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ABSTRACT

Objectives To summarise multivariable predictive models
for 30-day unplanned hospital readmissions (UHRSs) in
paediatrics, describe their performance and completeness
in reporting, and determine their potential for application
in practice.

Design Systematic review.

Data source CINAHL, Embase and PubMed up to 7
October 2021.

Eligibility criteria English or German language studies
aiming to develop or validate a multivariable predictive
model for 30-day paediatric UHRs related to all-cause,
surgical conditions or general medical conditions were
included.

Data extraction and synthesis Study characteristics,
risk factors significant for predicting readmissions and
information about performance measures (eg, c-statistic)
were extracted. Reporting quality was addressed by the
‘Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis’ (TRIPOD) adherence
form. The study quality was assessed by applying six
domains of potential biases. Due to expected heterogeneity
among the studies, the data were qualitatively synthesised.
Results Based on 28 studies, 37 predictive models were
identified, which could potentially be used for determining
individual 30-day UHR risk in paediatrics. The number of
study participants ranged from 190 children to 1.4 million
encounters. The two most common significant risk factors
were comorbidity and (postoperative) length of stay. 23
models showed a c-statistic above 0.7 and are primarily
applicable at discharge. The median TRIPOD adherence

of the models was 59% (PP, 55%—69%), ranging
from a minimum of 33% to a maximum of 81%. Overall,
the quality of many studies was moderate to low in all six
domains.

Conclusion Predictive models may be useful in identifying
paediatric patients at increased risk of readmission.

To support the application of predictive models, more
attention should be placed on completeness in reporting,
particularly for those items that may be relevant for
implementation in practice.

INTRODUCTION

Hospital readmissions (HRs) are becoming
increasingly important as a quality indi-
cator for paediatric inpatient care.' * HR is
often defined as a subsequent, unplanned
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Strengths and limitations of this study

» Independent and standardised methodological ap-
proach for study selection, data extraction and risk
of bias assessment.

» Comprehensive presentation of predictive models
that provide information about applicability, perfor-
mance and reporting quality at a model level, dif-
ferentiated by 30-day all-cause, surgical conditions
and general medical condition-related paediatric
unplanned hospital readmissions.

» Due to study heterogeneity, the models were only
narratively synthesised.

admission within a period of 30 days after the

index hospitalisation.” For paediatric popu-

lations, rates of all-cause 30-day unplanned
hospital readmission (UHR) ranged from

3.4% to 18.7%.%” In addition, taking 27 US

states into account, it has been estimated that

paediatric HRs can cost up to $2 billion annu-
ally, with approximately 40% of these occur-
ring HRs being potentially preventable.’
Identifying the reasons for paediatric HRs
is a major challenge, as the health of children
is also affected by factors aside of inpatient

care.” Predictive models can be applied as a

tool for the identification of patients with a

risk of HR higher than that of the average

population and for the implementation of
preventive interventions to reduce the risk of

HR.® Especially in the context of the ongoing

COVID-19 pandemic, where children and

adolescents are also being hospitalised with

a variety of symptoms,”" the prevention of

UHRs can be beneficial, as it would allow

hospital resources to be used in a more target-

orientated way.
This systematic review aimed to address two
research gaps that have been identified:

1. Predictive models with good performance
are useful in practice when clinicians and
other stakeholders have all the neces-
sary information for their application in
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clinical practice and critical assessment. ' However,
previous systematic reviews discussed the shortcomings
in reporting the quality of prediction models'™™"® and
also for paediatric clinical prediction rules'.

2. A previous systematic review has already identified 36
significant risk factors for UHRs in paediatric patients
with different health conditions.” The largest number
of risk factors was identified for surgical procedure-
related UHRs. Among others, comorbidity was one of
the most common risk factors across the 44 included
studies.” The review” extends the findings of an earlier
systematic review that focused on 29 paediatric studies
targeting predictors for asthma-related UHRs'"”.

Both reviews® '’ were primarily addressed to predictor
finding studies'*,while to date, there is no published
review of existing 30-day UHR predictive models in
paediatrics.

The objective of this systematic review was to deter-
mine the potential application of multivariable predictive
models for individualised risk prediction of 30-day UHR
in the paediatric population by evaluating the models’
discriminative ability, completeness in reporting and
the risk factors shown to be significant for prediction of
30-day UHR.

METHOD

The 2020 Preferred Reporting Items for Systematic
reviews and Meta-Analyses (PRISMA) statement was
adhered to for conducting and reporting of this system-
atic review.'® Screening of the titles and abstracts, data
extraction, quality assessment and analyses (eg, complete-
ness in reporting) were performed by two independent
reviewers, while disagreements were discussed with a
third author. A protocol for this non-registered systematic
review was prespecified and is available from the corre-
sponding author. Based on expert recommendation,
the analysis was subsequently focused on 30-day UHRs
instead of 30-day HRs (ie, planned HRs and UHRs), devi-
ating from the prespecified protocol.

Data source and search strategy

CINAHL, Embase and PubMed were used for an elec-
tronic database search to identify studies published up
to 7 October 2021. The key search terms include the
outcome variables used for the model (ie, readmission/
rehospitalisation), elements of the study design (ie,
prediction/c-statistic) and the population of interest (ie,
paediatrics/children) (see online supplemental material
for full search strategies—online supplemental tables
Al1-A3). The reference lists of the included studies and
of comparable systematic reviews’ 17 were examined for
further potential studies.

Inclusion criteria

Studies addressing multivariable predictive models
for children and adolescents (except newborns/
preterm newborns, as the index admission is the birth

hospitalisation) were included if they were published
in English or German and available as full texts in peer-
reviewed original journal articles. Studies aiming to
develop a new model or to validate an existing model
were included (1) if the model was potentially appro-
priate for the individual prediction of 30-day UHR from
acute healthcare service after discharge or after index
procedure in paediatrics and (2) if the model provided
at least one discrimination measure (eg, c-statistic).
Discriminative ability is a key factor in evaluating predic-
tive models' and a necessary information to make well-
founded conclusions about the performance of a model.
In addition, (3) predictive model studies that developed
a new model (ie, development design) or determined
the incremental or added value of a predictor for an
existing model (ie, incremental value design) had to be
based on a regression modelling approach. This inclu-
sion criterion enables us to identify significant risk factors
and to apply the Transparent Reporting of a multivari-
able prediction model for Individual Prognosis Or Diag-
nosis (TRIPOD) adherence form, which was originally
developed for regression models.” This implies that
predictive models using machine-learning (ML) tech-
niques (eg, least absolute selection and shrinkage oper-
ator’! or random forest®®) are excluded and coded as
non-regression models. Studies that aimed to identify
30-day UHR predictors and did not provide a discrimi-
nation measure are classified as prognostic factor studies
and are thus excluded from the analysis (so as not to
bias them adversely in TRIPOD adherence). Prognostic
factor studies, for example, are not required to present
a simplified scoring rule (cf. TRIPOD item 15b*). Due
to specific requirements of mental diseases, studies were
only included (4) if they addressed non-mental health
condition-related 30-day UHRs.”

Data extraction

Just as in previous systematic reviews,” ** studies were cate-
gorised by health conditions in all tables. Basic study char-
acteristics were extracted according to criteria in tables 1
and 2. To assess the applicability of the predictive models,
significant risk factors (ie, odds ratio (OR) or hazard
ratio>1 with a p value of <0.05) were assigned to estab-
lished and revised variable categories” in table 3. If all vari-
ables of a predictive model are available for a patient at
the time of index admission (eg, previous health service
usage before index admission), the model is applicable at
admission. Applicability of predictive models at discharge
is given if all variables are available at this point for a
patient (eg, length of stay and operative time).

Reporting quality and performance

Predictive models can just be used in practice when clini-
cians and other stakeholders have access to all informa-
tion required for their application in clinical practice.'?
The newly developed 'Critical Appraisal of Models that
Predict Readmission (CAMPR)' contains 15 expert
recommendations for predictive model development
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relating to HRs. However, CAMPR should not be used as
a reporting standard so far and relates to aspects that are
out of the scope of this systematic review (eg, considering
different time frames for UHRs).*” Due to the importance
of high-quality information about predictive models, we
decided to assess the completeness of reporting by usin
the TRIPOD adherence form and scoring rules.'* **
The TRIPOD adherence form consists of 22 main criteria
based on the TRIPOD statement,” resulting in 37 items
that are applicable to varying degrees to the development,
validation and incremental value studies.” We decided to
apply the TRIPOD adherence form at predictive model
level. Therefore, publications that report the develop-
ment and validation of the same predictive model, for
example, are assessed separately. According to previous
research, our analysis concentrates on items that could be
reported in the main text or supplements?’.

TRIPOD adherence at model level was merged with the
performance results (ie, discrimination and calibration
measures) and the applicability assignment in table 4.
The discrimination of a predictive model is often eval-
uated by the c-statistic or area under the receiver oper-
ating characteristic curve. The c-statistic can take a value
between 0.5 and 1. A value of 0.5 indicates that the model
is not superior to a random prediction of outcome, while
values between 0.7 and 0.8 indicate that the model is
appropriate. A value of 0.8 or greater indicates a strong
discrimination of a model.”

Quality assessment

Following previous systematic reviews, the refined
version of the quality in prognosis studies (QUIPS) tool
with its prompting items™ was used to appraise the studies
critically with regard to the included predictive models
based on six domains. Each domain was rated with a
‘high’, ‘moderate’ or ‘low’ risk of bias.

The six domains are® ‘study participation’, ‘study
attrition’, ‘prognostic factor measurement’, ‘outcome
measurement’, ‘study confounding’ and ‘statistical anal-
ysis and reporting’.

324 29

Data synthesis

Because a quantitative evaluation in the form of a meta-
analysis was not possible due to the high heterogeneity
among the studies, the studies were qualitatively synthe-
sised; that is, the results for performance, completeness
in reporting and significant risk factors were presented in
a narrative and simplified quantitative form.

Patient and public involvement
Due to the study design, we did not involve patients or
the public.

RESULTS

Search result

From the electronic database search, 10076 records were
obtained. After duplicates had been removed, the titles
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Open access

||

Performance
Discrimination Potentially
Reference Model name (c-statistic) Calibration TRIPOD score applicable...
Brittan et al.% Composite Score  0.62 73.33% At discharge
Ehwerhemuepha et a.®* Unnamed VC: 0.79 63.33% At discharge
LACE (validation) 0.68 44.44% At discharge
Zhou et al.%' Unnamed 0.645 62.07% At discharge
Zhou et al.? Model 1: GLM 0.487 68.97% At admission
Model 1: G-S 0.477 68.97% At discharge
Model 2: GLM 0.585 68.97% At discharge
Model 2: G-S 0.593 68.97% At discharge
Model 3: GLM 0.609 68.97% At discharge
Model 3: G-S 0.617 68.97% At discharge
Vo et al.>’ Unnamed 0.747 Slope: 1, intercept: 68.97% At discharge
0.002

Delaplain et al.” 30-day readmission VC: 0.799 51.72% At discharge
model

Davidson et al.” Unnamed 0.73 H&L % 7.5 (p=0.4474) 58.62% At discharge

Lee etal.” Unnamed 0.712 H&L: 0.0974 58.62% At discharge

Roddy and Diab®® Unnamed 0.75 H&L (p value): 0.46 55.17% At discharge

Tahiri et al.®° Unnamed 0.784 55.17% At discharge

Vedantam et al.®"' Unnamed 0.71 H&L (p value): 0.94 41.38% At discharge

Martin et al.> Unnamed 0.77 62.07% At discharge
Leary et al.®® Prediction at 0.65, score: 0.65 Calibration plot 79.31% At admission
admission
Prediction at 0.67, score: 0.67 Calibration plot 81.25% At discharge
discharge

O’Connell et al.” Unnamed VC: 0.733 51.72% At discharge

Continued

(-]
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Table 4 Continued

Performance

Discrimination

Reference Model name (c-statistic)

Unnamed 0.611
Unnamed 0.75

Sanchez-Luna et al.”®
Sacks et al.*®®

Potentially
Calibration TRIPOD score applicable...
56.67% At admission
58.62% At discharge

*Assumption for applicability based on variables included in the univariable analysis.

tH&L shows ‘no evidence of a lack of fit' (Basques® p290).

DC, derivation cohort; GLM, logistic regression; G-S, stepwise logistic regression; HARRPS, High Acuity Readmission Risk Paediatric
Screen; H&L, Hosmer-Lemeshow; LACE, Length of stay, Acuity of admission, Comorbidity of the patient, Emergency department use;
NR, not reported; PACR, paediatric all-condition readmission; PASS, Paediatric Asthma Severity Score; SDH, social determinants of
health; TRIPOD, Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis; UHR, unplanned

hospital readmission; VC, validation cohort.

and abstracts were screened for 7694 records. Based on the
predefined inclusion criteria, 7586 records were excluded.
Adding one additional recommended articlegl,we found
that this results in 109 records being included in the full-
text assessment. Among the 84 excluded records, 2 were
predictive model studies for 30-day HRs (ie, UHRs and
planned HRs) with discrimination metrics™**; 12 studies
analysed 30-day UHRs or 30-day HRs combined with
another outcome (ie, emergency department return visits
(n=5),338 mortality (n=3)"""*"" and other complications
(n=4)""); 3 were predictive model studies for 30-day
UHRs or 30-day HRs with no discrimination metrics*®™*®;
5 were non-regression-based predictive model studies for
30-day UHRs or 30-day HRs in paediatrics® % and 59
were prognostic factor studies for 30-day UHRs or 30-day
HRs. Based on the full-text assessments (n=25) and the
hand search of reference lists (n=3°*5%), 28 studies were
included in the systematic review, with 6 of them” ™
already presented in a previous systematic review” with a
different focus. The results of the review process regarding
the database search are provided in online supplemental
figure Al in the online supplemental material (see online
supplemental table A4 in the online supplemental mate-
rial for a summary of study characteristics of selected
excluded models).

Quality assessment

Overall, the quality of many studies was moderate to low
for several domains. For instance, the study quality had
to be reduced due to a lack of sufficient information (eg,
in the domain ‘study participants’ or 'study attrition'),
while all studies were rated as ‘low’ for the domain 'study
confounding' (see online supplemental table A5 in the
online supplemental material for the results of the risk of
bias assessment).

Study characteristics

All studies were based on retrospective data, with
9 studies based on tertiary or paediatric hospital
data,22 55 61-67 2 nd 19 studies based on centralised data-
bases® 99 94 5660 6578 "pour of 28 studies additionally
included census data in the analysis.”" > %% The period
of data collection ranged from 1 year® >*%* 06363 5 17

years® " The majority of studies included patients up
to an age of <18 or <18 years. Only 5 studies considered
patients up to 21 years of age™ ** " or younger than 1
year74 ® The sample size was specified with different
units in the individual studies (eg, encounters and
admissions) and varies between 190 children™ and 1.4
million encounters®.

The 28 included studies resulted in 37 predictive
models for 30-day UHRs in paediatrics. 10 of 28 studies
developed or validated more than one predictive model
for UHRs,” % % 707 which were in part excluded due
to non-agreement with the inclusion criteria. The models
included were grouped into three health conditions: (1)
all-cause UHR (n=13),226163-056869 (9 surgical condition-
related UHR (n=17)%! 53545660 STT0T-TSTTT8 and (3) general
medical condition-related UHR (n=7)" %% % L7276 The
30-day UHR rates varies from 1.5%* to 41.2%"".

Among the 37 predictive models included, 32 (87%)
used a development design®® 3! %361 6367 0783 (8%)
used an external validation design62 0569 and 2 (5%)
used an incremental value design® . All external vali-
dated models were based on existing predictive models
that had been previously used in the adult popula-
tion® % or for different outcomes®. Furthermore, 5
of the 28 studies included did not state the primary
aim to develop, validate externally or assess the incre-
mental value of the respective 30-day UHR predictive
mode] 63 6770

Of the predictive models with a development or
incremental value design, 18 employed an apparent
validation® °3%9 5861 67 68 7578 5,4 16 employed an
internal validation® % 57 6366 7072 ' The most commonly
applied internal validation method was cross-validation
(n=8)* % % followed by split sample (n=5)% % 72 and
bootstrapping (n=3)"" ®®. In order to analyse the data,
either a logistic regression®? ?! 2399 5761 03687078 (. 3 Cox
proportional hazard regression® was used. Most models
presented their results by ORs with a 95% CI. With a p
value of <0.05, we considered the results as statistically
signiﬁcant.3 A summary of characteristics of all included
studies is provided in tables 1 and 2.
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Applicability and significant risk factors in predictive models
Based on the 28 predictive models with a development or
incremental value design, 25 significant risk factors asso-
ciated with 30-day UHRs were identified (see table 3).
The most common risk factors were comorbidity (n=18),
(postoperative) length of stay (n=10), illness severity
(n=9) and principal procedures (n=9). The significant
risk factors were inconsistently defined across predic-
tive models, allowing a direct comparison only to a
limited extent. ORs for comorbidity ranged from 1.017
to 10.08” across predictive models. A length of stay of
>15 days (OR=2.39)"" and a postoperatwe length of stay
of >4 days (hazard ratio=3. 12)%® were considered to be a
major risk factor. For illness severity, ‘intensive care unit
stay’ (OR=3.302)"" and for principal procedures ‘isolated
primary anterior spinal fusion’ (OR=7.65)"" were one
of the most pronounced risk factors, respectively. The
risk factor with the highest OR value was ‘any inpatient
complication’ (OR=180.44).% For all-cause UHRs, UHRs
related to surgical conditions and UHRs related to
general medical conditions, 14, 19 and 12 significant risk
factors were found, respectively.

Most predictive models are potentially applicable at
discharge (n=33), while 4 predictive models can be used
at index admission,?? %* % ™ hased on the significant and
examined variables (see online supplemental table A6 in
the online supplemental material for an overview of vari-
ables and table 4 for an application description).

Completeness in reporting and discriminative ability at model

level

Information about TRIPOD adherence and performance
atmodel level is provided in table 4. The median TRIPOD
adherence of the models was 59% (P,—P.., 55%—69%;
average: 60%), ranging from 33%% to 81%66 Devel-
oped predictive models had a more favourable reporting
quality in comparison with external validated models (ie,
59% (P,—P.., 55%—69%; average: 61%) compared with
44% (P,—P.., 39%-50%; average: 44%), respectively).
Two models with poor adherence in reporting were based
on an external validation design, and the validation of
these models was not the primary aim of the study.” *

Including all 37 items, we found that the overall median
adherence per TRIPOD item across models was 65% (P,.—
P_., 32%-92%; average: 57%), ranging from 0% to 1()0%
(see online supplemental table A7 in the online supple-
mental material for a detailed description by model type).
The overall adherence per TRIPOD item is illustrated in
figure 1.

14% of the models reported the title (item 1) completely,
while 19%%% % of the models mentioned the predic-
tive model type in this context. 3% of the models had a
completed abstract (item 2). The detailed predictor defi-
nition (item 7a) was fulfilled for more models (95%), in
contrast to outcome definition (item 6a) (reported in 70%).
The handling of predictors in the analysis (item 10a) showed
incomplete reporting in 82% of the models. In addition,
the handling (item 9, reported in 35%) and reporting of

Title & Intro Methods Results Discussion &
Abstract Other Information

100%

o
8
70%
6

g
z
o
2
o
2

Figure 1 Overall adherence per TRIPOD item across all
included predictive models (n=37). Notes: Percentages relate
to the number of models for which an item was applicable
(in this case, the respective item should have been reported).
*Indication of derivation from the total number of models

for which a TRIPOD item was applicable (N=# of models

for which the TRIPOD item is applicable): 10a (N=34), 10b
(N=34), 10c (N=4), 10e (N=2), 11 (N=5), 12 (N=5), 13c (N=5),
14a (N=34), 14b (N=32), 15a (N=34), 15b (N=34), 17 (N=1),
19a (N=5). TRIPOD, Transparent Reporting of a multivariable
prediction model for Individual Prognosis Or Diagnosis

missing values (part of item 13b, reported in 32%) were not
addressed in many models. Just 9% of the models displayed
complete reporting of the model-building procedure (item
10b), as the majority of the models (91%) did not address
the testing of interaction terms?? 31 5361 6468 70 7205 778,
The description (item 10d) and reporting of performance
measures (item 16) were incomplete in 68% and 89% of
the models. Just 24% of the models addressed results of cali-
bration measures (cf. table 4). No model presented the full
predictive model (item 15a) by providing an example of an
intercept. An explanation for using the prediction model
(item 15b, eg, by a simplified scoring rule) was presented in
21% of the models. One model provided detailed informa-
tion about a simplified scoring rule (item 15b) in the online
supplemental material®.

The discriminative ability (c-statistic) of the models ranged
from 0.28” to 0.87%. 14 out of 87 predictive models had a
cstatistic of <0.7. The linear correlation between c-statistic
and TRIPOD score at model level was not statistically signif-
icant (r=-0.241, p=0.15). Models with good discriminative
ability (c-statistic >0.7)* 5500567757778 3 e primary applicable
at discharge and have a TRIPOD score ranging from 41%"'
to 69%"". The two models with the highest reporting quality
(79% and 81%) are applicable for predicting 30-day UHRs
of children with complex chronic conditions. The c-statistic
values of these models were 0.65” and 0.67%, respectively
(see online supplemental figure A2 in the online supple-
mental material for an illustration of the models’ perfor-
mance and TRIPOD adherence).

DISCUSSION

Based on 28 studies, this systematic review identifies
37 predictive models that could potentially be used for
determining individual 30-day UHR risk in paediatrics.
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According to the models, the 4 most common signifi-
cant risk factors in predictive models were comorbidity,
(postoperative) length of stay, illness severity and prin-
cipal procedures. 23 validated predictive models have a
c-statistic of >0.7. The median TRIPOD adherence of the
predictive models included was 59% (P,.—P. ., 55%—69%),
ranging from 33% to 81%, which is similar to that of

. - 1227
other systematlc TrEviEWS 2 .

Practical clinical and policy implications
In general, reporting quality and discriminative ability
can provide crucial information about the strengths
and weaknesses of a predictive model for implemen-
tation in practice (see online supplemental figure A2
in the online supplemental material for a combined
illustration). However, the results from this system-
atic review revealed considerable differences in the
c-statistics (0.28%2-0.87%) and in the TRIPOD scores
(33%°°-81%) at the model level. When considering
the available information about reporting quality and
discriminative ability in relation to each other, it should
be noted that the linear correlation between c-statistic
and TRIPOD score at model level was not statistically
significant (r=-0.241, p=0.15). Therefore, an indepen-
dent evaluation of both aspects for the selection of an
appropriate predictive model is recommended.
Clinicians and decision makers should use predictive
models with good discriminative ability (ie, c-statistic
above 0.7) and sufficient data availability. Especially
predictive models that are based on census data® % % %
or manual data entry (eg, written discharge documenta-
tion**) may be more difficult to implement than models
relying on centralised databases® °* 5% 56-60 6978 e
TRIPOD score at the predictive model level (see table 4)
can be used as a first indicator if the predictive model can
be assessed and implemented with the given information.
Similar to a previous systematic review,S comorbidity and
(postoperative) length of stay were identified as consis-
tently cited risk factors across the included studies. In
addition, illness severity was one main risk factor among
all three health condition groups. For surgical condition-
related UHR, the principal procedure has been shown to
be crucial as a risk factor. The practical application of risk
factors should be made with caution because risk factors
are often inconsistently defined across studies. Therefore,
knowledge about study-related predictor definitions is
required before application.

Limitations

This systematic review has certain limitations:

1. The studies included needed be to published in
English or German with full-text access.

2. Summarising the results of the included studies quan-
titatively was not possible due to the heterogeneity of
the predictive models (resulting from differences in
sample sizes, the examined variables or variations in
the periods of data collection).

3. The sample size of the included studies was reported
in different units (eg, encounters and discharges), im-
peding the comparisons of UHR rates.

4. Our assignment of the predictive models that are po-
tentially applicable at discharge assumes that the re-
quired variables are available at the time point. If clini-
cians and other stakeholders decide to use a predictive
model, it should be checked beforehand whether com-
plete data collection is possible at the desired time.

5. In addition to the identified medical risk factors (eg,
comorbidity) and several country-specific risk factors
(eg, location of residence) that result in paediatric
readmissions, health-policy initiatives may also affect
the readmission rates in paediatric clinical practice”.
However, due to a lack of data, these aspects could not
be captured by this review.

Future research

This systematic review did not identify predictive models
for individualised risk prediction of potentially prevent-
able UHRs in paediatrics, emphasising past discussions to
expand the research field further.”

Current external validation studies were conducted
in the USA and examined the applicability of existing
predictive models with other outcomes or population
backgrounds to paediatric 30-day UHRs.” ®° * Therefore,
external validation studies are needed for those models
that are explicitly developed to predict 30-day UHRs in
paediatrics. Because the number of predictive models
related to medical condition-related UHRs was small
(n=7)" 0266717276 \iith 4 out of 7 models demonstrating a
c-statistic below 0.7%2% 7, there is a need for high-quality
models in this area.

Non-regression-based  techniques (eg, machine
learning) are an increasing field in order to predict 30-day
HRs in paediatrics, most of which show good discrimina-
tive ability®! #*71952%9 (see online supplemental table A4
in the online supplemental material). Future systematic
reviews should summarise and critically assess existing
non-regression-based HR predictive models in paediat-
rics, for instance, by applying the TRIPOD-ML statement
that is going to be published.*’

Existing studies discuss the benefit of shorter time inter-
vals in order to identify preventable readmissions more
accurately’ ®'; one study concluded that a 30-day UHR
metric was more precise (c-statistic=0.799) for paedi-
atric trauma patients than a 7-day UHR metric (c-sta-
tistic=0.737).”" To our knowledge, there is one predictive
model for 365—day7, 3 for 90-day™ 577 and one for '7-day70
UHRs in paediatrics with good discriminative ability
(c-statistic>0.7). Future studies should address the evalu-
ation of paediatric UHR predictive models with different
time intervals.

CONCLUSION
This systematic review revealed an increase in the develop-
ment of predictive models for 30-day UHRs in paediatrics
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in recent years. To support the implementation of the
predictive models in the long term, it is essential to vali-
date existing models in order to test their applicability in
different settings. To increase accessibility for use, more
attention should be given on completeness in reporting,
particularly for items that may be relevant for the imple-
mentation of paediatric 30-day UHR predictive models in
practice (ie, those relating to outcome and predictor defi-
nitions, handling of missing values, full predictive model
presentation and an explanation for its use).
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