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ABSTRACT

Identifying binding targets of RNA-binding proteins
(RBPs) can greatly facilitate our understanding of
their functional mechanisms. Most computational
methods employ machine learning to train classifiers
on either RBP-specific targets or pooled RBP–RNA
interactions. The former strategy is more powerful,
but it only applies to a few RBPs with a large num-
ber of known targets; conversely, the latter strategy
sacrifices prediction accuracy for a wider applica-
tion, since specific interaction features are inevitably
obscured through pooling heterogeneous datasets.
Here, we present beRBP, a dual approach to predict
human RBP–RNA interaction given PWM of a RBP
and one RNA sequence. Based on Random Forests,
beRBP not only builds a specific model for each RBP
with a decent number of known targets, but also de-
velops a general model for RBPs with limited or null
known targets. The specific and general models both
compared well with existing methods on three bench-
mark datasets. Notably, the general model achieved
a better performance than existing methods on most
novel RBPs. Overall, as a composite solution overar-
ching the RBP-specific and RBP-General strategies,
beRBP is a promising tool for human RBP binding es-
timation with good prediction accuracy and a broad
application scope.

INTRODUCTION

RNA-binding proteins (RBPs) are a broad class of pro-
teins, which coordinate co- and post-transcriptional gene
regulation through binding to premature or mature mR-
NAs (1,2). Since the early discovery of heterogeneous nu-
clear ribonucleoproteins, various RNA-binding domains
have been characterized, and many RBPs have been iden-
tified (3,4). As important co- and post-transcriptional reg-
ulators, RBPs are involved in many human diseases, such

as neurologic disorders and cancers (5). Recent pan-cancer
studies have even found that RBPs possess more striking ex-
pression aberration than transcription factors, suggesting
that RBPs play an important role in cancer pathogenesis
(6,7).

Identifying RBP targets and building RBP–RNA regula-
tory networks are critical for understanding the RBP func-
tion. However, predicting RBP–RNA interactions remains
challenging due to interaction complexity and our limited
knowledge of how RBPs recognize their targets. With a
very limited number of known RNA targets, researchers
pooled all known RBP–RNA interactions to train a univer-
sal classifier, in an attempt to learn the general interaction
features applicable to all RBPs (8–11). For instance, Sup-
port Vector Machine or Random Forest was employed to
develop a classifier involving >100 features derived from
all known RBP targets. Recently, a statistical test-based
method, RBPmap, was proposed for distinguishing poten-
tial target sequences of RBPs (12). Although RBPmap takes
advantage of each RBP’s sequence binding preference, it
still provides a generic strategy in which one common model
is used to predict targets for all RBPs. Overall, such RBP
generic strategy is pragmatic and successful, but has limited
prediction accuracy, since specific binding properties are in-
evitably obscured through pooling heterogeneous datasets.

In the past few years, the rapid development of high-
throughput techniques has greatly expanded our knowl-
edge of RBPs. In-vitro (SELEX (13) and RNAcompete (14))
and in-vivo experiments (RIP-chip (15), RIP-seq (16) and
CLIP-seq (17)) streamlined RBP-bound RNA extraction
and detection at the transcriptome scale. These new tech-
niques have been used to identify binding targets of indi-
vidual RBPs in a high-throughput manner (18–20). As a re-
sult, a large number of targets have been discovered for a few
RBPs, which are collected into databases such as RBPDB
(21), doRiNA (22) and AURA (23). In addition to the ex-
pansion of RBP-specific known targets, our knowledge of
RBP-binding motifs has greatly improved. Based on abun-
dant target sequences for an individual RBP, a degenerate
RNA segment (usually 4–7 nucleotides long) can be profiled
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as the RBP-specific binding preference. Recently, systematic
RNAcompete experiments have determined RNA sequence
preferences for 207 RBPs, including 85 human RBPs (24).

The accumulation of target RNAs and binding motifs for
individual RBPs enable the development of RBP-specific
target prediction methods. In designing the RBP target pre-
diction method Oli (25), it has been pointed out that ‘it is
reasonable to train one Support Vector Machine per RBP
in order to model its specific binding properties.’ Oli re-
sembles the earlier RBP-generic methods in many ways,
but it develops one classifier for each RBP-specific training
datasets. Lately, DeepBind employs deep learning to build
a specific model for each RBP separately (26). iONMF in-
tegrates multiple data sources, such as gene region type,
sequence motifs, gene annotation, RNA secondary struc-
ture and RBP co-binds, to discover RNA binding of each
specific RBP (27). iDeep, built upon iONMF, proposes a
deep-learning based framework to predict RBP–RNA in-
teraction (28). Such RBP-specific strategy has the potential
to capture unique RNA binding patterns inherent in each
RBP, but prediction accuracy is highly dependent on the
size of each training dataset. Since only a few RBPs have
sufficient data to warrant the prediction power, the RBP-
specific strategy is not applicable to the vast RBPs with very
few or null known targets.

Here, we propose beRBP (‘Binding Estimation for hu-
man RBPs’) to predict human RBP targets, a dual approach
overarching the RBP-specific and RBP-General strategies.
‘Specific models’ were built for 29 human RBPs, each of
which had a sizeable number of known binding targets. Be-
yond that, a ‘General model’ was established for handling
any RBPs with little or no target information but known
binding preferences. The Specific and General models both
compared well with existing methods on three benchmark
datasets compiled from AURA (23), ENCODE eCLIP (29),
and doRiNA (22). Notably, the beRBP-General model per-
formed better than DeepBind and RBPmap on most novel
RBPs, none of whose targets were used to build the model.
Compared with DeepBind models for 80 human RBPs and
RBPmap predictions for 94 human RBPs, beRBP provides
general predictions for 143 human RBPs. With a general
strategy, although both RBPmap and beRBP-General can
be applied to any RBPs with known PWMs, RBPmap re-
quires the motif length to be 4–10 bp long, while beRBP-
General has no restriction on the motif length. In addi-
tion, beRBP webserver provides general predictions for
user-provided PWM or even RBP sequence, from which
PWMs are inferred based on the finding that two proteins
sharing >50% sequence identity on RBDs (RNA Bind-
ing Domains) are likely to have similar motifs (24). Over-
all, beRBP is a powerful tool for predicting RNA targets
of human RBPs with outstanding prediction accuracy and
a broad application scope. beRBP is available at http://
bioinfo.vanderbilt.edu/beRBP/.

MATERIALS AND METHODS

Sequence and structure features

Given a candidate RNA sequence and an RBP motif rep-
resented by a position weight matrix (PWM), four types of
features were generated to consider motif match, sequence

environment, structural accessibility and evolutionary con-
servation of each putative binding site (Figure 1A).

Matching score (MS)

The candidate sequence was scanned to identify the top N
best matches to the given PWM. The matching score (MS)
of the subsequence starting from position i was calculated
according to Equation (1), where k is the motif length, Nj
the jth (i ≤ j ≤ i + k – 1) nucleotide in the candidate se-
quence (Nj ∈ (A, C, G, T/U)), and fNj−i+1

j
the frequency of

the jth nucleotide at the j − i + 1 position in the given PWM.
To find the optimal N, beRBP performance using different
number of best matching sites (N = 3, 5, 10, 15 or 20) were
evaluated based on the binding target sets of PUM2, QKI,
and ELAVL1 from a related study (25). Across all three
datasets, the prediction performance improved consistently
as the number of matching sites increased from 3 to 10,
while it became stable or even decreased when the param-
eter further increased to 15 or 20 (Supplementary Figure
S1). This suggested that the top 10 best matches contribute
most to the binding prediction. Therefore, the top 10 match-
ing sites were considered as putative binding sites, and the
corresponding matching scores were denoted as MS1, MS2,
. . . , and MS10.

MS =
∑i+(k−1)

j=i

(
fN j−i+1

j

)
(1)

Clustering score (CS)

Besides PWM match, the sequence environment of each
putative binding site was also considered. The clustering
propensity around each site was estimated by calculating
the matching score of a 50-nt window centered on the site as
previously described by RBPmap (12). In detail, five locally
maximum matching scores within the 50-nt window were
first identified and ranked. Each matching score was then
weighted by its rank and the clustering score CS was cal-
culated by summing the rank-weighted matching scores as
Equation (2), where Sr denotes the matching score (defined
in Equation 1) ranked at the top rth place and 2−r denotes
the rank-based weight.

CS =
∑5

r=1
2−rSr (2)

Spatial accessibility (Gacc)

To assess the spatial accessibility of each putative binding
site, a 180-nt segment was extracted by extending the bind-
ing site (∼10 nt) at both sides with 15-nt (immediate flank-
ing) stretches and 70-nt (further flanking) sequences (180 =
10+2 × 15+2 × 70). Previous studies have discovered that
not only the target site but also 3∼15 flanking nucleotides
should be considered to give a more accurate accessibility
quantification (30,31). To be safe, we chose to extend the
site by 15 flanking nucleotides. Since there is a low proba-
bility of secondary structure base-pairing interactions be-
tween nucleotides that are separated by more than 70 nu-
cleotides (31), we further extended 70 bases at both sides
to predict the RNA fold structure. Using a similar strategy

http://bioinfo.vanderbilt.edu/beRBP/
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Figure 1. Schema of beRBP. (A) Four types of features. (1) Matching score is calculated as the high-scoring match to a given PWM; (2) clustering score
is estimated by summing the rank-weighted five locally matching scores of a 50-nt window centered on the putative binding site; (3) conservation score
is quantified by an average of the conservation scores of ten consecutive positions starting at the putative binding site; (4) spatial accessibility score is
calculated by the difference in the minimum free energy between unconstrained and constrained secondary structures for the 180-nt segment, which is
extracted by extending the binding site (∼10 nt) at both sides with 15-nt (immediate flanking) stretches and 70-nt (further flanking) sequences. (B) beRBP-

Specific models and beRBP-General model. Given a PWM, positive and negative sequences are converted into a feature matrix ( ), and a specific Random

Forest model is trained over the feature matrix ( ). The raw feature matrix is standardized against background sequences ( ), and feature matrices

for RBPs are pooled together ( ) to build the General model ( ). (C) beRBP webserver. Users can upload one or multiple query sequences, choose
one, multiple or all RBP:PWM(s) for specific or general predictions. beRBP will determine whether RBP(s) binding to RNA sequence(s) of interest.

as previously described (31), an accessibility score Gaccfor
each putative binding site was calculated as the difference in
free energy of ensemble structure between the original seg-
ment (Gunconstrained) and a constrained segment (Gconstrained)
(Equation 3). The constrained segment, which had the same
sequence as the original segment, was subject to a folding
constraint that the 40-nt core stretch must remain unpaired.
Program ‘RNAfold’ from the toolkit ViennaRNA (v2.1.9)

(32) was employed for RNA folding and free energy estima-
tion.

Gacc = Gconstrained − Gunconstrained (3)

Conservation score (Csrv)

Additionally, the evolutional conservation of each puta-
tive binding site was considered. The 40-nt core stretch
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was aligned against the human reference genome using
MegaBlast (33). Based on the UCSC track ‘phyloP100way’,
the conservation score (Csrv) for the binding site starting
from position i was quantified by an average of the conser-
vation scores of ten consecutive positions (cj, i ≤ j ≤ i + 9)
(Equation 4).

Csrv =
∑i+9

j=i
c j (4)

In summary, there are four types of features for each
putative binding site, namely matching score (MS), clus-
tering score (CS), spatial accessibility (Gacc), and conser-
vation (Csrv). With ten putative binding sites, ten match-
ing scores (denoted as MS1, MS2, . . . , MS10), ten cluster-
ing scores (CS1, CS2, . . . , CS10), ten accessibility scores
(Gacc1, Gacc2, . . . , Gacc10), and ten conservation scores
(Csrv1, Csrv2, . . . , Csrv10) would be obtained. That is, each
candidate sequence was encoded into a vector of totally 40
features, which serves as the feature matrix of the Random
Forest model.

Post-scoring standardization

Each RBP has its unique binding preference, represented
as a PWM. Highly dependent on PWMs, features are not
directly comparable across RBPs. A post-scoring standard-
ization step, which removes the dependence of features on
PWMs, is expected to break through barriers caused by
RBP binding specificity. Here, z-transformation was used to
standardize feature scores specific to a given PWM. To do
this, 21 147 randomly chosen 3′-UTR sequences were used
as the background set. For each background sequence, a
vector consisting of all aforementioned 40-feature scores on
the given PWM was calculated. For the feature j (1 ≤ j ≤ 40),
scores of background sequences formed an empirical distri-
bution, from which its mean Mj and standard deviation Sj
were derived. Based on the background distribution, a raw
feature score fij (for candidate sequence i and feature j) was
transformed into a standardized z-score, zij (Equation 5).

zi j =
(

fi j − Mj
)

Sj
(5)

RBP motifs and benchmark datasets

The binding preferences of RBPs, represented as PWMs,
were retrieved from cisBP–RNA database (24) (build
0.6; http://cisbp-rna.ccbr.utoronto.ca/), which collected
RNAcompete-recognized RBP-binding motifs (24), as well
as other motifs inherited from an earlier database RBPDB
(21). Since RNAcompete motifs dominate in cisBP–RNA,
we preferred RNAcompete motifs over others for each RBP.
Non-RNAcompete motifs were chosen only when RNA-
compete motifs were unavailable. In this way, some RBPs
have one motif, while other RBPs possess multiple motifs.

Experimentally validated target sequences (3′-UTRs) for
human RBPs (positive datasets) were downloaded from
AURA (v2, 8/5/2015; http://aura.science.unitn.it/), which
is a manually curated and comprehensive catalog of hu-
man UTRs bound by regulators, including RBPs. Target

sequences shorter than 150 nucleotides were removed. Af-
ter the filtration, CIRBP and NCL have very few target
sequences, 64 and 97, respectively. For those RBPs with
>6000 target sequences, like ELAVL1 and IGF2BP1, mod-
ule ‘cd-hit-est’ from the web-service CD-HIT (34) were im-
plemented to cluster sequences of 90% or higher similar-
ity, by which redundancy was removed and the size of the
dataset was reduced. The size of positive dataset for each
RBP was shown in Supplementary Table S1.

Designation of negative datasets is generally problem-
atic since we don’t have experimental negatives. A previous
study has demonstrated that random sequences can pro-
vide a good approximation when no experimental negatives
are available, which showed highly correlated performance
between experimental negatives and random negatives (R
= 0.99) (25). Following the idea, we randomly chose 3000
sequences from the 3′-UTR pool as pseudo negatives. Af-
ter removing short sequences (<150 nt) and those overlap-
ping with positive sequences, the size of the negative dataset
for each RBP varied slightly (Supplementary Table S1). Re-
peatedly, we generated five random negative datasets, where
each negative were paired with the positive to establish the
dataset for each RBP.

beRBP-specific and beRBP-General models

A specific model was built for one RBP if its binding pref-
erence was available and it had sufficient number of known
targets (>100 before length filtration) in AURA. Among
the RBPs covered by AURA, we obtained motifs of 28 hu-
man RBPs (Supplementary Figure S2A) from cisBP–RNA
and the motif of PUM2 from a published study (31). There-
fore,we developed beRBP-Specific models for 29 RBPs in
total. Technically, we built a specific model for each unique
RBP:PWM combination. Since some RBPs had multiple
PWMs, we actually built 37 Specific models for 29 RBPs
(Supplementary Table S1). beRBP performance was eval-
uated on five datasets (the positive paired with each neg-
ative from five random negatives, Materials and Methods)
using an out-of-bag strategy (35). The training and predict-
ing processes were implemented using R package ‘random-
Forest’ (36) (Figure 1B).

Using the post-scoring standardization described above,
we pooled known targets from different RBPs to build
an RBP-generic model. The raw feature scores of each
RBP were standardized by z-transformation against a back-
ground dataset; afterwards, standardized data matrices
from different RBPs were used to train the model which in-
volved 141 143 positive sequences. 282 286 sequences, ran-
domly sampled from the 3′UTR pool, were used as the
negative dataset, leading to a 1:2 positive–negative ratio.
Currently there is no consensus on how to select the op-
timal positive-negative ratio. Although it is recommended
to use equal portion of positive and negative samples in
machine-learning approaches, this practice generally does
not give good results in the real life because it doesn’t re-
flect the ratio in reality. In the eCLIP dataset, which kind
of reflect the ratio in reality, most RBPs only have 6000–
10 000 binding sites out of more than 20,000 genes (29).
Considering there are generally more non-binding events
than RBP binding event, we thought that a 1:2 positive-

http://cisbp-rna.ccbr.utoronto.ca/
http://aura.science.unitn.it/
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negative ratio instead of 1:1 would achieve good perfor-
mance in the whole-transcriptome scan. A Random For-
est classifier, termed the ‘General model’ henceforth, was
trained to capture the general feature of RBP–RNA in-
teractions beyond PWM confinement (Figure 1B). Unlike
specific models, beRBP-General model can be applied to
any RBPs as long as their binding preferences are available.
cisBP–RNA included motifs for 153 human RBPs; after re-
moving deprecated IDs, 143 human RBPs were left. beRBP
provide general predictions for all 143 human RBPs.

beRBP models are available at http://bioinfo.vanderbilt.
edu/beRBP/. beRBP enables binding discovery on
one/multiple RNA sequences for 29 RBPs/37 PWMs
(Specific models), 143 RBPs/175 PWMs (the General
model), and any RBPs with user-provided PWMs or
RBP sequences (the general model). beRBP allows users
to select one RBP/PWM, multiple RBPs/PWMs, or all
RBPs/PWMs, which is very useful for screening RBP(s)
binding to RNA sequence(s) of interest (Figure 1C).

Whole-transcriptome target scan

In order to evaluate beRBP performance at the whole-
transcriptome scale, beRBP was applied to scan all human
3′-UTR sequences for binding prediction. Targets from EN-
CODE eCLIP data (https://www.encodeproject.org) were
used as the gold standard, which utilizes enhanced CLIP
technologies to identify reliable in vivo RBP binding tar-
gets (Supplementary Table S2) (29). Only peaks falling into,
or overlapping with 3′-UTR regions were considered. Com-
mon peaks (i.e. peaks located within the same 3′-UTR)
identified from two replicate experiments were treated as
true positives. Since some eCLIP targets were also included
in AURA and thus already used to build the model, those
common targets were excluded to make a fair and unbiased
comparison with existing methods, which removed 0.4–
24.8% of eCLIP targets. Although eCLIP provides binding
targets for 115 human RBPs, only 25 RBPs have PWMs
available in cisBP–RNA (Supplementary Figure S2B). In
addition, we added the PWM of another RBP (PUM2)
from a published study (31). Therefore, beRBP-General was
implemented for these 26 RBPs since PWM is a required
input. Among 26 RBPs, 17 RBPs have prebuilt beRBP-
specific models, 25 met the motif length requirement of
RBPmap (4–10 nt), and 19 have DeepBind models available
(Supplementary Figure S2B).

Binding prediction on any RNA regions

To further evaluate beRBP performance on any RNA seg-
ments without limiting to 3′ UTR regions, binding targets
from doRiNA were used to establish the gold standard,
which collects in vivo binding sites of individual RBPs from
CLIP-seq studies (22). We included all binding sequences in
any RNA regions, including 5′-UTRs, introns, exons, and
3′-UTRs. As described in a previous study (24), sequences
with doRiNA score in the top five percentile were treated
as binding targets/positive sequences. When necessary, the
percentile cutoff was relaxed to include a maximum of 1000
sequences. Sequences shorter than 300 nt were extended
symmetrically in both directions to 301 nt. Excessively long

sequences (>21 000 nt) were removed. In both the upstream
and downstream of 300-bp from each positive sequence,
301-nt sequences were extracted as negative data. The non-
redundant positive and negative sequences were compiled
into the benchmark. The performance of beRBP, RBPmap
and DeepBind were evaluated on 14 human RBPs, which
had binding data in doRiNA, PWMs available in cisBP–
RNA and were also covered by DeepBind (Supplementary
Figure S2C).

RESULTS

beRBP-Specific models achieved good performance for RBP
binding prediction

beRBP-Specific models for 29 human RBPs/37PWMs
were trained using Random Forests based on the posi-
tive dataset from AURA and five negative datasets from
random sequences (Materials and Methods). The perfor-
mance was estimated by the AUC (area under receiver-
operating-characteristic curve) calculated from out-of-bag
votes, which is the prediction on each sample using only the
trees that do not have the sample in their bootstrap pro-
cedures. beRBP was compared with three latest methods,
RBPmap (12), DeepBind (26) and iONMF (27). RBPmap
provides a universal classifier for all RBPs, while DeepBind
and iONMF belong to the RBP-specific category. Unlike
beRBP, RBPmap, and DeepBind providing pre-built mod-
els, iONMF equips users an algorithm to construct pre-
diction models. Additionally, while other methods take se-
quences as the input, iONMF requires users to generate
multiple biological feature matrices by themselves, such as
region type, structure, and GO annotations. iONMF was
implemented for all 29 RBPs/37 PWMs, while RBPmap
was applied to 27 RBPs/34 PWMs except IGF2BP1, NCL
and ZFP36 1, since their motifs length exceed the require-
ment of 4–10 nt. Although DeepBind provided models for
80 human RBPs out of totally 194 RBP models, only 19
RBPs have binding data in AURA (Supplementary Figure
S2A). Therefore, the performance of DeepBind on these 19
RBPs was estimated and was compared to beRBP.

Overall, beRBP-Specific models achieved better perfor-
mance for most RBPs/PWMs, with AUC values ranging
from 0.61 to 0.97 and a median value of 0.80 (Figure 2A
and Supplementary Table S1). In contrast, RBPmap had
AUC values between 0.41 and 0.82 with a median value of
0.67; DeepBind obtained AUC values of 0.47 to 0.81 with
a median value of 0.67; and iONMF got AUCs ranging
from 0.55 to 0.68 with a median value of 0.6. Specifically,
beRBP outperformed RBPmap for 27 of the 34 RBP:PWM
models, especially for CIRBP, CPEB4, KHDRBS1 and
PABPC1, while RBPmap obtained slightly higher predic-
tion accuracy than beRBP for ELAVL1 and TIA1. beRBP
achieved higher or roughly similar performance than/to
DeepBind for all RBPs except ELAVL1. beRBP was supe-
rior to iONMF for all RBPs except LIN28A and TIA1, for
which two methods obtained comparable performance.

In our study, due to limited targets in AURA, neg-
ative instances heavily outnumber the positive ones for
some RBPs, such as CIRBP and KHDRBS1. It has
been found that AUC does not correlate well with the

http://bioinfo.vanderbilt.edu/beRBP/
https://www.encodeproject.org
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Figure 2. (A) Comparison between beRBP-specific models, RBPmap, DeepBind and iONMF. Y-axis lists AUC values on one positive and five negative
datasets for the 37 RBP:PWM combinations. (B) The heatmap of the importance of each feature (X-axis) in each RBP-specific model (Y-axis). X-axis list
the 40 features, ordered decreasingly from left to right by their average importance across the 37 models.

positive/negative predictive values in those severely imbal-
anced datasets. Thus a more robust measure, Area Un-
der Precision-Recall curve (AUPRC) was recommended
(25,37). On this secondary evaluation metric of AUPRC,
beRBP outperformed RBPmap, DeepBind, and iONMF as
well (Supplementary Figure S3). For beRBP, AUPRC val-
ues were significantly correlated with AUC values across
the 37 beRBP-Specific models (Spearman correlation co-
efficient r = 0.695, P = 3.8E–6; Supplementary Figure S4)

(Supplementary Table S1). As highlighted in Supplemen-
tary Table S1, 13 of the 37 beRBP-Specific models, includ-
ing FXR1, HNRNPA1, HNRNPA2B1, HNRNPC, HN-
RNPF, PABPC1, PCBP2, RBFOX2, TAF15, TARDBP,
U2AF2, ZFP36 1 and ZFP36 2, had the highest prediction
accuracy in terms of both AUC and AUPRC (AUC > 0.85
and AUPRC > 0.85).

The importance of each feature was assessed by the de-
crease of predictive power in the absence of the feature. Av-
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eraging the ranks of importance across all 37 Specific mod-
els, we found that the contribution of each feature to the pre-
diction power decreased primarily by the type of features in
the following order: matching (‘MS’), clustering propensity
(‘CS’), conservation (‘Csrv’), and accessibility (‘Gacc’, Fig-
ure 2B). It is expected and reasonable that matching scores
precede other types of features, since clustering, conserva-
tion, and accessibility scores are all dependent on the poten-
tial binding sites. Surprisingly, the highest matching score
(MS1) was not ranked as the most important feature. The
exceptionally low importance of MS1 implied that a naı̈ve
prediction based on merely the best matching score might
not be effective. Neighboring context combined with the
derived secondary features also contribute to RBP bind-
ing. Based on the feature importance profiles, the 37 Spe-
cific models were clustered into two groups. In the cluster-
ing tree, the upper group, consisting of 11 RBPs, possesses
a higher feature importance than the bottom group (Figure
2B). All 11 models are among the 13 RBPs with both the
highest AUC and AUPRC values.

The General model showed comparable accuracy to Specific
models

We assumed that the post-scoring standardization would
make features comparable across RBPs, and thus a model
trained by standardized features pooled from all RBP–
RNA interactions, was expected to capture common pat-
terns of RBP recognizing targets. To test this assumption,
cross-prediction performance was evaluated; that is, the
model trained by one RBP was used to predict targets
for another RBP. Overall, the cross-RBP models showed
good performance for most RBPs except CPEB4, PABPC1,
NCL, KHDRBS1 and CIRBP (Figure 3A). The exception-
ally low cross-prediction performance of those RBPs was
most likely due to the small size of their positive datasets. We
found that the cross-prediction performance was indepen-
dent of motif similarity (Supplementary Figure S5, Pear-
son correlation r = 0.25, P = 0.167). For example, HN-
RNPC and FXR1 have very different motifs, however, the
model trained by HNRNPC was successfully applied to pre-
dict targets of FXR1, and vice versa (AUC = 0.8) (Figure
3A). As another example, PCBP2 binding motif is dissim-
ilar to all other RBPs, but the model trained by PCBP2
achieved high cross-prediction performance for other RBPs
(Figures S5 and 3A). The good performance of cross-RBP
models confirmed that there was some kind of commonali-
ties shared by RBPs in recognizing targets. The disassocia-
tion of cross-prediction performance with the motif similar-
ity further suggested that the common features were beyond
the simple motif match.

Specific models achieved a high prediction accuracy
than the General model on NCL, CIRBP, IGBF2BP2 and
IGF2BF3. The high performance of the General model
for LIN28B and LIN28A 1 (Figure 3B) was most likely
to be overestimated. Since LIN28B and LIN28A 1 had
the same motif and shared most targets (>90%), there
was overlap between training and testing datasets when
the General model trained by targets of all RBPs ex-
cept LIN28B/LIN28A 1 was used to predict targets for
LIN28B/LIN28A 1. Approximately, the General model

Figure 3. (A) The heatmap of AUC values from cross-RBP prediction,
where the model trained by one RBP (on the row) is used to predict targets
of another RBP (on the column). The average AUC of cross-RBP pre-
dictions on each RBP was summarized in the ‘Cross’ row at the bottom.
(B) Comparison between beRBP-Specific models (pink) and the beRBP-
General model (red).

trained by pooled RBP–RNA interactions achieved com-
parable performance to Specific models (Figure 3B). These
results indicated the General model will be useful for pre-
dicting targets of novel RBPs with few or null available tar-
gets, thereby greatly expanding the utility of beRBP.

beRBP performed best in whole-transcriptome target scan

To further evaluate the performance of beRBP-Specific
and beRBP-General models at whole-transcriptome target
scanning, the ENCODE eCLIP binding data were compiled
as the gold standard (29). eCLIP used an enhanced CLIP-
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seq technique (eCLIP) to reliably identify in vivo binding at
the transcriptome scale. Across the 17 RBPs with pre-built
beRBP-Specific models, beRBP obtained a higher/similar
prediction accuracy than/with RBPmap except PCBP2
(Figure 4A). beRBP achieved a better/comparable perfor-
mance than/to DeepBind except TARDBP, HNRNPA1,
HNRNPC and U2AF2 (Figure 4A and Supplementary Ta-
ble S3). In terms of AUPRC, both beRBP-Specific mod-
els and beRBP-General model significantly outperformed
RBPmap and DeepBind (P ≤ 0.01, one-sided Wilcoxon
signed rank test; Supplementary Tables S3 and S5).

Notably, nine RBPs, namely FMR1, NONO, PTBP1,
RBM5, SF3B4, SFPQ, SRSF1, SRSF7 and SRSF9, have
not been included in building beRBP-Specific and beRBP-
General models, which could be regarded as new RBPs
to beRBP. The performance on these RBPs could suggest
the applicability of beRBPs to any novel RBPs. Remark-
ably, beRBP-General model achieved a better/similar per-
formance than/with DeepBind and RBPmap on all nine
RBPs except SRSF9 (Figure 4B). RBPmap is essentially a
RBP-generic method, while DeepBind uses a RBP-specific
strategy, which employs known targets of one specific RBP
to build a model for the RBP. Generally, RBP-specific
method is more likely to achieve a better performance
than RBP-generic approach since pooling RBPs would ob-
scure RBP–RNA interaction features. As expected, Deep-
Bind showed a higher accuracy than RBPmap. Surprisingly,
beRBP-General model outperformed DeepBind on most
new RBPs, further demonstrating the power of beRBP-
General model on novel RBPs (Supplementary Table S4).

beRBP performed best on RNA segments not limiting to
3′UTR

RBPs not only bind to 3′-UTR, but also target other regions
of RNA sequences, including 5′ UTR, intronic and exonic
regions. To find out whether the model trained by 3′UTR re-
gions can be applied to predicting binding in other regions,
we further compared the performance of beRBP with Deep-
Bind and RBPmap based on all target sites of 14 RBPs col-
lected from doRiNA (Supplementary Table S6, Materials
and Methods). Remarkably, beRBP outperformed Deep-
Bind and RBPmap on all 14 RBPs except TARDBP (Fig-
ure 5). Even notably, three novel RBPs, FMR1, HNRNPL
and SRSF1, which were not included in beRBP training,
beRBP-General model achieved the highest prediction ac-
curacy (labeled by * in Figure 5). These results based on
unconstrained RNA segments demonstrated that the util-
ity of beRBP models can be extended from 3′-UTR to any
RNA regions.

DISCUSSION

The existing methods for predicting RBP binding targets
can be divided into two distinct categories, RBP-generic and
RBP-specific. The generic strategy pooled RBP–RNA in-
teractions to train a model applicable to any RBPs, while the
specific strategy uses targets of each individual RBP to build
a model tackling this RBP only. Generally, the specific strat-
egy achieves better performance for those RBPs with suffi-
cient number of known binding targets, while the generic

strategy has a wider application scope. It is challenging to
balance the tradeoff between prediction accuracy and appli-
cation scope. Compared to existing methods, beRBP pro-
vided a composite solution overarching the RBP-specific
and RBP-generic strategies. beRBP presented competitive
specific models for some RBPs and a generic model for any
RBPs, which achieved comparable performance with spe-
cific models.

beRBP enables high-quality target discovery for a broad
spectrum of human RBPs. Although there are 1542 RBPs
in the human genome (2), only ∼10% of RBPs have bind-
ing preference available in cisBP–RNA database. beRBP
webserver provides general prediction for all these RBPs
and also allows users to upload any PWMs of interest for
General-model prediction. As more binding preferences of
RBPs become available, beRBP can be easily expanded to
those RBPs since PWM is the only requisite for beRBP-
General prediction. Meanwhile, with the advance of tech-
niques, more RBPs will accumulate sufficient training data
to warrant the power of their specific models.

beRBP obtained higher/similar prediction accuracy
than/with DeepBind, a deep-learning based method be-
longing to the specific category. The success of beRBP is
partly attributed to combining multiple types of features
rather than using sequence features alone like DeepBind.
Clustering score, conservation scores and spatial accessibil-
ity scores helped improve the performance for the 13 best-
performing Specific models of beRBP (Figure 2B). beRBP
outperformed RBPmap as well, which used three common
feature types except the structural accessibility. The im-
provement of beRBP over RBPmap mainly owes to the
Random Forests that beRBP employs, which has demon-
strated extraordinary performance in related works (8,9).
Whereas RBPmap follows a simple non-parametric statis-
tic test, beRBP is able to capture the complicated patterns
among multiple features for RBP binding with the help of
Random Forests.

In agreement with contemporary studies (12,25,26), our
results indicate that the binding target predictability varies
greatly across RBPs (Figures 2A and 4A). Some variabil-
ity may be due to the difference in the quality of train-
ing datasets, which were derived from various CLIP-seq
experiments. Relatedly, the size of RBP-specific training
datasets and the positive-negative ratio would greatly af-
fect prediction performance. Although a statistically signif-
icant negative correlation between the number of known
binding sequences and AUC values was observed in our
experiments with AURA datasets (Supplementary Figure
S6), the dominant true negatives led to a high AUC value
when the positive dataset was small. Caution should be
paid for those beRBP-Specific models with limited or highly
imbalanced training sequences, such as CIRBP, CPEB4,
KHDRBS1 and NCL. For example, beRBP-Specific ob-
tained low sensitivity for the whole transcriptome tar-
get screening for KHDRBS1 (Supplementary Table S2).
Finding the optimal positive-negative ratio might improve
their performance. On the other hand, the performance of
beRBP-General would not be affected by the limited num-
ber of RBP-specific training sequences, and thus beRBP-
General is recommended if a specific model was trained by
limited targets.
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Figure 4. Comparison between beRBP, RBPmap and DeepBind on whole-transcriptome target scans for 26 RBPs. (A) Performance on 17 RBPs with
beRBP-Specific models; (B) Performance on nine new RBPs, which were not included in building beRBP models.

Figure 5. Comparison between beRBP, DeepBind and RBPmap for 14
RBPs on RNA segments without limiting to 3′UTR. *: new RBPs that
were not included in building beRBP models.

It should be noted that each method performs well for
a unique set of RBPs. For example, RNAcompete inven-
ters predicted RBP targets using a principle of ‘strong
motif match’, and the method was effective for QKI
(AUC 0.93) but not for FUS (AUC 0.28) (24). With
beRBP, both RBPs obtained decent AUC values (0.79 and
0.70). As another example, RBPmap predicted binding tar-
gets for QKI more accurately than for HNRNPA1 (12),
whereas beRBP is more powerful for HNRNPA1 than
for QKI. Considering all the factors that lead to variant
predictability among RBPs, we have identified 13 beRBP-
Specific models with both high and robust prediction accu-
racy (FXR1, HNRNPA1, HNRNPA2B1, HNRNPC, HN-
RNPF, PABPC1, PCBP2, RBFOX2, TAF15, TARDBP,
U2AF2, ZFP36 1 and ZFP36 2). The 13 RBP models were
trained by decent number of known targets (611–3889), and
11 of them share similar feature importance profiles.

CONCLUSION

In this work, we proposed beRBP, an RBP target predic-
tion algorithm that leverages the Random Forest classifier
to analyze RNA sequence/structure features (motif match-
ing, clustering, accessibility, and conservation). We built 37

Specific models, which demonstrated an overall superiority
over existing methods on three benchmark datasets.

Beyond Specific models, beRBP pooled RBP–RNA in-
teractions and trained a generic model (General model) to
make binding estimation for any RBPs with known bind-
ing preferences. The prediction accuracy of beRBP-General
model was comparable to that of Specific models. For most
novel RBPs, beRBP-General model performed better than
or comparable to existing methods. These results demon-
strated that the beRBP-General is greatly useful for han-
dling those RBPs for which it is unable to build powerful
RBP-specific models due to limited known targets.

In summary, beRBP is a competitive tool for RBP bind-
ing estimation with outstanding prediction accuracy and
broad application scope, holding promise for greatly ex-
panding our knowledge about RBP–RNA interactions.
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