

Does *BRAF* Mutation and Extracellular Signal Regulated Kinase Expression in Patients With Colorectal Cancer Have Any Prognostic Significance?

Moo Jun Baek

Department of Surgery, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea

See Article on Page 9-15

Wild-type KRAS acts as a switch during signal transduction; however, somatic mutations that activate regulators and effectors of Ras proteins are common in tumor development and cancer [1-3]. In approximately 35%-42% of early colorectal cancer (CRC) patients, the KRAS mutation inhibits KRAS GTPase, resulting in a constitutive KRAS activation and, thus, activating a Ras/Raf signaling pathway. In CRC, 97% of KRAS mutations occur in codons 12 and 13 of exon 2, and more than 97% of changes in the protein are attributable to changes in the amino acid sequence by the substitution of seven DNA base pairs [4]. BRAF is a human gene that encodes the protein B-Raf, which is considered a proto-oncogene, encoding a serine/threonine protein kinase [5]. B-Raf is a member of the Raf kinase family that regulates the Ras/Raf/MEK/extracellular signal regulated kinase (ERK) pathway and is involved in division, differentiation, and secretion [6]. The most common BRAF mutation is a missense mutation (V600E, formally known as V599E), resulting in glutamic acid in place of valine that generates an abnormality in the MEK/ERK signaling pathway in CRC [7].

The mitogen-activated protein kinase (MAPK)/ERK signaling pathway is a highly conserved intercellular signaling system present in multicellular organisms and plays an essential role in cancer progression. MAPK/ERK activation is a common feature of tumors with *KRAS*, *NRAS*, or *BRAF* mutations [8, 9]. A highly activated MAPK/ERK pathway is found in approximately 30% of can-

Correspondence to: Moo-Jun Baek, M.D.

Department of Surgery, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan 330-930, Korea Tel: +82-41-570-3633, Fax: +82-41-571-0129 E-mail: ssurge@sch.ac.kr

© 2015 The Korean Society of Coloproctology

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited cers and over 60% of melanomas, and it is associated with tumor proliferation and migration. BRAF is upstream of the MAPK/ERK pathway, and a single amino acid change, resulting in a valine-to-glutamyl acid substitution at position 600 (V600E), accounts for ~90% of *BRAF* mutations. ERK1/2 are important kinases in the MAPK pathway. Therefore, activation of ERK1/2 could be considered as a target factor related with CRC carcinogenesis through the serrated pathway [8].

The authors of this study investigated the clinicopathologic outcomes of *BRAF* mutation and ERK1/2 expression in patients with CRC and the possibility of their use as prognostic indicators. The authors found that *BRAF* mutation and ERK1/2 expression might be associated with advanced or more aggressive CRC [10].

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

REFERENCES

- 1. Kranenburg O. The KRAS oncogene: past, present, and future. Biochim Biophys Acta 2005;1756:81-2.
- Popescu NC, Amsbaugh SC, DiPaolo JA, Tronick SR, Aaronson SA, Swan DC. Chromosomal localization of three human ras genes by in situ molecular hybridization. Somat Cell Mol Genet 1985; 11:149-55.
- 3. Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 2007;7:295-308.
- 4. Shepherd R, Forbes SA, Beare D, Bamford S, Cole CG, Ward S, et al. Data mining using the Catalogue of Somatic Mutations in Cancer BioMart. Database (Oxford) 2011;2011:bar018.
- Sithanandam G, Kolch W, Duh FM, Rapp UR. Complete coding sequence of a human B-raf cDNA and detection of B-raf protein kinase with isozyme specific antibodies. Oncogene 1990;5:1775-80.
- 6. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B,

Annals of Coloproctology Does *BRAF* Mutation and Extracellular Signal Regulated Kinase Expression in Patients With Colorectal Cancer Have Any Prognostic Significance?

Moo Jun Baek

Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 2002;418:934..

- 7. Ikenoue T, Hikiba Y, Kanai F, Tanaka Y, Imamura J, Imamura T, et al. Functional analysis of mutations within the kinase activation segment of B-Raf in human colorectal tumors. Cancer Res 2003; 63:8132-7.
- 8. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, et al. Roles of the Raf/MEK/ERK pathway in cell

growth, malignant transformation and drug resistance. Biochim Biophys Acta 2007;1773:1263-84.

- 9. Chong H, Vikis HG, Guan KL. Mechanisms of regulating the Raf kinase family. Cell Signal 2003;15:463-9.
- Kim HO, Kim BG, Cha SJ, Park YG, Lee TJ. Clinicopathologic significance of BRAF mutation and extracellular signal regulated kinase 1/2 expression in patients with a colorectal adenocarcinoma. Ann Coloproctol 2015;31:9-15.