models, the ability of bone cells to sense and respond
to a mechanical load is reduced in old mice compared to
sex matched young mice at various forces (24, 25). What this
means is that a load capable of stimulating bone formation
in young mice is not enough to stimulate bone formation in
old mice, and in order to produce comparable new bone in
old mice as in young mice, the load in old mice needs to be
increased. Essentially, if we over simplify this to an example
with weights on a squat bar, a young individual could build
bone using ∼200 lbs, whereas an old individual would have
to use >300 lbs to build new bone. This is not feasible for
a population of people who are also ailed by sarcopenia. Not
only are osteocytes less stimulated by mechanical load in aging,
they are also less capable of responding to the load that they
are receiving.

Interestingly, initiation of sarcopenia associates aging
with a decline in muscle strength prior to a decline in
muscle mass, suggesting functional measures in muscle
may be predictive of aging earlier than muscle size (15).
Consistent with this concept is the evidence that functional
measures of muscle (i.e., grip strength, gait speed) are

strong predictors of biological age (15). Given that the
hypertrophic response to resistance exercise is reduced in
aging relative to youth, yet increases in strength and power are
achievable (26–28), the mechano-biology of muscle mass is of
primary concern.

Here, we will examine the provocative idea that aging related
factors may disrupt the very machinery that bone or muscle
cells use to sense and respond to mechanical stimuli. It is
important to acknowledge that many of the mechano-sensors
and mechano-transduction cascades in bone and muscle are
affected by aging and are often interconnected at many levels
(29–33). We will focus on an element of a recently described
mechano-transduction pathway – the microtubule cytoskeleton
– shared by bone and muscle cells, as an example of how aging
related changes may influence mechano-transduction pathway
(34–37). We think this is a reasonable model upon which to
overlay these concepts in that nearly all the mechano-sensitive
elements in muscle and bone have been linked directly or
indirectly to the cytoskeleton and converge on calcium signals
(38–40). Thus, many of these concepts can likely be extended
to the other characterized mechano-sensors in musculoskeletal
tissues. Additionally, we will survey the current literature
suggesting how aging-related dysfunction of the cells in bone
and muscle, and specifically their ability to sense and respond
to mechanical cues, not only contribute to osteo-sarcopenia,
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FIGURE 3 | A schematic of the shared mechano-transduction pathway in youth and in aging. Depiction of the shared mechanical load pathway in youth (A) and in

aging (B). Changes in signal magnitude by aging-related phenomena are indicated in open arrows (muscle) and solid arrows (bone).

but also may serve as mechanistic targets for future therapy.
Finally, we will consider the impact of exercise as a mode of
rehabilitation for the mechano-sensing apparatus in aged cells,
restoring the homeostatic set point, and improving bone and
muscle outcomes.

MUSCULOSKELETAL
MECHANO-BIOLOGY

The cells that facilitate mechano-responsiveness in bone and
muscle are the osteocyte and the skeletal muscle fiber, or
myofiber. Within these cells, numerous potential mechano-
sensors, which have various levels of interconnection, have
been identified (41–43), including focal adhesions, primary
cilia, stretch activated ion channels, actin filaments, and
microtubules (40). Mechano-sensors are the first step in sensing
a change in accustomed load and translating mechanical cues
into biological signals that regulate cellular function. While
the multifactorial nature of aging undoubtably influences
many of these mechano-sensors (and other aspects of cellular
function) contributing to osteo-sarcopenia, alterations common

to both osteocytes and myofibers would be an intriguing
therapeutic target.

Recently, our groups have defined a mechano-transduction
pathway with conserved elements in both bone and muscle
(Figure 3). In both tissues, this mechano-pathway includes

a subset of microtubules, which are one of the cytoskeletal
proteins that regulate the biophysical properties of the
cell, cytoskeletal stiffness, the production of ROS from an
enzyme, NADPH oxidase 2 (NOX2), and an intracellular
calcium response that governs bone and muscle function in
response to mechanical loading signals (34, 35). Culmination
of this mechano-transduction pathway in bone permits bone
formation, increasing bone mineral density, and in muscle, this
pathway ultimately converges on myofibril formation, increasing
muscle mass.

Although many of these elements are shared between bone
and muscle, only microtubules function in the same role in this
mechano-transduction pathway in both tissues. Microtubules,
along with actin and intermediate filaments, comprise the
cytoskeleton and acts as a scaffold to support cells in movement
and cell division among other mechanical events. Microtubule
filaments, comprised of α/β-tubulin dimers, are compressive
elements of a highly interconnected cytoskeleton (44). Post
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translational modifications to tubulin dimers can dictate
particular function of a microtubule filament and its associated
proteins, resulting in the notion of a “tubulin code” (45, 46).
Specifically, increases in detyrosinated tubulin and acetylated
tubulin allow microtubules to bend, buckle, and transmit
mechanical loading signals, increase cytoskeletal stiffness, and
impact muscle and bone mechano-transduction (34–36). This
subset of post-translationally modified, mechano-responsive
microtubules initiates a mechano-transduction cascade by
translating mechanical forces into biochemical signals via their
interactions with other proteins.

The conservation of microtubules as a mechano-sensory
element in muscle and bone presents an intriguing opportunity
to understand the concomitant loss of function in both
tissues with increasing age, as well a singular therapeutic
target (i.e., the microtubule cytoskeleton) to modulate
for reversing osteo-sarcopenia. Central to this idea is that
microtubules tune cytoskeletal stiffness and that a threshold
level of stiffness is required for a mechanical load to initiate
signaling (i.e., production of NOX2-ROS, calcium influx, to
ultimately increase bone formation and myofibril formation
and muscle hypertrophy) through this cascade (Figure 3). If the
cytoskeletal stiffness is elevated beyond this threshold by specific
microtubule post-translational modifications (e.g., acetylation
and detyrosination) or microtubule associated proteins (e.g.,
Tau) then the mechano-transduction cascade is aberrantly
affected (decreased mechano-transduction in bone and increased
mechano-transduction in muscle). A loss of cytoskeletal stiffness
below a threshold level can also impact mechano-responses in
both tissues. Thus, there is a Goldilocks zone of “just right”
cytoskeletal stiffness that permits musculoskeletal tissues to
respond to mechanical loading cues appropriately. In normal
physiology, this threshold level of cytoskeletal stiffness is set by
environmental cues that adjust the stiffness to be appropriately
adapted to accustomed loads, while remaining responsive to
unaccustomed loads.

When cytoskeletal stiffness is increased beyond the Goldilocks
zone, an opposite ROS and calcium signaling responses is
initiated in muscle (excessive ROS and calcium responses)
and bone (attenuated ROS and calcium responses), even
though these signal transducers are shared in our mechano-
pathway (Figure 3). For example, in a mouse model of
Duchenne’s Muscular Dystrophy, hyper-activation of NOX2
and excessive ROS (i.e., oxidative stress) is connected to
muscle injury, damage, and atrophy (47, 48). Similarly,
calcium influx is higher with increased cytoskeletal stiffness
in muscle, disturbing calcium homeostasis, and promoting
atrophy (49, 50). This makes inhibition of NOX2 and/or
calcium attractive targets to alleviate the progression of
sarcopenia. However, unlike muscle, bone loses mechano-
activated NOX2-ROS production and TRPV4-calcium influx
when cytoskeletal stiffness is pushed beyond the Goldilocks
zone. Given the imperative to address osteo-sarcopenia together,
rather than individually, in order to recover from the cycle
of frailty, we focus the remainder of this review on the
action of microtubules in aging as a potential target for a
collective solution.

Bone Mechano-Transduction
Bone resident osteocytes coordinate the actions of mechano-
transduction by direct (cell-to-cell) and indirect (secreted
proteins, cytokines, and signaling molecules) communication
with bone building osteoblasts on the bone surface through the
canalicular system, an elaborate network of “tunnels” through the
bone that interconnects osteocytes and surface bone cells (51).
A major effector of mechano-transduction regulate loading or
disuse is the osteocyte secreted glycoprotein sclerostin.

Sclerostin is a key protein, continuously secreted by osteocytes
to prevent bone formation, a measure that keeps the skeleton
from becoming a metabolic sink and too heavy to move, however
in response to vigorous mechanical stimulus (i.e., unaccustomed
load), osteocytes reduce sclerostin abundance allowing for
osteoblasts to make new bone appropriate for resisting the force
experienced. In rodents, sclerostin protein, and its associated
transcript, Sost, are decreased in response to mechanical load
(52, 53) and increased in response to mechanical unloading (54,
55), making sclerostin an important gatekeeper to load-induced
bone formation. While the consequences of sclerostin action
in humans remains conserved, the acute relationship between
sclerostin/SOST and mechanical load is less straight forward
given loading exercises increase bone mass (56), yet circulating
sclerostin protein (not bone-resident sclerostin) increases acutely
after exercise (57). However, as expected based onmouse models,
long term exercise reduces serum sclerostin (58). This mild
discrepancy between humans and mouse responses might be
partially reconciled since serum sclerostin levels, which are
the outcome measure in human studies, are not necessarily
temporally coupled to bone-resident sclerostin, which is typically
directly measured in mouse studies (59). Additionally, unloading
in young, healthy humans increases circulating sclerostin (60),
an outcome that parallels mouse studies and is consistent with
the role of sclerostin as a negative regulator of bone formation.
A lack of mechanical loading, or disuse, can shift the balance
of bone remodeling to favor osteoclast resorption and decrease
bone mass.

The subset of mechano-responsive microtubules and the
downstream signaling pathway that we described earlier regulates
sclerostin protein abundance (35, 37). The resulting outcome of
this mechano-transduction pathway is the rapid degradation of
sclerostin protein by the lysosome, removing the inhibition on
bone formation by osteoblasts and allowing new bone formation
to occur (37).

Muscle Mechano-Transduction
Skeletal muscle mass and performance is also regulated by
mechanical demand. Brief rounds of high-load resistance
exercise, outside of the accustomed homeostatic setpoint,
increases the number of myofibrils and machinery involved in
the contractile regulation of the muscle fiber. Recruitment of
these organelles/proteins increase the muscle fiber cross sectional
area, resulting in muscle hypertrophy (morphology) and
increased force production (function) (61–63). Central to these
hypertrophic changes are mechanical loading cues (contraction
or stretch) that elicit mechano-transduction signaling effectors
(IG-F1, Ang-II, ROS, calcium, and phosphorylation) to regulate
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pathways in the muscle fiber [calcineurin-NFAT, rapamycin-
sensitive mTORC1, and mitogen-activated protein kinase
(MAPK)] increasing capacity for transcription and translation
(64, 65). Additionally, the fusion of myogenic stem cells (satellite
cells) to existing myofibrils contributes myonuclei necessary
to accommodate the increased transcriptional needs of the
hypertrophic program, and assist in repair of the muscle fiber
if injury occurred (66). On the other hand, unaccustomed low-
load exercise generates improved mitochondrial function and
overall oxidative capacity, with little change in muscle fiber size,
myonuclei number, or muscle mass, highlighting the mechanical
sensitivity, and specificity of the hypertrophic response (67–69).

Similar to the bone, muscle also adjusts its mass to decreased
load conditions of bedrest, immobilization, and inactivity. In
muscle, the reduction in accustomed load promotes a decline
in mass (atrophy) and function by reducing the very same
transcription and translation required for hypertrophy. The
reduction in myofibrillar content and supporting proteins
yields smaller myofibers and thus muscle mass to match
the reduced mechanical demand (70–72). Central to age-
related atrophy are increases in pro-inflammatory cytokines,
excess cytosolic calcium, and oxidative stress that impairs
the hypertrophic responses and underscores a decrease force
production independent of the loss in muscle mass (73–77). Here
we propose these signals also perpetuate the aging related deficits
in mechano-transduction.

MUSCULOSKELETAL AGING: PROBLEMS
WITH AGE RELATED CELLULAR STRESS

Numerous interdependent aging related factors, including
senescent cells, chronic low-grade inflammation, oxidative stress,
and changes in autophagymay all influence bone andmuscle.We
will first describe their broad impacts on tissue function before
discussing their influence on the cytoskeleton and potential
impacts on bone and muscle mechano-transduction.

A major driver of these aging related changes is the
accumulation of senescent cells, which activate the innate
immune system, promote inflammation, and oxidative stress.
Cellular senescence is a protective feature of healthy aging,
where cells that have exhausted their abilities to function call
attention to themselves in order to be cleared from their
environment. A senescent cell acquires the senescence associated
secretory phenotype (SASP) which includes secreting numerous
inflammatory cytokines and ROS among other traits, to invite
innate immune cells to safely destroy the senescent cell (78, 79).
During aging, the body becomes inundated with chronically
senescent cells such that SASP overwhelms local tissues creating a
stressful environment that can change the function of remaining
cells. Indeed, the aging dependent increase in senescent cells,
the SASP factors secreted by these cells, and the activation
of the innate immune system contribute to oxidative stress
and pro-inflammatory environment of aging. Consequently,
senescence has been attributed to depletion of osteoprogenitors
(80), whereas clearance of senescent cells in bone prevents age-
related bone loss (81). Acquisition of a senescent phenotype

also prevents muscle repair in response to injury, and promotes
muscle wasting (82, 83).

A consequence of the accumulation of senescent cells is the
change from physiologic ROS signaling to pathologic oxidative
stress. Cells use reactive oxygen species (ROS) and reactive nitric
species (RNS) to trigger biological events, including mechano-
transduction. However, the production of these highly reactive
free radicals is rapidly buffered or detoxified by a cellular counter-
response known as reduction-oxidation (redox) buffering.
When ROS and RNS signals exceed this buffering capacity it
becomes damaging oxidative stress. Part of cellular function is
adaptation to stress, which can encompass the imbalance between
oxidative signaling and oxidative buffering that leads to cellular
dysfunction. Aged cells are frequently under oxidative stress
because changes in gene expression, impaired mitochondrial
function (84), and excessive exposure to oxidative molecules,
which occurs during aging-related cellular senescence (85),
overwhelm the redox buffering capacity of the cell. Ultimately,
this results in oxidative damage to macromolecules disrupting
cell cycle progression, autophagy, and gene transcription while
promoting inflammation and apoptosis (86). The presence of
oxidative stress in aging has been linked to poor bone mineral
density measures in men and women, with loss of sex hormones
as a compounding factor (87–89). Oxidative stress is a keystone
feature of osteo-sarcopenia (71, 77), and correlates to reduced
gait speed and frailty (90).

In aged individuals, chronic, low-grade inflammation due to
overexpression of pro-inflammatory cytokines such as IL-1, IL-6,
and TNF, Baylis et al. (91) has been referred to as inflammaging,
and contributes to a wide range of diseases, including cancer,
arthritis, vascular disorders, and musculoskeletal dysfunction
(92, 93). For example, cross-talk between inflammatory cytokine
signaling and pro-osteoclast activating receptor activator of
nuclear factor kappa-B ligand (RANKL) stimulates excessive
bone resorption (94), generating a net loss of bone mineral
density. Chronic inflammation is also associated with osteopenia
in bone (95) and sarcopenia in muscle (96), and in addition
is highly correlated with frailty, disability, and mortality
(97). Inhibition of IL-6 (SASP component) prevents muscle
atrophy (98).

Additionally, aging-related inflammation can trigger skeletal
progenitor cell dysfunction, a phenotype that was uncoupled
to chronological age using a murine genetic knockout of
NFKb1, a transcription factor that is prominent in initializing
pro-inflammatory cascades, and restored in aged mice using
pharmacological intervention (99). Targeting inflammaging with
metformin improved age-related deficits in autophagy and redox
buffering (100). Metformin has also been shown to regulate bone
marrow mesenchymal stem cells and osteogenic differentiation
to improve trabecular bone formation around dental implants in
osteoporotic rats (101). The effect of metformin on bone mass
is provocative; while there are exceptions (102), in most studies
it appears to be that metformin improves bone microstructure
in rodent ovariectomized osteoporosis (103–105) and stimulates
osteoblast mineralization in vitro through AMP-activated protein
kinase (AMPK) (106). While metformin has shown some
interesting benefits as a target of aging in mice, significant caveats
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remain, as the benefit of metformin blunts muscle hypertrophy
in response to resistance training in aging humans (107). The
benefits inmice do not directly translate into benefits for humans.
Regardless, metformin’s action in rodents is consistent with an
important role for inflammation and oxidative stress, and defects
in autophagy in aging related deficits in musculoskeletal tissues.

Autophagy is a lysosome-dependent mechanism through
which cells regulate cytoplasmic turnover, and an important
component of cellular proteostasis. Proteostasis, the balance
between protein production and degradation, is held in check
in part through the ability of the autophagosome (in addition
to the proteasome and endoplasmic-reticulum-associated protein
degradation) to remove or recycle malfunctioning, damaged,
or unneeded proteins and organelles via fusion with lysosomes
(108). In aging, autophagy is reduced, due in part to decreased
acidity of the lysosome (109) and decreased expression of
autophagy-related proteins (110). This may lead to protein
aggregation, which is commonly associated with a variety of
disorders and diseases (111). Furthermore, genetic deletion
of proteins associated with autophagy can produce an “aged”
phenotype (112), typically characterized by a decrease in
bone mass (113, 114), or decreased muscle strength (115,
116), suggesting the incontrovertible role that autophagy plays
in aging.

Notably, autophagy is a downstream consequence of
mechano-transduction in both muscle and bone. Mechanical
load stimulates autophagy in bone and controls the load-
dependent degradation of sclerostin (37). Defects in lysosome
activity can impact bone health (117) at least in part through
the failure to remove the inhibitor of bone formation, sclerostin
(37). In muscle, mechanical load also converges on autophagy
with mechano-transduction regulated mTORC1 translocation
to the lysosome necessary to elicit the hypertrophic signaling
cascade (118). In fact, NOX2-dependent ROS signaling activates
lysosomes and autophagic flux, but excess ROS can inhibit
autophagy and impact muscle mass and function (48). Through
this axis, alterations in autophagy due to aging could contribute
to muscle deficits through diminished hypertrophic program
activation (119–121).

INFLUENCE OF AGING RELATED
CHANGES ON THE CYTOSKELETON AND
MUSCULOSKELETAL
MECHANO-TRANSDUCTION

Interestingly, many of the factors associated with aging seem
to also influence the microtubule-based mechano-sensor that
is conserved in the musculoskeletal system (Figure 1). The
cumulative impact of many of these aging related changes,
which reportedly increase cytoskeletal stiffness microtubule post
translational modification in non-musculoskeletal cells, may
partially explain the altered mechano-responsiveness of aged
muscle and bone. Many of these aging related factors may push
microtubules and cytoskeletal stiffness outside of the mechano-
responsive Goldilocks zone and into a pathological gain
(muscle) or loss of function (bone) response that deteriorates

tissue quality. This suggests microtubules may be a common
therapeutic target to improve muscle and bone function in
aging. However, it is important to acknowledge that many
mechano-transduction pathways are operant in these tissues
(53, 122–128) and the sum total of effects of aging related
factors on tissue homeostasis certainly extend beyond impacts on
microtubule mechano-transduction. Rather, we wish to speculate
on microtubules and mechano-transduction as provocative
additional players in the onset of osteo-sarcopenia and examine
how several aging related factors influence this subset of
mechano-sensitive microtubules to lead to an alteration of bone
and muscle mechano-transduction.

Increased cytoskeletal stiffness appears to both regulate
and be a consequence of cellular senescence (129). Using
progeroid syndromes as models to study pre-mature senescence,
evidence supports that multiple mechano-transduction pathways
become dysregulated with the onset of this aging phenotype
(130). Reorganization of the microtubule network is a specific
cytoskeletal consequence of senescence, including increased
microtubule stability and increased tubulin acetylation (131).
Indeed, targeting senescent cells with senolytics has proven
to be an incredibly effective generalized therapy to improve
musculoskeletal health in rodent models (98, 132, 133). We
predict that removal of senescent cells through senolytics is
likely to improve the ability to activate mechano-transduction in
musculoskeletal tissues.

Likewise, oxidative stress can impact the cytoskeleton,
including microtubules (134). Chronic oxidative stress
encourages more frequent microtubule repair, generating a
dense microtubule network in cardiomyocytes over time (135).
Similarly, pro-inflammatory cytokine signaling promotes
increased cytoskeletal stiffness (136) and microtubule
rearrangement (137). This potentially interferes with
microtubule sensation of load (insensitive in bone, hypersensitive
in muscle) and initiation of ROS signaling (reduced in bone,
enhanced in muscle) for the mechano-transduction pathway.
Indeed, inflammation inhibits mechanically-induced calcium
production in osteocytes (138), while resolution of inflammation
restarts the anabolic Wnt/β-catenin signaling pathway and
activates osteoblasts (139).

The drug colchicine presents an appealing opportunity
to both ameliorate inflammation and rescue microtubule
driven cytoskeletal stiffness. Functional consequences of
colchicine action include inhibition of neutrophil migration
and inflammatory signal transducers, while its direct action
prevents polymerization of microtubules (140). In fact,
colchicine shows promise as an effective measure against
cardiovascular events, given a feature of the disease is an increase
in microtubule density and detyrosination in cardiomyocytes
(141, 142). Further support for targeting microtubules as
a potential therapeutic for mechano-transduction in aging
can be found with parthenolide. A specific inhibitor of the
enzyme that generates detyrosinated tubulin and therefore
also cytoskeletal stiffness, exposure to parthenolide rescued
cytoskeletal stiffness and mechano-transduction in myocytes and
osteocytes in vitro, and prevented eccentric contraction-induced
injury in a murine model of Duchenne’s muscular dystrophy
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(34, 35). Either of these pharmacologic interventions offer the
opportunity to transform a stiff cytoskeletal network back into
the mechano-responsive Goldilocks zone, as a way to improve
musculoskeletal mechano-transduction.

It is worth noting that the effects of oxidative stress on
microtubules may not be perfectly straightforward however. In
contrast to chronic oxidative stress, acute treatment of neurons
with glutathione disulfide, a pro-oxidant, causes neurons to
retract cell processes and reduce the amount of tyrosinated α-
tubulin relative to vehicle treated cells (143). This parallels aging-
related changes observed in osteocytes in bone. Osteocytes, much
like neurons, have an extensive cell process network that resides
in the lacunar-canalicular network throughout bone (144).
Additionally, these long osteocyte cell processes are mechano-
responsive elements (145). Although the effect of oxidative stress
on osteocyte microtubules has not been investigated directly,
if osteocytes were to behave like neurons (and yes, they do
share a number of physiological similarities (146) then an
acute bolus of ROS might deplete mechano-sensing structures
resulting in diminished mechano-transduction. Consistent with
this predicted effect, osteocytes in aged bone have fewer neuron-
like cell processes, and form fewer intercellular connections,
which would be predicted to impair their ability to coordinate
new bone formation (147) In this condition of advanced
aging, strategies to improve redox buffering capacity could act
to prevent this catastrophic microtubule loss and maintain
the cytoskeleton in the mechanically responsive Goldilocks
zone. Alternatively, clinically approved microtubule targeted
therapeutics that increase microtubule density and promote its
modification by detyrosination and acetylation (i.e., paclitaxel)
may effectively protect the microtubule network as recently
demonstrated in experimental ischemia reperfusion injury (148,
149), and in models of neurodegeneration (29).

The implication of lysosome activity and autophagy as they
relate to microtubules are abundant. With respect to our
mechano-signaling pathway, lysosome activity and autophagy are
influenced by mechanical loading in both bone and muscle and
therefore are affected in these cells based on loading stimuli.
Additionally, lysosomes use microtubules to position themselves
in the cell to carry out their function. Thus, aging related
changes in microtubules, influenced by cellular senescence,
oxidative stress, and inflammaging, likely affect autophagy
independent of mechano-signaling as well, because microtubules
themselves affect lysosome trafficking (150). Lysosomes are
positioned throughout the cell by microtubule associated motor
proteins, kinesins and dynein (151, 152). Specific microtubule
post-translational modifications (acetylation, detyrosination, and
polyglutamylation) confer preference for particular motors
(153–155) while certain MAPs (Tau and MAP2) impede
motor movement (156, 157). Given the relationships between
microtubule post-translational modifications and motors, and
microtubule motors and lysosome movement, it is not surprising
that post-translational modifications or MAPs could spatially
restrict lysosomes to a region of the cell, such as detyrosination
(158). This sequestration potentially limits lysosome activity
and autophagy. Since degradation of sclerostin protein by the
lysosome is an outcome of mechano-transduction in bone that

leads to bone formation, and mTORC1 association with the
lysosome is an outcome of mechano-transduction in muscle that
leads to hypertrophy, we speculate that improvements to bone
and muscle catabolism can be achieved through targeting aging-
dependent influences on microtubules, synergistically activating
both mechano-transduction and alleviating impaired autophagy.

EXERCISE

Exercise is among the most impactful interventions for
improving overall health. In fact, the beneficial effects of
exercise on longevity, overall health, and musculoskeletal health
in the elderly are well-documented (159–163). Evidence that
musculoskeletal function (i.e., grip strength, gait speed, fracture)
appears a sentinel indicator of age-related frailty has drawn
attention to themechanisms by whichmusculoskeletal tissues are
altered in aging.

Aging is acknowledged as a systemic process that impacts
all tissues albeit with a varied trajectory of severity. Common
to cellular aging in each tissue is increased cellular senescence,
oxidative stress, inflammation, and impaired autophagy. While
exercise exerts numerous systemic effects, the cellular benefits
are underscored by reduced cellular senescence, oxidative stress,
inflammation, and improved autophagy. Here we focus on how
these cellular benefits within osteocytes and muscle fibers may
act though improving age-altered mechano-transduction to elicit
their benefits in bone and muscle.

Exercise is proficient at the clearance of senescent cells.
Exercise is connected to reductions in senescence associated
markers, such as p16 and p21 among others, in human muscle
(164). Others have postulated that exercise potentially reverses
osteocyte senescence and promotes osteocyte viability even
though it did not improve bone mass (165). As senescent cells are
a significant source of oxidative stress and inflammation in bone
and muscle that drives increased cytoskeletal stiffness in their
cells, clearance of senescent cells by exercise will undoubtedly
improve bone and muscle health. We reason that a portion of
this improvement will be through a partial normalization of
microtubule mechano-transduction.

The benefit of exercise is also from the oxidative stress
and inflammation generated as a consequence of exercise itself.
It is paradoxical that ROS and inflammatory signals act as
intermittent low-grade stressors to elicit the transcriptional
regulation of redox buffering and anti-inflammatory cytokines
(68) to protect the system long-term for benefit (161, 166).
These benefits of acute stress are also underscored by evidence
that targeting inflammation or oxidative stress alone can be
deleterious to exercise adaptation in young recreational athletes.
Further evidence is in the elderly treated with metformin, and
inhibitor of oxidative stress and inflammation, and exercise, show
smaller gains to those exposed to only exercise (167).

Additional benefits of exercise include the stimulation of
autophagy andmitochondria protein synthesis through the PCG-
1α pathway in aged rodent muscle models (168, 169), and
increased mitochondrial capacity in elderly humans (170). In
both murine and humanmuscle, lifelong exercise in aged cohorts
produced protein expression profiles of increased autophagy,
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including microtubule associated proteins LC3II/LC3I and
sequesterome-1 (p62) (171). In muscle, lysosomal activation
by exercise goes through a number of pathways including
the AMPK/ULK1 (Unc-51-like autophagy activating kinase
1) axis, and the AKT/FOXO3 axis (172–174). Intriguing is
the evidence in the failing heart where AMPK activation
by 5-aminoimidazole carboxamide ribonucleotide (AICAR)
or expression of constitutively active AMP (CA-AMPK)
reversed the pathologic remodeling of the microtubule network
(i.e., reduced microtubule density and level of detyrosinated
tubulin) (175). Given that these interventions model the
effects of vigorous exercise training, testing their impact
in the musculoskeletal system toward improving mechano-
transduction, is of high interest.

In total, the benefits of exercise in the elderly are many. We
speculate that among the benefits caused by exercise may be,
at minimum, a partial reset of the microtubule cytoskeleton
to a mechano-responsive range. While exercise is a clinically
significant intervention with regard to musculoskeletal frailty,
it is not a panacea. Even with exercise-induced reductions
in senescence-associated ROS and inflammation, these
consequences of aging are not completely eliminated. We predict
that while the systemic benefits of exercise to remove senescence,
decrease oxidative stress and inflammation and promote
autophagy, exercise alone in unlikely to be sufficient to yield
complete restoration of bone and muscle mechano-transduction.

However, not all exercise is equal. The physiological benefits of
resistance exercise may be different than low intensity exercise.
While low intensity exercise may reap some systemic effects
on inflammaging, resistance exercise (unaccustomed load) is
necessary to maintain or even improve bone and muscle mass.
Resistance exercise, in contrast to low intensity or cardiovascular
type exercise, are efficacious in both the young and the elderly
for increasing bone and muscle mass (176–181). But for an aging
population, osteo-sarcopenia serves as a barrier to executing the
magnitude of unaccustomed load necessary for commencement
of anabolic programming. Therefore, the key is to try to
keep activity as high as tolerable to ensure that the lack of
mechanical cues does not lead to unaccustomed unloading
which initiates bone and muscle atrophy. While walking and
other low impact exercise are not typically considered sufficient
load to induce bone and muscle formation during youth, in
aging, it could be advantageous to stave off further tissue
loss by shifting activity levels to an acceptable accustomed
load which preserves tissue maintenance (lazy zone) and away
from disuse. Optimal musculoskeletal health during aging is
most likely to occur when exercise benefits are overlaid with
unaccustomed loading, which may synergistically benefit muscle
and bone quality. However, as in youth, the homeostatic set
point will adjust to static exercise, and progressive resistance
training is the most useful intervention to promote muscle and
bone anabolism.

DISCUSSION

In summary, we present the concept that among the
deficits contributing to musculoskeletal frailty is a defect in

mechano-transduction. Mechano-sensors present in bone
and muscle cells are likely impacted by systemic changes
in aging, like senescence, low grade chronic inflammation,
oxidative stress, and defects in autophagy. We speculate that
these aging related changes tip the homeostatic setpoint for
an unaccustomed load to initiate anabolic effects in muscle
and bone to be increased. We support that this altered
mechano-setpoint accelerates the cycle of frailty. Deficits in
mechano-transduction propagate the cycle of frailty through
failure to stimulate anabolic programs and through progression
of catabolic pathways which lead to osteo-sarcopenia. Aging-
related declines in mechano-transduction are exacerbated
by reductions in activity levels. While exercise may help to
combat detrimental elements of aging in bone and muscle, it
may not suffice to restore bone and muscle formation alone,
and unaccustomed loading through progressive resistance
training is most certainly needed to improve muscle and
bone mass/quality.

Importantly, understanding the molecular mediators of
the aging related alteration of mechano-set point provides
key therapeutic targets to preserve or increase bone
and muscle mass in aging. Truly, reducing senescence,
inflammation, oxidative stress, and defective autophagy
through exercise or pharmacology, combined with targeting
elements of common mechano-transduction cascades to
improve mechano-transduction gives us our best strategy
to improve musculoskeletal frailty, disrupt the cycle of
frailty, and restore or preserve musculoskeletal health in
the context of aging. To return to our earlier analogy, we
posit that synergistic targeting of aging related systemic
changes and mechano-transduction thresholds, such as
by targeting microtubules, will allow aged individuals to
achieve the same range of anabolic response gained from
unaccustomed mechanical loading, such as weights on
a squat bar, without having to compensate by providing
unachievable loads.

While the aim of this review is to highlight the global
changes that occur during aging which impact mechano-
transduction in bone and muscle particularly at the shared
microtubule level, we want to acknowledge that they are
but a portion of the mechano-sensing apparatus. Each of
these mechano-sensors or mechano-transduction pathways,
while not described in any depth here, are all reasonable
targets for affecting musculoskeletal frailty. Furthermore, even
within the microtubule-dependent mechano-sensing pathways
in muscle and bone, there is much yet to be learned about
the role of each tubulin post-translational modification and the
prevalence of these modifications in aging. Additionally, the
other shared elements of our mechano-transduction pathway,
NOX2-ROS and calcium influx, also contain potential for
mediating osteo-sarcopenia. Indeed, many factors, likemyokines,
signal between bone and muscle, and are additional factors
to consider when discussing reversal of the cycle of frailty
(182–185). Regardless, much future investigation is needed
to understand, test and develop targets shared by muscle
and bone or communicated between muscle in bone to
combat aging.
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