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A B S T R A C T   

The global COVID-19 pandemic has increased attention to the relationship between the built 
environment and health, particularly in educational settings where students spend a significant 
amount of their time. Traditional side daylighting used in schools, while cost-effective and easy to 
construct, can result in uneven indoor daylighting. To address this issue, this paper proposes a 
terraced teaching building design model for primary and secondary schools in Guangzhou based 
on the design experience of an “open-air school movement” during a historical respiratory 
epidemic in the early 20th century. The proposed design relies on skylight for lighting, and each 
classroom has an outdoor platform. An optimization algorithm based on Spatial Daylight Au-
tonomy (sDA), Uniformity of Daylighting (UOD), Annual Sunlight Exposure (ASE), Outdoor 
Platform Area (OPA), Gable Wall Length (GWL), and Space Utilization (SU) is used to obtain the 
optimal concrete form of the building. To speed up the simulation process, a set of Artificial 
Neural Network (ANN) based rapid prediction network models for complex forms is proposed. 
This group prediction method improves the simulation speed by 357 times and grossly speed up 
the optimization process based on six indexes in the early design stage, resulting in four terraced 
teaching buildings that meet the above criteria. Overall, the proposed design provides a novel 
architectural form that ensures overall visual comfort while promoting students’ learning and 
physical health.   

1. Introduction 

1.1. Background 

As the global pandemic gradually subsides and comes under control, society and the economy recover from this sudden event, 
individuals are now shifting their focus towards the aftermath of the pandemic and specifically contemplating the design of classroom 
spaces in primary and secondary schools from a health standpoint. Central Europe’s population spends approximately 80–90% of their 
time indoors [1,2] while a study conducted in the United States revealed that children and adolescents primarily reside indoors, within 
the confines of classrooms [3]. However, students who spend prolonged periods indoors often face limited exposure to natural 

* Corresponding author. 
E-mail address: liuyubo@scut.edu.cn (Y. Liu).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2023.e21598 
Received 31 May 2023; Received in revised form 29 September 2023; Accepted 24 October 2023   

mailto:liuyubo@scut.edu.cn
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2023.e21598
https://doi.org/10.1016/j.heliyon.2023.e21598
https://doi.org/10.1016/j.heliyon.2023.e21598
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 9 (2023) e21598

2

daylight. As urban areas expand and become denser, the lack of effective design strategies further diminishes their access to daylight. 
Consequently, various health issues arise. For instance, the global rise in myopia since the 1960s has been linked to reduced sunlight 
exposure, and inadequate exposure to sunlight can result in diverse bone and psychological disorders [4]. Research [5–7] has 
demonstrated that natural light significantly influences hormone secretion in primary and secondary school students, which plays a 
vital role in promoting their healthy growth and enhancing learning efficiency—an effect that cannot be replicated by artificial 
lighting. Hence, the presence of a natural light environment in classrooms is crucial for students in this critical period of growth and 
development. Unfortunately, in China, these problems are exacerbated by the immense population density and rapid urbanization 
witnessed in the past two decades. According to the World Health Organization’s 2019 World Vision Report, China possesses the 
highest youth myopia rate globally. This is primarily attributed to the uneven distribution of natural light in traditional side-windowed 
classrooms, where lighting near the windows is excessively intense for reading, while the area further away remains inadequately lit. 
Such abrupt variations in illumination can cause significant visual discomfort and eye fatigue as students shift their gaze within the 
classroom [8], leading to other health issues [9]. Consequently, it has become common practice for curtains to be drawn and artificial 
lights to be used during the day in primary and secondary school classrooms in China. Consequently, young individuals are deprived of 
exposure to sunlight within the classroom. This deprivation can negatively impact students’ learning and health, as well as signifi-
cantly impair their immunity [10]. Hence, it is of utmost importance to design classrooms that rely solely on natural light rather than 
artificial lighting. 

Traditional design practices commonly employ “post-evaluation” as a means to validate the design’s accuracy [11]. However, this 
approach has evident limitations. Real-time feedback on lighting indicators cannot be obtained during the design phase, and there is a 
lack of comprehensive control over the building’s form and lighting performance in the early stages of design, leading to delayed issue 
identification. It has been proven that making modifications in the later stages of design or even after the building’s completion is 
expensive and yields minimal benefits [12]. To overcome these challenges, many researchers have developed performance simulation 
tools such as Ladybug Tools to aid in optimizing building design. However, the simulation speed provided by external engines is still 
limited in delivering real-time previews of lighting performance during the early design stages. Recent advancements in deep learning 
technology have led some scholars to focus on data-driven performance evaluation [13]. By pre-training a substantial amount of 

Fig. 1. The early open-air school. a-b:Charlottenburg Forest School. d-e: King Alfred School. g-h: Open Air School in Amsterdam. j-k: Smith Middle 
School (Picture a-b, g-h from the Internet; picture d-e from INNER-LONDON SCHOOLS; picture j-k from Ref. [20]). 
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sample data and fitting it into a functional model, rapid performance predictions can be achieved. This approach enables designers to 
shift away from relying solely on “post-evaluation” models, thereby enhancing their ability to predict and control the final design 
outcome. 

1.2. Learning from history 

To examine classroom models that rely on natural lighting in the post-epidemic era, this paper draws inspiration from historical 
examples. Over a century ago, European countries commenced experiments with different classroom designs in response to tuber-
culosis and the Spanish flu outbreaks. These models, referred to as the “open air school movement,” were developed during that period, 
and certain instances of their usage continue to exist today. As artificial lighting options similar to electric lights were unavailable 
during that period, architects of the time maximized natural light by incorporating large windows on the sides and ceiling of each 
room. Furthermore, outdoor areas matching the size of the classrooms allowed for open-air teaching, which increased sunlight 
exposure and enhanced student immunity [14]. Constructed in 1904, the Charlottenburg Forest School in Germany (Fig. 1a and b) 
pioneered the concept of open-air schools by incorporating extensive glass windows and skylights to enhance indoor lighting [15]. 
Flexible furniture allowed students and teachers to move outside the classrooms to take advantage of optimal natural lighting when 
weather conditions allowed [16]. The Charlottenburg Forest School gained widespread recognition for its high recovery rate and 
improvements in student health. Likewise, the Junior school classrooms at King Alfred School in the UK (Fig. 1d and e) and the Open 
Air School in Amsterdam, the Netherlands (Fig. 1g and h), achieved significant success. It is noteworthy that the majority of open-air 
schools were single-story buildings customized to meet specific requirements, with the Amsterdam Open Air School being a rare 
multi-story example designed to maintain a connection between indoor and outdoor spaces. However, its open-air classrooms, 
featuring large balconies, had significantly lower natural lighting compared to single-story classrooms and fully outdoor spaces. In the 
United States, numerous open-air schools were built in California and New York, and there were even proposals for all primary and 
secondary schools to embrace the open-air school model in the future. However, following the war, with economic and energy ad-
vancements, “open-air schools” gradually disappeared and were substituted by “windowless classrooms” equipped with artificial 
lighting [17]. In 1975, facing mounting student misbehavior, boredom, and teacher frustration stemming from the absence of natural 
light [18,19], the model was abruptly terminated despite resistance. Attention subsequently returned to classroom designs that pri-
oritize the incorporation of natural daylight (Fig. 1j and k). 

Starting from 1980, multiple publications in Europe and the United States advocated for the incorporation of natural light in 
classrooms. An example of such a publication is the “Guide for Daylighting Schools” issued by the Lighting Research Center (LRC), 
which highlights the importance of natural light and recommends that students receive at least two-thirds of their classroom time 
under its illumination [21]. Another significant resource is the British BUILDING BULLETIN90-Lighting Design for Schools, which 
emphasizes the importance of natural lighting in primary and secondary school classrooms. It advises utilizing natural light under 
normal weather conditions and resorting to artificial lighting only in severe weather conditions [22]. Drawing inspiration from this 
philosophy, Alan Ford’s projects in Australia and Innovative Design in the United States have emerged as exemplary models for 
classrooms with natural lighting [23–26]. An outstanding illustration is Smith Middle School in Calboro, North Carolina, USA, which 
implemented a north-facing vertical skylight on its roof to optimize the intake of natural light. These explorations have resulted in 
innovative school building designs that differ from conventional side window lighting. 

1.3. Research aim 

The COVID-19 pandemic, regarded as the most severe global epidemic since the Spanish influenza outbreak in the previous century 
[27], underscores the importance of “open-air schools” in designing classrooms with ample daylighting in the post-pandemic era. This 
study synthesizes historical classroom design experiences from Europe and the United States, extracting four design elements (Fig. 1: c, 
f, i, l). The proposed model incorporates these elements and introduces top daylighting as an additional lighting method for all types of 
classrooms. Top daylighting, which offers more uniform daylighting compared to side daylighting [28–31], has been demonstrated to 
enhance students’ exam performance [32]. Moreover, ANSI/ASHRAE/IES Standard 100-2018 promotes the use of skylight lighting to 
reduce building energy consumption [33]. However, achieving classrooms with skylight lighting in conventional multi-story buildings 
and providing large outdoor activity spaces, as historically advocated, pose significant challenges due to the characteristics of skylights 
and the current trend of high density in Chinese cities. Therefore, the aim of this paper is to propose a terraced classroom layout that 
addresses these challenges. By incorporating setbacks in the building design, skylights protruding from the roof can be utilized, 
ensuring a more uniform distribution of natural light within the classrooms. Additionally, the exposed gable walls of each classroom 
enhance indoor daylighting and ventilation by integrating tall side windows. Moreover, these large side windows can be connected to 
the exterior roof deck, which not only enhances indoor daylighting performance but also provides a platform for students to conduct 
classes and participate in outdoor activities when weather permits. This idea is also presented by Spennemann et al. [27] in the design 
of post-epidemic schools. Furthermore, to tackle the challenge of achieving a harmonious balance between daylighting performance 
and aesthetics in the early design stage, this study utilizes deep learning to provide real-time predictions of Spatial Daylight Autonomy 
(sDA), Annual Light Exposure (ASE), and Daylighting Uniformity (UDI). Subsequently, the Outdoor Platform Area (OPA), Gable Wall 
Length (GWL), and Space Utilization (SU) are integrated as comprehensive control and evaluation metrics in the Wallacei plug-in, 
allowing for efficient optimization of form and daylighting performance in the early design stage. 

The paper is structured as follows: Section 2 offers a literature review on optimizing classrooms through daylighting performance 
and investigates the use of deep learning to enhance daylighting performance. Section 3 outlines the entire experimental workflow, 
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which includes constructing parametric prototypes, defining classroom combinatorial rules, preparing the dataset, training the arti-
ficial neural network (ANN), and conducting multi-objective optimization. Section 4 presents the results of ANN training and multi- 
objective optimization. Section 5 discusses the entire experimental process and its outcomes. Finally, Section 6 summarizes the key 
conclusions of the paper. 

2. Literature review 

2.1. Classrooms optimizing based on daylighting performance 

With the increasing focus on natural light in indoor environments, numerous researchers have been conducting investigations in 
this area. Certain scholars focus on improving natural lighting conditions in educational environments by considering factors such as 
thermal comfort and energy efficiency. For example, Khaoula et al. [34] enhanced the performance of primary and secondary school 
classrooms in hot-dry regions by evaluating parameters such as window-to-wall ratio, shading, and glass type. They suggested that a 
balance between daylighting and thermal comfort can be achieved by increasing the window area, utilizing fixed shading devices, and 
using high-quality glass. Bakmohammad et al. [35] improved daylighting performance and reduced energy consumption by analyzing 
the impact of parameters such as classroom orientation and window shape on both daylighting and energy usage. Zhang et al. [36] 
integrated multiple design parameters, such as room depth, corridor depth, window-to-wall ratio, and glass material, to optimize both 
daylighting and thermal performance in school buildings situated in the cold climates of northern China. 

Moreover, ensuring uniform indoor daylighting is crucial for avoiding visual discomfort caused by excessive brightness or inad-
equate daylighting in specific areas of the space. Callejas et al. [37] led a research project that investigated the enhancement of natural 
light levels in prefabricated modular classrooms in Chile. The study findings showed that by combining top horizontal skylights and 
vertical reflective elements, the distribution of daylight within the classroom could be optimized for uniformity. Salomón et al. [38] 
conducted a study that observed a modest improvement in interior uniformity through the inclusion of reflectors on the side windows. 
Additionally, they suggested the use of roller-type curtains with sunscreen fabrics as an additional measure to further enhance interior 
uniformity. Likewise, Zhu et al. [39] optimized the uniformity of indoor lighting in kindergartens situated in five different climate 
zones in China. 

However, the research in the mentioned studies are focused on individual classrooms within a single setting, disregarding the 
influence of shading and light reflection from the surrounding environment in real-life scenarios. This oversight can result in signif-
icant disparities between optimization outcomes and actual application conditions. Moreover, within the present-day densely 
inhabited urban environments across the globe, classrooms frequently showcase recurring arrangements, both in terms of their hor-
izontal and vertical configurations, regarding their overall structure and cross-sectional design. As a consequence, there is a prevalence 
of classrooms with side daylighting and a lack of top daylighting options that offer superior illumination effects. Consequently, there 
exists a scarcity of research investigating various arrangements of classrooms, both vertically and horizontally. In this particular study 
segment, Liu et al. [40] conducted optimization of a two-story school building by recessing the upper-level classrooms, enabling 
skylight illumination in each classroom and enhancing the overall natural lighting. However, their study exclusively examines the 
classroom section of a two-story case, neglecting the exploration of the entire building involving multiple levels. This paper aims to 
address this gap. Additionally, Wang et al. [41] proposed a framework for form optimization that integrates natural lighting and 
topology principles. By selectively removing different components from a predefined volume, they generated diverse building volumes 
that met the criteria for natural lighting while showcasing significant topological variations. Similarly, Wang et al. [42] presented a 
workflow that combines performance considerations to optimize a range of building forms. However, it is important to note that the 
latter two studies were not exclusively tailored to primary and secondary school classroom combinations; rather, they provided a 
general framework for performance-driven optimization of building volumes across multiple building types, which can provide in-
sights for optimizing the arrangement of numerous classrooms. 

Although these studies yield valuable results, the optimization process often requires significant time investment. 
Usually, it requires a span of 3–5 days or even longer to optimize various performance indicators of multiple solution set. If there 

are issues with parameter settings or unsatisfactory optimization results, researchers must start the entire experiment process from 
scratch, leading to considerable time expenditure. Hence, there is a need for new technologies to expedite the optimization process and 
reduce time costs. 

2.2. Optimizing with deep learning acceleration 

With the growing popularity of artificial intelligence (AI) computing methods, Deep Learning (DL) algorithms have matured and 
are being utilized by researchers for efficient prediction and optimization of building performance, addressing the time-consuming 
nature of traditional methods [43–45]. To compare the accuracy of different algorithms, researchers have conducted evaluations. 
For instance, Arbab et al. [46]compared the performance of RF, DT, support vector regression (SVR), and neural network models in 
predicting daylighting and energy performance of office spaces in Tehran, Iran. The results demonstrated that artificial neural net-
works provided higher prediction accuracy. Among the 25 studies reviewed by Ngarambe et al. [47], 22 employed supervised neural 
network algorithms for daylight optimization, while the remaining 3 used multiple linear regression or density-based clustering al-
gorithm (DBSCAN). Artificial neural networks currently stand out as the preferred algorithm for accelerating and optimizing 
daylighting within the realm of deep learning algorithms. For example, Han et al. [48] developed an ANN-based daylighting prediction 
model for a single rectangular office unit, incorporating parameters such as wall thickness, material reflection ratio, and window sill 
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height. The model achieved an R2 value of 0.988 and 0.996, ensuring accuracy and boosting prediction speed by 250 times compared 
to traditional methods. Lin et al. [49] proposed a neural network model based on intermediary features using sDA and ASE, enabling 
the prediction of daylighting performance in architectural curtain wall design and offering a tool for architects and designers to rapidly 
evaluate and compare different design schemes. Moreover, Luanet al. [50] explored daylighting prediction using various layouts with 
single-layer plane shapes, thereby expanding the application range of ANN-based daylighting prediction. Thus, with the aid of DL 
technology, a relatively mature workflow has been established, encompassing real-time prediction and multi-objective optimization. 
Many scholars have adopted this workflow in their research. For example, Xu et al. [51] trained a neural network based on lighting, 
heat, and energy consumption in classrooms, utilizing the output for optimization objectives to guide the design of primary and 
secondary school classrooms in southern China. Wanget al. [52] discussed a design framework based on performance optimization and 
prediction, specifically applicable to the schematic design of primary and secondary school teaching buildings. A similar approach was 
taken by Yukai Zou [53] et al., who defined more detailed design parameters for classrooms with side-window lighting. 

In this investigation, ANN will be employed to forecast various daylighting metrics while considering the influence of the sur-
rounding environmental factors. The developed model will be incorporated within a multi-objective optimization framework, aiming 
to expedite the optimization procedure based on the performance of light harvesting. 

3. Research method 

3.1. Workflow 

This study primarily employs Grasshopper to conduct modeling and simulation while integrating external Python libraries to 
facilitate optimization. The experimental procedure entails three stages, as illustrated in Fig. 2: the creation of training data, training 
and testing of an ANN model, and multi-objective optimization using a genetic algorithm. The initial stage concentrates on generating 
and constructing terraced classroom combinations for the study, while the latter two phases primarily address enhancing work effi-
ciency and optimization methods.  

Nomenclature  HCS Height of Classroom with Skylight   
HCSW Height of Classroom with side-window 

sDa Spatial Daylight Autonomy RD Room Depth of Classroom 
UOD Uniformity of Daylighting RW Room Width of Classroom 
ASE Annual Light Exposure BH Beam Height 
OPA Outdoor Platform Area RW Reflectance of the Wall Surface 
GWL Gable Wall Length RG Reflectance of the Ground Surface 
SU Space Utilization RR Reflectance of the Ground Roof 
FN Floor Number RS Reflectance of the Shade Surface 
DSA Displacement of the Skylight Apex TW Transmissivity of Window 
DS Displacement of the Skylight WT Wall Thickness 
ESC Extent of skylight coverage WC Width of Corridor 
SKH Skylight Height ANN Artificial Neural Network 
SH Sill height DF Daylight Factor 
FW Length of the front wall on north face RW Length of the rear wall on north face  

3.2. Parametric classroom modeling 

Parameterized design, initially defined as “parameter-based dimensional relationship” by Moretti [29] and later expanded upon by 
Kalay, enables the real-time visualization of geometric relationships in a parameterized model as the parameters change [30]. In this 
paper, in order to explore the optimal parameters combination, a parametric model is constructed in the initial step. 

Fig. 2. Workflow diagram.  
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The selected climate setting for this study is situated in the Guangzhou region of China. To mitigate the impact of heat radiation 
within the room, the primary orientation of the classroom was aligned towards the north direction, and a single corridor on the south 
side is adopted as the corridor type. A rectangular plane serves as the bottom plane of the classroom unit, while the north and south 
sides and the top are used as the primary daylighting surfaces. The form of top daylighting refers to existing relevant practice research 
[20,54,55] and the experience from the history mentioned above, and various types of top daylighting forms are included in a 
parameter system that controls Skylight Height (SKH), Displacement of the Skylight (DS), Displacement of the Skylight Apex (DSA), 
and other parameters. In terms of parameter selection and control for classroom design, the Room Depth (RD) and Room Width (RW) 
serve as crucial parameters for improving the model’s adaptability. These parameters must adhere to the specifications outlined in 
China’s “Design Code for Primary and Secondary Schools" (GB50099-2011) [56] to ensure compliance. Specifically, the average area 
per middle school student is 1.39 square meters according to GB50099-2011. Considering a classroom with 45 students, the minimum 
room area calculated using the RD and RW is 63 m2. In additional, to prevent blackboard glare, the GB50099-2011 mandates that the 
headwall’s width of side window at the front of the classroom must not be less than 1 m. Thus, for this experiment, the front headwall is 
set at 1.2 m, while the rear headwall is set at 1 m. To ensure the optimal indoor daylight environment, the tops of the north-side 
windows and south-side window extend from the upper part of the sill to the bottom of the beam, and the beam height is uni-
formly set at 700 mm. The width of the south-side window is uniformly offset by 1.8 m from the classroom width to allow for two main 
entrances. Based on these criteria, other main control parameters are displayed in Table 1. This paper introduces two parametric 
classroom model shown in Fig. 3: Parametric model I (Fig. 3-a), which incorporates parameters related to top daylighting, part of the 
classrooms generated with the change of parameters is shown in Fig. 4a–l, and Parametric model II (Fig. 3-b), which focuses on pa-
rameters associated exclusively with side daylighting. 

Throughout the process of constructing the dataset and subsequently training, the parameter configurations for both skylight 
daylighting and side daylighting classrooms in a single sample are unique. This is intended to mitigate the impact of varying pa-
rameters of classroom on daylighting effects, while also reducing the computational load of the model and enhancing its predictive 
accuracy. 

3.3. Combination rules 

3.3.1. Reserve roof area 
As depicted in Fig. 5a–c, in order to optimize top daylighting for each classroom, those located above the first floor have been 

systematically moved towards the southern direction, thereby allowing for the full allocation of roof space per classroom floor. This 
approach not only ensures optimal daylighting for lower-level classrooms but also provides an outdoor activity space for same-level 
classrooms. 

3.3.2. The three-story classroom increases the story height 
In accordance with the GB50099-2011 [56] of China, the classrooms of primary and secondary school are generally limited to a 

maximum of four floors. However, a terraced with four stories would grossly increase the depth of the building, which could be less 
more conducive to the layout of the building on the site. Based on prior research on the correlation between classroom height and 
daylighting [57], it has been observed that side-windows play a progressively more significant role in illuminating indoor spaces as the 
height of the classroom increases. Conversely, in classrooms equipped with skylights, the contribution of skylights to indoor 
daylighting performance diminishes as the height of the room increases. For classrooms with side daylighting, the floor height of at 
least 4.5 m is recommended to apply. Therefore, the parametric model II is used in third floor, or rather this paper cancel the 
three-story’s setback to reduce depth and improve SU, and instead increase the classroom floor height to compensate for the lack of 

Table 1 
Values and intervals of design variables.  

Input Range Step Unit Explanation 

FN 1–4 1 / Floor Number 
DSA 0–5 0.1 m Displacement of the Skylight Apex 
DS 0–4.2 0.1 m Displacement of the Skylight 
EXC 2–4.6 0.1 m Extent of skylight coverage 
SKH 1.2–2.5 0.1 m Skylight Height 
SH 0.5–1.5 0.1 m Sill height 
HCS 3.6–4.6 0.1 m Height of Classroom with Skylight 
HCSW 4.6–6 0.1 m Height of Classroom with side-window 
RD 7–9.5 0.1 m Room Depth of Classroom 
RW 7–10 0.1 m Room Width of Classroom 
BH 0.6 / m Beam Height 
RW 0.8 / / Reflectance of the Wall Surface 
RG 0.4 / / Reflectance of the Ground Surface 
RR 0.8 / / Reflectance of the Ground Roof 
RS 0.75 / / Reflectance of the Shade Surface 
TW 0.75 / / Transmissivity of Window 
WT 0.2 / m Wall Thickness 
WC 3 / m Width of Corridor  
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Fig. 3. The parameters visualization in parametric model.  

Fig. 4. Partial classroom configurations as parameters change.  
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skylight and enhance indoor daylighting performance, as depicted in Fig. 6. This approach also mitigates the negative impact of 
layer-upon-layer retreat on SU. 

3.3.3. Adding atrium between the first floor and second floor 
In addition to increasing the depth of the teaching building, the terraced layout also generates an elongated overhead space on one 

side of the ground floor. Although this approach enhances the amount of natural light received by the classrooms on each level, it does 
not favor the side lighting of the south-facing classrooms on the ground floor. To achieve bi-directional north-south lighting for the 
ground floor classrooms, as illustrated in Fig. 6, it is proposed to separate them from the second-floor classrooms. As a result, an atrium 
is introduced, which allows sunlight to penetrate into the south-facing classrooms on the ground floor. The role of the atrium in 

Fig. 5. Reserving the roof area of each layer by stepping back.  

Fig. 6. Increase the height of third floor, first floor disconnected from the second floor.  

Fig. 7. The basic section.  

Y. Liu et al.                                                                                                                                                                                                             



Heliyon 9 (2023) e21598

9

relation to the classrooms has been previously identified in a study [58]. 

3.3.4. Generation of section and plane 
The aforementioned set of three-generation rules are capable of generating basic terraced section units, as shown in Fig. 7. 

However, in order to account for the diversification of the design and the increase in data volume, certain modifications have been 
implemented. By reducing the number of classrooms, simultaneously, the alteration of skylight parameters and the relocation of the 
classroom can generate a multitude of novel profile forms, some of them are illustrated in depicted in Fig. 8. 

During the creation of planar units, traditional classrooms have typically been designed with parallel and overlapping gable walls. 
In this experiment, the gable wall serves as an additional surface that can be utilized for installing high side windows to enhance 
natural light intake. The effective window area on the gable wall has been increased by controlling the length of the gable wall exposed 
to the outside of every two classrooms. Furthermore, each section unit has been staggered in the north-south direction. The 
displacement distance between two adjacent units is limited to the depth of one classroom at most. After the displacing, the gable wall 
of each classroom can expand the window area by incorporating high side windows. The GWL assessment in evaluating the effective 
surfaces on the gable walls is based on the summation of displacements between adjacent classrooms, with reference to the location of 
the first-floor classroom. The total displacement serves as a direct measure of the exposed area of gable walls to the outside, resulting in 
an increased number of effective surfaces on the gable walls. 

3.4. Daylighting simulation 

This paper conducted a daylighting simulation using the Ladybug tool 1.4, a Grasshopper plug-in, with the climate conditions in the 
Guangzhou area. The study select the sDA and ASE, which evaluate indoor daylighting conditions more comprehensively and real-
istically. The sDA is a percentage of the statistical space meeting the specified illuminance standard for more than 50% of the time in 
the year schedule under daylight alone, as defined by the Daylight Index Committee (IES-DMC) of the Illuminating Engineering Society 
of America in 2012. The ASE measures the possibility of visual discomfort in a space every year and represents the percentage of the 
area where the cumulative exposure time of the working plane reaches the specified number of hours under the established illumi-
nance standard in the whole year. The UOD, which is the ratio of the minimum value of the daylight factor to the average value of it on 
the working plane, is selected as the primary reference index, in conjunction with the newly revised daylighting regulations in China 
[59]. 

The experiment was conducted at a height of 700 mm from the ground, and a plane test grid was established with a scale of 500 
mm. The SDA calculation used a grid selected for the small and large sizes of the bottom classroom plane. The UOD was calculated only 
within the seating area. The test point was shifted inward by 1.5 m from the classroom edge. Preliminary experiments showed that 
traditional daylighting simulations took 1 min 53.8s to calculate the sDA, UOD, and ASE for a single room. The optimized shape in this 
study can contain up to 20 classrooms. If the conventional simulation method is used for a single simulation, it takes approximately 30 
min. Therefore, an artificial neural network (ANN) prediction model was developed to improve the optimization efficiency in the later 
stages. 

Fig. 8. Selected segments from the extended sections. To enhance the dataset’s robustness and diversity, classroom removal was employed to 
augment the number of training profiles. “Sections Extension Sample 01 through Sections Extension Sample 18 present 18 randomly generated 
outcomes resulting from variations in parameters.” 
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3.5. Sample simplification and ANN model 

The combination of terraced structures creates complex shapes that can impact the daylighting of each classroom through occlusion 
and reflection from surrounding classrooms. Therefore, when constructing training samples for an artificial neural network (ANN) 
model, the distribution of neighboring classrooms is essential in addition to the relevant parameters of each individual classroom unit. 
However, encompassing all adjacent classrooms in the sample would considerably amplify its intricacy and the necessary computa-
tions. To simplify the training samples, this paper consider the influence of the surrounding environment of a single prediction unit 
first, as shown in Fig. 9a. Other classrooms within one width of the projection distance from the prediction unit are included in the 
range of influence factors of occlusion and reflection. Fig. 9b illustrates that there are 11 random location variables around each 
prediction unit, and the presence or absence of classrooms is represented as 1 or 0, respectively. In data processing, the center point of 
the bottom surface of the target unit was used as the origin and construct a coordinate system with the north-south direction as the y- 
axis and the east-west direction as the x-axis. Besides, taking the relative coordinates of the center points of the bottom surface of other 
units and arranging the position coordinates from west to east and bottom to top to obtain the sequential expansion of the positional 
relationship between the surrounding environment and the prediction unit. Since there are other influencing units on only one side of 
the end unit, only the influence of one side is considered in data processing, as shown in Fig. 9c, and the other side is expressed as 0. 
Secondly, for the group prediction problem facing multiple prediction units, we input the entire group as the input of the ANN by 
looping the environment around all units and the parameters of each unit itself. While it is important to highlight that, in order to 
enhance the prediction model’s accuracy while simplifying the network structure, the network’s output was limited to three values: 
sDa, ASE, and UOD. The two-dimensional matrix representing the distribution of light-harvesting planes was not included in the 
output, thus reducing complexity. 

An Artificial Neural Network (ANN) is a prediction model composed of an input layer, a hidden layer, an output layer, and neuron 
nodes. The model functions by mapping the relationship between input and output data to achieve output results quickly. However, 
traditional daylighting simulations based on the Radiance engine are not ideal for real-time simulation due to the time-consuming of 
the ray-tracing algorithm. This problem can be effectively solved by using an ANN model. 

In this experiment, as shown in Fig. 10 a fully connected feed-forward neural network with multiple hidden layers was chosen as 
the basis for the ANN model. The model was built based on the PyTorch framework, and Optuna was used for hyperparameter 
optimization. The output results include sDA, UOD and ASE. A simulation generated a total of 4000 samples. 

Fig. 9. Simplification of the sample.  
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3.6. Genetic algorithm multi-objective optimization 

This study employed the Wallacei plug-in, which incorporates the NSGA-II (Non-Dominated Sorting Genetic Algorithm II), a 
commonly utilized multi-objective optimization algorithm, for optimization purposes. The trained artificial neural network model was 
integrated into the Grasshopper platform to accelerate the optimization process. The study focused on six optimization objectives, 
namely sDA, UOD, ASE, SU, GWL, and OPA. The former three objectives evaluated the overall daylighting performance. The SU aimed 
to ensure maximum Space utilization ratio, which guaranteed by minimizing the ratio between the maximum north-south depth and 
the number of classrooms contained in the form. GWL maximizes the total distance of mutual displacement of a one shape in opti-
mization to obtain the most effective surface on the gables. Besides, In order to improve the optimization efficiency, the experiment 
reduced the search range and set a seed parameters that defined 1000 random combinations without any window parameters to limit 
the search space. In addition, to ensure that students have enough outdoor activity space, the OPA of each classroom is also taken as 
one of the optimization indicators. 

The optimization process targeted a four-story terraced teaching building with five columns spanning from east to west on the north 
orientation. The six optimization objectives mentioned above are computed as the mean value across all classrooms within the 
building. 

4. Result 

4.1. Datasets description 

The 4000-sample dataset comprises 1000 samples for each floor, ranging from the first floor to the fourth floor. As depicted in 
Fig. 11a–i, the primary dataset parameters exhibit a continuous random distribution within their respective intervals. However, RW 
and RD are discretized distributions, set as multiples of the simulated grid size, with a spacing of 0.5. Moreover, the samples were 
filtered according to generation rules in Grasshopper. Subsequently, Python was utilized to perform further filtration basing on a data 
structure consisting of 45 inputs and 3 outputs. This resulted in 3876 valid samples and 124 invalid samples out of the initial 4000 

Fig. 10. ANN structure in training process.  
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samples. As a result, the training datasets consisted of 3100 samples, with 476 samples reserved for testing, and an additional 400 
samples used for verification. Fig. 12a–c shows some training samples. 

4.2. ANN training result 

4.2.1. Hyperparameters optimization 
The hyperparameters in machine learning, such as the number of hidden layers, neurons per layer, dropout probability, learning 

rate, and batch size, play a crucial role in determining the model’s accuracy. Finding the appropriate values for these hyperparameters 
is a critical task. Two common optimization methods for hyperparameters are Grid Search and Random Search. Grid Search 
exhaustively explores the search space by trying every combination of hyperparameter inputs, although it can be computationally 
expensive and less efficient. On the other hand, Random Search avoids unnecessary operations but is more likely to find locally optimal 
hyperparameter values. Both methods lack a structured approach to finding the optimal solution. Therefore, Bayesian optimization 
algorithm, implemented through Optuna, was utilized in this study to select hyperparameters, which has been demonstrated supe-
riority over the aforementioned approaches [60]. 

The optimization process employed mean square error (MSE) (1) to evaluate objective and predicted values. Optimization itera-
tions were set to 500 generations, and each iteration tested and evaluated 100 data sets. Results of the optimization process are 
presented in Fig. 13a–p, which indicates the loss values associated with various combinations of hyperparameters, the lighter colors 
indicate lower losses. The optimal hyperparameter combinations were obtained by combining the optimal values, with Table 2 
showing the optimal value of each parameter. 

MSE=
1
N

∑N

i=1
(ŷi − yi)

2 (1)  

4.2.2. ANN evaluation 
The formally training was terminated after 600 generations. The training process is illustrated in Fig. 14. 
The horizontal axis represents the number of iterations, while the vertical axis represents the loss. The blue line indicates the loss 

variation curve of the training set, and the red line represents the loss variation curve of the test set. After training, the training set loss 
was 0.00509, and the test set loss was 0.00556. 

The trained model is evaluated using three indicators: MAE, RMSE, and R2. The result values are shown in Table 3，which reveals 
that both the UOD and sDa exhibit R2 values exceeding 0.8 in both the training and test datasets. On the other hand, the fit of ASE is 
inferior when compared to the aforementioned two variables. And Fig. 15a–f demonstrates the disparity between actual and predicted 
values through a scatter plot, affirming the model’s linear fit across both the training and test datasets. Therefore, although the model 
has some specific errors, it exhibits notable generalization capabilities and can potentially replace conventional daylighting simulation 
methods for predicting these three indicators. 

Fig. 11. Parameters distribution of all sample. The distribution of pertinent parameters within the designated interval of the training set. a–i 
respectively depict the distribution of each parameter’s value within the sample set. 
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RMSE=
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1
N
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R2= 1−

1
N

∑N

i=1
(ŷi − yi)

2

1
N

∑N

i=1
(ŷi − y)2

(4) 

Incorporate the ANN model into the Grasshopper platform. For each classroom unit in the prediction object, extract the parameter 
information through iterative looping. Subsequently, input this information into the ANN model and obtain the prediction results, 
which can grossly speed up the simulation. For instance, in the case of the four-story terraced teaching building with five east-west 
column spans, a single calculation requires only 5.6 s. This is 439 times faster than traditional daylighting simulations that take 41 min. 

4.3. Assessment and analysis of multi-objective optimization results 

4.3.1. The importance of feature analysis for parameters 
This analysis calculated by the random forest algorithm, for the six targets is presented in Fig. 16a shows that the Displacement of 

the Skylight Apex (DSA) has the most significant impact on the sDA. This is because the DSA influences the daylighting area of the 
skylight, which affects the daylighting level in the space. The second factor involves Displacement of Skylight (DS), this is due to the 
ability of the skylight to illuminate the depths of the room through its displacement, and third factor is the set of 1000 randomly 
generated shape combinations, revealing the significant impact of complex shapes on lighting conditions as a result of shading and 
material reflection. This emphasizes the importance of considering these factors in lighting analysis. In panel Fig. 16b, the Room Depth 
(RD) has the most significant impact on the UOD, followed by DS. This is because a deeper space is less suitable for light to reach the 
interior, resulting in uneven illumination. SD can improve the illumination of deep spaces by positioning the skylight closer to the deep 

Fig. 12. A part of training samples in each floor.  

Fig. 13. Hyperparameters optimizing. a–p depict the contribution of various hyperparameters (Batch_size, Hidden_nc, Learning_rate, Layer_num-
ber) combinations to the target training value (Loss). 

Table 2 
Values of hyperparameters.  

Hyperparameter Number Explanation 

Batch_size 26 The number of samples selected for one training 
Hidden_nc 26 The number of neurons in each hidden layer 
Learning_rate 1e− 2 The learning rate 
Layers_number 2 The number of the layer for the hidden layer  
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space. Panel Fig. 16c reveals that the DSA has the most significant impact on ASE. In north-facing classrooms with limited direct 
sunlight, the majority of parameters exhibit negligible impacts on the ASE. However, as the DSA increases, the skylight gradually tilts, 
resulting in an enlarged illuminated area at the top and a higher solar altitude angle for direct light. This alteration notably enhances 
the illumination in certain indoor spaces, thereby leading to an augmented ASE. In Fig. 16d, DS has the most significant impact on the 
area of the outdoor activity platform, followed by Extent of Skylight Coverage (ESC), RD and RW. An increase in SD can divide the 
platform into two parts by the skylight, causing a first decrease and then an increase in the platform’s area. ESC reduces the sky 

Table 3 
Performance of training and test model.  

Index Model RMSE MAE R2 

sDA Train 0.040 0.033 0.858 
Test 0.046 0.036 0.806 

UOD Train 0.043 0.036 0.869 
Test 0.051 0.041 0.824 

ASE Train 2.827 2.089 0.809 
Test 3.684 2.319 0.755  

Fig. 15. ANN performance in training set (a–c) and testing set (d–f).  

Fig. 14. Training process diagram.  
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surface’s effective use area by changing the skylight’s coverage depth. RD and RW directly impact the top platform’s area by being 
related to the depth and width of the entire classroom. Finally, Fig. 16e and f show that the most impact on SU and the GWL are the seed 
parameters for these targets in the pre-set 1000 random combination shapes. These two items aim to select several optimal shape 
combinations from 1000 random shapes to achieve the best SU and GWL during the optimization process. 

4.3.2. Results filtering 
Fig. 17a–f depicts the distribution of standard deviation for the six optimization objectives throughout the optimization process. 

Each curve represents the distribution within a particular generation. The results reveal that as the optimization progresses, the 
standard deviation of the succeeding generation surpasses that of the preceding generation. This suggests a greater dispersion in the 
distribution of diverse solutions within the final optimized outcomes. Consequently, this study conducts additional screening based on 
these results. This process primarily focuses on three daylighting performance indicators: sDA, UOD, and ASE. Since there do not exist 
sDA specification in China, this paper defines sDA per the highest standard for daylighting with vertical or inclined walls described in 
“European Standard EN 17037" [61]: “95% of the area of a room is 50% of the time in a day. The illuminance exceeds 500 lx, and 50% 

Fig. 16. Feature importance analysis. a-f sequentially delineate the hierarchical significance of design parameters influencing the six optimization 
objectives, namely sDA, UOD, ASE, OPA, SU, and GWL, throughout the optimization procedure. 
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of the area illuminance exceeds 750 lx for 50% of the time.” However, the ANN model in this paper is trained under the threshold of 
750 lux, it cannot evaluate under 500 lux, thus only uses 750 lux as a filter condition and improve the standard of it. The daylighting 
measure under the threshold of 750 lux is defined as “75% of the area of the room has an illuminance exceeding 750 lux in 50% of the 
time in a day.” UOD is defined per China’s “General Code for a Building Environment” [59], which requires that the UOD in ordinary 
classrooms should not be less than 0.5. ASE is primarily based on the requirements of the LEED (Leadership in Energy and Envi-
ronmental Design) Association, with a primary reference of taking at most 10% of the area in the working plane to exceed 1000 lux in 

Fig. 17. Stand deviation in optimizing process for six objectives. A–F respectively delineate the variations in standard deviation for ASE, GWL, SU, 
UOD, OPA, and sDA throughout the optimization procedure, aligned with their respective optimization objectives. 

Table 4 
Multi-objective screening results.  

NO. GWL OPA SU UOD (mean) ASE (mean) sDA (mean) 

1 17.82 33.6 1.5 0.60 6.72 0.92 
2 36.15 40 2.03 0.50 7.60 0.76 
3 14.1 27 1.16 0.63 6.25 0.92 
4 11.32 33.6 1.3 0.60 5.46 0.89 
Traditional 0 0 0.5 0.32 23.5 0.79  
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250 h per year [62]. Finally, the following filter mainly use three criteria of sDA750lux greater than 0.75, UOD greater than 0.5, and 
ASE1000lux, 250h less than 10%, resulting in four optimal solutions, as shown in Fig. 19. The indicator of each solution is presented in 
Tables 4 and 5 and their position on the Pareto chart is shown by Fig. 18, which is distributed on the Pareto hypersurface. 

The screening results shown in Fig. 19 illustrate that the combination of north-oriented terrace classrooms significantly improves 
the OPA, sDa, UOD, and ASE compared to the traditional south-oriented side daylighting classrooms in primary and secondary schools, 
prior to optimization. Among these parameters, the most notable improvement is observed in the ASE. Direct sunlight in the south 
creates intense glare near the window, whereas the predominantly diffused sunlight received by the north-oriented terrace classrooms 
alleviates visual discomfort caused by direct sunlight. Additionally, UOD has shown significant improvement compared to the 
traditional classroom. During the experiment, it was evident that achieving a UOD exceeding 0.35 in side daylighting classrooms was 
challenging due to the shading of the corridor and the limited daylighting area on the side of the corridor, resulting in inadequate 
illuminance on this side of the classroom and uneven illuminance distribution throughout the space. The optimized design positions 
the skylights closer to the corridor side, allowing sunlight to penetrate into the classroom. This effectively addresses low illumination 
issues near the corridor side, resulting in uniform illuminance distribution throughout the classroom and an increased sDA. However, 
the terraced combination form occupies a larger space than the traditional form due to the presence of setbacks and a platform, which 
is a drawback. The terraced form occupies at least twice as much space as the traditional form. Despite occupying a larger space, the 
terraced form enhances the daylighting performance of the classrooms and provides a certain amount of outdoor activity space for each 
classroom. It also serves as a new reference model for the design of primary and secondary schools in the future. 

5. Discussion 

5.1. Optimization and simulation results compared for speed and accuracy 

The simulations and experiments in this study were conducted using a computer equipped with an Intel(R) Core(TM) i7-9700F CPU 
operating at a main frequency of 3.00 GHz and an NVIDIA GeForce RTX 2060 graphics card. With the specified simulation parameters, 
the individual calculation times for sDa, UOD, and ASE in a single classroom unit were 1 min 05 s, 48 s, and 0.8 s, respectively, resulting 
in a total of 1 min 53.8 s. For group simulations, a four-story terraced school building with five column spans in the east-west direction 
was chosen, accommodating 18 to 20 classrooms. Each simulation calculation for this scenario typically required approximately 30 
min. During the optimization process, a total of 5000 sets of simulations were compared for different parameter settings of the school 
building form. Using traditional simulation methods, this would have taken 2500 h. However, by deploying our trained model on the 
grasshopper platform, the time needed to iterate through all classroom parameters and calculate the output was reduced to only 5 s. 
After 5000 optimizations, the total time amounted to merely 7 h, resulting in a 357-fold acceleration. 

The artificial neural network (ANN) model used in this study only provides three indicators (sDa, UOD, and ASE) to evaluate the 
overall indoor lighting condition, and it does not capture the lighting distribution at various test points within the room. Therefore, 
three classrooms were randomly selected from the four optimal solutions obtained for simulation using the traditional method. This 
approach served two purposes: firstly, to verify the accuracy of the results, and secondly, to observe the lighting distribution within the 
rooms. As shown in Fig. 20(solution I–solution IV), the optimized results showed significantly smaller errors than ASE in terms of sDa 
and UOD, consistent with the fitting results of the ANN model presented in Table 3. Furthermore, the validation results from Fig. 20(I_3 
and II_3), which include three-story classrooms, indicated relatively larger errors for these classrooms. This discrepancy may be 
attributed to the limited representation of classrooms with high side windows in the sample set, leading to underfitting during the 
neural network fitting process. Therefore, the prediction error in this study primarily stems from the overestimation of UOD values for 
classrooms located on the third floor with side windows. Additionally, some classrooms show ASE errors. 

Regarding the indoor distribution of Daylight Autonomy (Da), all classrooms with both skylights and side windows exhibited 
satisfactory performance. However, there was an exception for the darker region below the sill. Conversely, despite an increase in floor 
height, classrooms with skylights showed significantly better uniformity in the distribution of daylight factor (DF) compared to those 
with side windows. Additionally, the annual distribution of direct sunlight hours revealed that although there may not be significant 
direct sunlight exposure near the northern side windows, there is still some level of direct sunlight present in the lower section of the 

Table 5 
Parameters related to the optimal solution.  

NO. Solution I Solution II Solution III Solution IV 

WH 1 0.8 1.1 1 
Height I 4 4.1 4.1 4.1 
SH 1.7 1.3 1.3 1.4 
Height II 2.5 2.5 2.5 2.6 
SL 3.3 3.3 4 3.2 
Number 16 18 18 18 
Tilt 2.3 2.3 1.5 1.4 
SD 4.2 4 4.1 4.2 
Width 8 10 9 9 
Depth 7.5 10 7 7 
Seed 6 458 75 13  
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skylight. 

5.2. Suggestions for classroom design based on daylighting in the future 

Recommendations can be made to enhance classroom daylighting design in the post-epidemic era, based on the research presented 
in this paper. Optimal classroom unit designs that utilize skylight lighting or increased floor height with side windows can significantly 
enhance indoor sDa. Furthermore, to improve UOD within skylit classrooms, careful consideration of the integration of skylight pa-
rameters is necessary, including values such as SKH, DSA, EX, ESC, and DS. Among these parameters, it is recommended to position the 
skylight near the corridor. However, regarding the enhancement of UOD in classrooms equipped with high side windows, this study 
refrains from further exploring the topic due to experimental inaccuracies. Future studies may explore additional variables, such as the 
placement and size of side windows, as well as the ceiling arrangement. Additionally, in the case of north-facing classrooms, when 
tilted skylights are utilized, excessively steep angles can lead to direct light issues on the lower part. To mitigate this, the installation of 
lighting shelves beneath the skylight can be considered to prevent direct light penetration. Typically, classrooms with skylights exhibit 
superior daylighting performance compared to classrooms with side windows. Therefore, when conditions permit, skylight classrooms 
are recommended as the preferred option. 

When considering classroom combinations, the utilization of terraced section proves advantageous in providing ample daylighting 
to each classroom while maintaining sufficient outdoor space, which will also aid in enhancing indoor air circulation to a certain 
degree. Moreover, due to the considerable spatial requirements of terraced classrooms, they pose significant challenges in terms of land 
usage and campus planning. Constructing buildings with this type necessitates more land and space, presenting an insurmountable 
obstacle for cities with limited land resources. Consequently, meticulous and scientifically informed considerations are imperative 
when opting for a terraced classroom design, encompassing campus planning, building design, and land utilization. And it is crucial to 
underscore that this model unquestionably offers a superior learning environment for students. Given that students spend a significant 
portion of their day in the classroom, the land limitations associated with this model can be addressed by effectively managing other 
areas within the site, such as incorporating additional multi-purpose spaces. 

Furthermore, although the stepped arrangement increases the area of elevated windows on the gable wall, a comparison of so-
lution3 and solution2 in the optimization results reveals that, despite solution2 having a larger GWL than solution3, the overall 
daylighting effectiveness of solution3 exceeds that of solution2. It is evident that the impact of GWL on daylighting performance is not 
the predominant factor. To confirm this, we conducted a reassessment of the significance of various factors influencing daylighting. 
The results, depicted in Fig. 21a–c, indicate that GWL ranks third in terms of its influence on sDa, with DSA and RW occupying the top 
two positions. Similarly, GWL ranks third in its influence on UOD, with RD and DS securing the top two ranks. Regarding the influence 
on ASE, GWL takes the second position, closely following DSA. Hence, the arrangement of planes can be flexibly customized to match 
the specific overall shape, traffic, and other requirements. 

5.3. Limitation on the experiment 

However, there are still limitations and areas for improvement in this experiment. First, all classrooms in the composite form are 
modular and use the same section type, which simplifies the model but imposes certain limitations. Therefore, future exploration can 

Fig. 18. Pareto-optimal solutions.  
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Fig. 19. Multi-objective filtering results. It illustrates the correspondence between each solution (01–04) and its respective section and plane. 
Furthermore, it presents the pertinent optimization outcome parameters for each classroom and juxtaposes these results with the pre- 
optimization benchmarks. 

Y. Liu et al.                                                                                                                                                                                                             



Heliyon 9 (2023) e21598

21

focus on incorporating various classroom sections into a combined shape. Secondly, the generation rules of the terraced combination 
stipulate that the depth of one classroom should be set back from the first floor, resulting in an excessively long depth direction for the 
entire form and leading to a low SU. Therefore, further discussion on the setback distance is needed. For instance, optimizing the 
overall shape could involve striking a balance between the setback distance of classrooms on each floor and the size and form of 
skylights. 

To simplify the optimization model in the experiment, the overall daylighting performance of the space is evaluated using the sDA, 
UOD, and ASE trained by the ANN model. The average value of all classrooms provides an evaluation of the daylighting performance 
for the entire building. However, it is important to note that these metrics have limitations when assessing the daylighting distribution 
on specific surfaces. Therefore, while these mean metrics can offer a general assessment of the daylighting performance of a building, 
they may have limitations when more detailed information on the daylighting distribution is required. Furthermore, the low prediction 
accuracy of ASE becomes apparent when training the three indicators together in a single neural network. This discrepancy may arise 
from significant variations in the sample values across different indicators. Therefore, it is advisable to train indicators with significant 
differences separately in subsequent experiments. 

Fig. 20. The validation of optimization results. Three rooms were meticulously chosen at random for each proposed solution (I–IV) to rigorously 
assess the indicators of sDA, ASE, and UOD, thereby providing a comprehensive evaluation of the daylighting distribution. 

Fig. 21. The GWL impact on three indices. a–c respectively delineate the hierarchical impact of GWL on the three evaluative indicators: sDA, UOD, 
and ASE. 
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Upon examining the final optimization results, it became evident that none of the four proposed solutions considered critical factors 
such as vertical structure, traffic flow, and evacuation on the same floor. Furthermore, the skylight’s width was identical to that of the 
classroom, obstructing access to the outdoor platform from within the classroom. Therefore, it is suggested that subsequent studies 
consider the width of the skylight as a crucial parameter and simultaneously incorporate measures for structural integrity as well as 
vertical and horizontal traffic flow controls to address these issues. Additionally, to address the potential impact of heat radiation on 
indoor comfort, this experiment focused solely on a specific room layout on the north side, neglecting other layout types such as south- 
facing rooms. Future studies could explore various layouts, including those incorporating sunshade components, indoor thermal 
environment control, and other features such as different types of corridors and orientations. 

6. Conclusion 

In light of the post-epidemic scenario, this study reevaluates the existing classroom layout in primary and secondary schools with a 
focus on health considerations. The research delves deeper into the incorporation of multi-level classrooms that prioritize optimal 
daylighting performance during the initial design stage, taking into account the climatic conditions of the Guangzhou region and 
drawing insights from previous experiences in school design during epidemics. Additionally, it considers exemplary cases of 
daylighting design to ensure sufficient indoor natural light and outdoor activity spaces. 

To overcome the time-consuming nature of traditional lighting simulations, this study proposes an artificial neural network (ANN) 
prediction model that can effectively handle complex shapes and multiple lighting indicators. The trained model predicts sDa, UOD, 
and ASE, showing a relatively weaker fit for ASE compared to the other two indicators. Additionally, the fit for three-story side window 
classrooms, which had a smaller sample size, was not as strong as that for skylight classrooms. Implementing the trained model in 
Grasshopper using Python significantly accelerated the runtime, achieving a speed improvement of 357 times compared to the 
traditional method. Building upon this premise, a multi-objective optimization was conducted, and the resulting optimal solutions 
were subsequently evaluated based on the aforementioned three primary daylighting indicators and relevant criteria. As a result, four 
optimal solutions were obtained. The outcomes demonstrate that integrating skylights into the terraced classroom design can greatly 
improve the overall daylighting performance within the space, surpassing that of conventional school buildings. Specifically, both sDa 
and ASE demonstrate excellent performance. Although UOD performs well in skylight classrooms, further improvements are necessary 
for high side window classrooms. However, the impact of high side window lighting on the gable wall (GWL) appears to be minimal. 

In summary, this study successfully achieves a harmonious balance between captivating building form and daylighting perfor-
mance. The proposed combination of terraced forms creates favorable indoor daylighting and outdoor spaces that provide students in 
the post-epidemic era with access to abundant natural light. These findings offer valuable insights for decision-making in the initial 
stages of the design process. 
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