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Abstract
Background: Profile Hidden Markov Models (pHMMs) are a widely used tool for protein family
research. Up to now, however, there exists no method to visualize all of their central aspects
graphically in an intuitively understandable way.

Results: We present a visualization method that incorporates both emission and transition
probabilities of the pHMM, thus extending sequence logos introduced by Schneider and Stephens.
For each emitting state of the pHMM, we display a stack of letters. The stack height is determined
by the deviation of the position's letter emission frequencies from the background frequencies. The
stack width visualizes both the probability of reaching the state (the hitting probability) and the
expected number of letters the state emits during a pass through the model (the state's expected
contribution).

A web interface offering online creation of HMM Logos and the corresponding source code can be
found at the Logos web server of the Max Planck Institute for Molecular Genetics http://
logos.molgen.mpg.de.

Conclusions: We demonstrate that HMM Logos can be a useful tool for the biologist: We use
them to highlight differences between two homologous subfamilies of GTPases, Rab and Ras, and
we show that they are able to indicate structural elements of Ras.

Background
Introduction
Many existing gene or protein sequences in different
organisms are related through evolution and can be
grouped into families. One way of representing such a
family is through a profile Hidden Markov Model (pHMM).
A pHMM is a fully probabilistic generative model; it spec-
ifies position-specific letter emission distributions and
also position-specific insertion and deletion probabilities

to describe a sequence family. The existence of efficient
algorithms for pHMM creation and database search [1]
makes pHMMs the tool of choice for protein family
research. For example, the protein family and domain
databases Pfam [2] and SMART [3] both use pHMMs.
However, the large number of parameters in the underly-
ing model makes it non-trivial to present a visual overview
of the characteristics that make up a family.
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For sequence profiles, also known as position-specific score
matrices (PSSMs), and ungapped multiple alignments,
there exists a visualization method called the Sequence
Logo [4]. A Sequence Logo graphically represents the con-
servation of the columns (positions) in a multiple align-
ment by plotting a stack of letters (nucleotides or amino
acids) for each position. The total stack height is com-
puted as the information content of the column, i.e., its rel-
ative entropy distance from an assumed background
distribution. The relative height of each letter in the stack
is proportional to its frequency at the position. Usually,
colors are used to represent different properties of the let-
ters (e.g., green for aromatic amino acids).

If we ignore the position-specific insertion and deletion
probabilities of a pHMM, we can treat is as a PSSM and
visualize it with a sequence logo (the makelogo tool of the
SAM software package [5] does exactly this), but this
would mean throwing away a substantial part of the avail-
able information. Therefore our aim is to modify
Sequence Logos in such a way that they give an impres-
sion of the central aspects of pHMMs: Which positions
can be deleted, which ones are highly conserved, and
where can we expect long insertions?

Profiles and sequence logos
Let Σ be an alphabet and |Σ| its cardinality. For DNA, |Σ|
= 4, and the letters of the alphabet are the four nucleotides
A, C, G, and T. For proteins, |Σ| = 20, and the letters are
the twenty amino acids.

A profile is a probabilistic description of a sequence. It
specifies a probability distribution over the alphabet's let-
ters for each position. More formally, a profile P of length
L over Σ is an L x |Σ| matrix (Pij) (i = 1,...,L; j ∈ Σ), such
that Pij ≥ 0 for all i, j and Σj∈Σ Pij = 1 for all i.

A multiple sequence alignment of N sequences with L col-
umns or positions can be interpreted as a profile. Let Cij be
the number of occurrences of letter j ∈ Σ at position i, and
let Ni ŧ Σj ∈ Σ Cij ≤ N be the number of non-gap letters at
position i. Then the maximum likelihood (ML) estima-
tion of the profile P associated with this alignment is
given by Pij ŧ Cij/Ni. When the multiple alignment con-
tains only few sequences, ML estimation results in many
"impossibilities" (zero probabilities) in the profile and
hence in over-fitting the model to the small sample. To
counteract this problem, the profile is regularized, either
by using Dirichlet mixture priors [6], or by alternative
techniques (e.g., [7]).

The uncertainty or entropy [8] of distribution Pi at the i-th
position of the profile is given by H(Pi) = -Σj ∈ Σ Pij log2 Pij.
The entropy H(Pi) is always nonnegative. It vanishes if
and only if Pi is a Dirac distribution, i.e., if the whole mass

is accumulated at a single letter. The entropy takes its max-
imal value of log2 |Σ| bits (2 bits for DNA, approximately
4.32 bits for proteins) when Pi is the uniform distribution,
i.e., when Pij = 1/|Σ| for all j [9]. Since we use the binary
logarithm log2, the unit of the entropy is called a "bit".
When we use the natural logarithm, it is called a "nat",
and for log10, it is called a "dit".

We may define the information content I(Pi) of position i as
the "opposite" of its uncertainty,

The information content is a number between 0 and log2
|Σ| bits and measures the conservation of a position in a
profile.

Since conserved positions in sequence families are consid-
ered to be functionally or structurally important, they
should stand out when the profile is visualized. Schneider
and Stephens [4] achieved this goal by representing each
position by a stack of letters, where the stack height at
position i is precisely the information content I (Pi).

While this method works well on DNA alignments, addi-
tional considerations must be made for protein
sequences. Amino acids naturally occur with different
"background" frequencies. For example, tryptophan (W)
occurs much less frequently than leucine (L). The back-
ground frequencies might be computed by counting
amino acid occurrences in all known proteins, or only in
the proteins of the superfamily under consideration.
Assume that the background frequency of amino acid j is
πj > 0. Then the important positions are those whose dis-
tribution differs from π. Therefore it has become common
practice to consider the relative entropy between the distri-
butions Pi and π,

where 0·log2(0/πj) ŧ 0 by continuity as long as πj > 0.

Note that for the uniform distribution πj = 1/|Σ|, we have
H(Pi || π) = I(Pi). Thus the information content of Pi, as
defined above, is its relative entropy distance from the
uniform distribution.

In a classical Sequence Logo, the stack height at position i
is H(Pi || π), the height of letter j within the stack is Pij H(Pi
|| π), the letters are stacked in sorted order, the largest let-
ter being on top of the stack, and colors may be used to
highlight different properties of different letters. The
HMM Logo inherits all of these characteristics, but also
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has additional ones to represent the additional informa-
tion contained in a pHMM.

Profile HMMs
An HMM is a discrete time Markov chain that emits a let-
ter from the alphabet Σ whenever a state is visited. The
central idea is that only the emitted letters can be
observed, but that the state sequence is hidden. A compre-
hensive review on the topic of HMMs can be found in the
literature [10]. Profile HMMs are a specialization of
HMMs to represent sequence families. Applications to
protein modeling were first described in a paper by Krogh
and co-workers [11], and are reviewed, for example, by
Eddy [1].

Figure 1 shows the transition graph of a pHMM according
to the HMMER software package [12]. For each position i
(a consensus column of the underlying multiple align-
ment), a "match" state Mi models the distribution Ei of
emitted letters at that position; it corresponds exactly to
the profile distribution Pi. An "insert" state Ii allows for
insertion of one or more letters between positions i and i
+ 1; their distribution  is individually specified for each
insert state. A "delete" state Di is non-emitting and allows
to pass the corresponding match state Mi, resulting in a
deletion at the i-th alignment position. The part consist-
ing of the Mi, Ii, and Di states, flanked by the B and E states,
is called the main model. There are further special states (S,

N, J, C, and T) in Figure 1, which are not relevant for
HMM Logos. As an exception, the background frequencies
π of the letters may be learned from the emission proba-
bilities of the N or C state, which represent flanking
sequence.

A path through the main model starts in the silent (non-
emitting) begin state B, ends in E, and follows the legal
state transitions. As in every Markov chain, state transi-
tions have probabilities associated with them. We write
As,t for the transition probability s → t, so we have As,t ≥ 0,
Σt As,t = 1 for all s, and As,t = 0 whenever no arrow s → t
exists. There are exactly seven outgoing transitions (hence
the model name Plan7) from every position i (except the
last one): Mi → Ii, Mi → Mi+1, Mi → Di+1; Di → Mi+1, Di →
Di+1; Ii → Mi+1, and the self-loop Ii → Ii.

There are two major pHMM software packages, HMMER
[12] and SAM [5], with small differences between their
model topologies. So far we have described the HMMER
model. The SAM model allows more state transitions: In
addition to the transitions marked by the solid arrows in
Figure 1, the transitions marked by dashed arrows, Di → Ii
and Ii → Di+1 are possible.

A model of a profile HMM of length 3Figure 1
A model of a profile HMM of length 3. Transitions marked by solid arrows constitute the Plan7 model used by HMMER [12]. In 
the SAM model [5], additionally D → I and I → D transitions (dashed arrows) are possible.
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Results
HMM Logo concepts
The relevant information contained in a pHMM of length
L can be summarized as

• letter background frequencies π = (πj), j ∈ Σ,

• emission probabilities E = (Eij) for match states (Mi), i =
1,...,L, j ∈ Σ,

• emission probabilities E' = ( ) for insert states (Ii), i =

1,...,L - 1, j ∈ Σ,

• state transition probabilities A = (As,t).

Sequence Logos can already take care of visualizing the
emission probabilities in comparison to the background
frequencies. We shall use the remaining dimension of a
stack, its width, to visualize the transition probabilities in
a meaningful way.

Each path B → … → E through the main model visits
("hits") certain states and misses others. For example, a
path may hit either Mi or Di, but not both. When a path
hits an insert state Ii, several letters may be emitted before
it moves on to Mi+1. This leads to the following
definitions.

Definition 1 (Hitting probability). Let s be a state of the
main model. The hitting probability h(s) is the probability
that a path B → … → E following the transition probabil-
ities A, hits s at some point between B and E.

Definition 2 (Contribution). Let s be a match or insert
state of the main model. Its contribution C(s) to an emitted
sequence is a random variable describing the number of
emitted letters in s along a path B → … → E. Further, we
define c(s) ŧ  [C(s)] as the expected contribution of state s.

Computation of hitting probabilities
The hitting probability of a state equals the sum of proba-
bilities of all paths B → … → E visiting this state. Because
of the self loops in insert states, this is an infinite number
of paths. The hitting probability can nevertheless be com-
puted efficiently using a forward-type dynamic program-
ming algorithm as follows.

Proposition 1. Define  as the

conditional probability that a path hitting Ii-1 exits into Mi.
Then 1 - µi is the probability of exiting into Di. For the
Plan7 model disallowing the Ii-1 → Di transition we have
µi = 1. For the general SAM-type pHMM model allowing
all 9 transitions, the hitting probabilities are

• at the first position given by

• at the following positions i ≥ 2 given by

Proof. The initializations for h(M1) and h(I1) are obvious
from Figure 1. At every position i ≥ 1 we have h(Di) = 1 -
h(Mi) because each path passes either through Mi-1 or Di-1.

For h(Mi), i ≥ 2, there are three ways into Mi. The first term
accounts for paths that come directly from Mi-1, the sec-
ond term similarly accounts for direct entries from Di-1,
and the last term accounts for paths that enter via Ii-1. A
similar argument applies to the insert state hitting proba-
bilities, for which there are only two ways of entry. All
probabilities can be expressed solely in terms of h(Ii-1) as
shown. �

Computation of expected contributions
The expected contribution of each state is easily derived
from its hitting probability. Since delete states are non-
emitting, their contribution is zero.

Proposition 2 (Expected contribution). We have

• c(Mi) = h(Mi),

• .

Proof. If a match state Mi is hit, it contributes C = 1 letter;
otherwise, it contributes nothing. This results in an expec-
tation of c(Mi) = 1·h(Mi) + 0·(1 - h(Mi)) = h(Mi).

If an insert state Ii is hit, its contribution has a geometric
distribution with "success parameter" (probability of leav-

ing the state) . Then the expected sojourn time is

the reciprocal of this probability. If the state is not hit, its
contribution is zero. Together, this results in an expecta-

tion of . �

Proposition 3 (Expected number of emitted letters). The
expected number of emitted letters during a walk from B
to E through a profile HMM with L positions is
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Proof. Every emitting state s emits on average c(s) letters
during a walk from state B to E. The proposition follows
from the linearity of expectation. �

We find it logical to set the width of the stack of an emit-
ting state s to c(s), for then by Proposition 3, the total
width of the logo represents the total number of emitted
letters. However, we would like to display both the hitting
probability and the expected contribution of a state. This
is a non-problem for match states. For insert states s, we
always have h(s) ≤ c(s), and so we can use two different
background shadings for h(s) and for the remainder c(s) -
h(s).

HMM Logo layout
The final definition of an HMM logo is as follows; see Fig-
ure 2 for a typical example.

• HMM Logos consist of alternating stacks for match and
insert states for all positions 1,...,L in the profile; the stack
order is M1, I1, M2, I2,...,IL-1, ML.

• The total height of a stack is the relative entropy H(e||π)
between the state's emission distribution e and the back-
ground distribution π obtained from state N.

• The relative height of letter j ∈ Σ within the stack is pro-
portional to its emission probability ej.

• The letters are stacked in sorted order, the largest letter
being on top of the stack.

• The total width of a stack s is its expected contribution
c(s).

• The background of an insert state's stack is shaded in two
different colors for a total width of c(s) "letter units". The
first h(s) units represent the hitting probability and are
shaded with a medium-red background. The remaining
c(s) - h(s) units are shaded with a lighter red.

• The upper left corner of the logo shows a horizontal bar
representing a contribution of 1 letter.

• Insert state stacks are always displayed with a width of at
least one pixel, thus making consecutive positions easier
to distinguish.

• Letters are drawn in different colors. The color scheme
depends on the alphabet; amino acids are colored to rep-
resent structural or functional similarity.

• The position number is displayed on the x-axis below
every match/insert pair. The height of the y-axis is min(2,
maxi {H(Ei|| π), H(  || π)}) bits, i.e., at least 2 bits, even

if all stacks have a lower height.

Partial logo (positions 172–209) of the Pfam pkinase modelFigure 2
Partial logo (positions 172–209) of the Pfam pkinase model. Positions with narrow match state stacks are likely to be deleted in 
typical family members. The total width of a red-shaded (dark+light) stack visualizes the expected number of inserted letters. 
The left dark-shaded part of the stack's width represents the probability that at least one letter is inserted. The difference is 
illustrated by comparing I173 with I176: Both states have approximately the same expected contribution, but the hitting probabil-
ity of I176 is higher. The insertion stack height is zero for all shown examples because the emission probabilities correspond to 
the background frequencies.
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Visualization of subfamily-specific sites
Since profile HMMs are predominantly used for protein
family and domain modeling, we present examples that
illustrate the utility of HMM Logos in this area.

While building an HMM for a domain, one usually tries to
cover all homologous sequences. But, with ongoing exper-
imental characterization, it often becomes clear that a sin-
gle domain family consists of multiple, functionally
divergent subfamilies.

Identifying these subfamilies and characterizing their
determinants is an important step in protein function pre-
diction. Creation of subfamily-specific profile HMMs is a
first step in this direction performed by domain databases
like SMART [3]. HMM Logos highlight regions which dis-
tinguish homologous subfamilies from each other and
thereby facilitate the detection of subfamily determinants.
Here, we illustrate this application on two subfamilies,
Ras and Rab, of the small GTPases, whose profile HMMs
were obtained from the SMART multiple subfamily
alignment.

Combining sequence and structure analysis, Pereira-Leal
and Seabra identified five regions which distinguish the
Rab proteins from Ras like members [13]. Figure 3 depicts
four of these regions (RabF2 to RabF5), which, in the
three-dimensional structure, cluster between sheets β3
and β4. These are included in the switch II region, which
changes conformation upon binding of GTP or GDP and
mediates interactions with effectors and regulators. Fur-
thermore, this region allows interactors to distinguish
between Ras and Rab proteins and thus should contain
subfamily determinants. By comparing the HMM logos
for the two subfamilies, indeed both, domain and sub-
family specific sites become apparent. For example, N-ter-
minal to the small GTPase typical sequence DTAG, there
is a highly conserved W in the Rab subfamily, whereas the
corresponding site in Ras protein shows less conservation
but a prevalence of the hydrophobic amino acids L or V.

Highlighting of loop regions
An important feature distinguishing HMM Logos from
standard Sequence Logos is their ability to visualize
regions with long expected inserts. These insertions usu-
ally do not happen within conserved structural elements,
that is alpha helices or beta sheets, as this would influence
and possibly break the structure of the whole domain.
Instead, insertions are more likely to occur within loop
regions.

Therefore the presence of frequent insertions at a given
site can indicate that the site itself and its neighbors lie
within a loop region. Figure 4 illustrates that this concept
holds true for the HMM of the Ras domain. Here two

regions with a prominent insert state can be found. Map-
ping them onto the known secondary structure (Protein
Data Bank identifier PDB:121P) shows that these insert
states indeed fall between the known structural elements.

Discussion
The examples in the previous section illustrate the poten-
tial utility of HMM Logos, but they also point out a partic-
ularity of the HMMER software: In all Pfam and SMART
pHMMs we looked at, the stack height in all insertion
states is zero. This seems to be a consequence of HMMER's
hmmbuild program: Insert states receive a very high emis-
sion prior that is equal to the background. This makes
sense to allow the insertion of variable sequence parts of
varying lengths at a position, i.e., in an insert state with
high expected contribution. In order to change the emis-
sion probabilities away from the background, one would
have to observe a consistent insertion that is common to
several family members at the same position. Then how-
ever, hmmbuild would model this conserved "insertion"
as a match state and model the sequences skipping this
position via the delete state, even if this is the majority of
the family members. This is immediately obvious from
the numerous narrow match states shown in Figure 2. In
our opinion, these narrow match states could be modeled
more meaningfully as insert states with non-trivial emis-
sion probabilities. So while HMMER supports insert-spe-
cific emission probabilities, they do not seem to be used.
HMM Logos immediately made this particularity visible;
we were not aware of it before.

While we hope that HMM Logos can help to compare
families visually, the RAS-RAB example (Figure 3) leaves
us asking for more functionality: It would be useful to
align two or several logos. In this way, a multiple family
alignment of many sequences from a few different sub-
families could be represented as a multiple alignment of a
few logos. Finding the most natural definition of the
alignment score and the graphical representation of such
a Logo alignment seem to be interesting topics for the
future.

Conclusion
We have developed a method to visualize profile HMM
specific information and demonstrated its utility for the
biologist who wants to look at the model of a protein fam-
ily or domain.

A PERL package for parsing and visualizing HMMER
pHMMs is available under the GNU General Public
License from the authors and can be downloaded from
the Logos server of the Max Planck Institute for Molecular
Genetics http://logos.molgen.mpg.de. At the same loca-
tion we also offer the WWW-based tool LogoMat-M for
HMM Logo generation which can be accessed in several
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ways. For example, in an interactive web form the user
may specify a file in HMMER format which is uploaded
and processed. Available options are described in the
online help. Alternatively, it is possible to URL-encode
Pfam identifiers, such as in

http://logos.molgen.mpg.de/cgi-bin/logomat-m.cgi?pfa
mid=AAA.

This will display a logo of the Pfam entry "ATPase family
associated with various cellular activities" (AAA), using

the default settings. Finally, the logos can be directly
accessed from the Pfam website by pressing the "View
HMM Logo" button on each domain's or family's over-
view page.

Authors' contributions
SR had the initial idea to use the stack width to visualize
the insertion and deletion probabilities. BSB imple-
mented the software and the web server and invented the
two-colored scheme for visualizing both hitting probabil-
ity and expected contribution of an insert state. This work

Comparison of the HMM Logos of the small GTPases Ras and Rab from SMART [3]Figure 3
Comparison of the HMM Logos of the small GTPases Ras and Rab from SMART [3]. The Ras logo is based on an alignment of 
35 sequences; the Rab logo on 48 sequences. The height of the entire vertical axis is 5 bits for both logos. Subfamily specific 
sites RabF2 to RabF5 [13] are indicated by arrows.
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Mapping of structural elements to a region of the Ras family HMM LogoFigure 4
Mapping of structural elements to a region of the Ras family HMM Logo. The mapping was obtained by aligning the sequence of 
p21 ras, the structure of which has been solved, to the Ras family pHMM. Below the logo, insert regions are highlighted by ver-
tical arrows, and the secondary structure of p21 ras is indicated (alpha helices: barrels; beta sheets: horizontal arrows).
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