
1Niehaus IM, et al. BMJ Open 2022;12:e055956. doi:10.1136/bmjopen-2021-055956

Open access�

Applicability of predictive models for 
30-day unplanned hospital readmission 
risk in paediatrics: a systematic review

Ines Marina Niehaus  ‍ ‍ ,1 Nina Kansy  ‍ ‍ ,1 Stephanie Stock,2 Jörg Dötsch  ‍ ‍ ,3 
Dirk Müller  ‍ ‍ 2

To cite: Niehaus IM, Kansy N, 
Stock S, et al.  Applicability 
of predictive models for 
30-day unplanned hospital 
readmission risk in paediatrics: 
a systematic review. BMJ Open 
2022;12:e055956. doi:10.1136/
bmjopen-2021-055956

	► Prepublication history and 
additional supplemental material 
for this paper are available 
online. To view these files, 
please visit the journal online 
(http://dx.doi.org/10.1136/​
bmjopen-2021-055956).

Received 28 July 2021
Accepted 09 February 2022

1Department of Business 
Administration and Health Care 
Management, University of 
Cologne, Cologne, Germany
2Institute for Health Economics 
and Clinical Epidemiology, 
University of Cologne, Cologne, 
Germany
3Department of Paediatrics and 
Adolescent Medicine, University 
Hospital Cologne, Cologne, 
Germany

Correspondence to
Ines Marina Niehaus;  
​niehaus@​wiso.​uni-​koeln.​de

Original research

© Author(s) (or their 
employer(s)) 2022. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published by 
BMJ.

ABSTRACT
Objectives  To summarise multivariable predictive models 
for 30-day unplanned hospital readmissions (UHRs) in 
paediatrics, describe their performance and completeness 
in reporting, and determine their potential for application 
in practice.
Design  Systematic review.
Data source  CINAHL, Embase and PubMed up to 7 
October 2021.
Eligibility criteria  English or German language studies 
aiming to develop or validate a multivariable predictive 
model for 30-day paediatric UHRs related to all-cause, 
surgical conditions or general medical conditions were 
included.
Data extraction and synthesis  Study characteristics, 
risk factors significant for predicting readmissions and 
information about performance measures (eg, c-statistic) 
were extracted. Reporting quality was addressed by the 
‘Transparent Reporting of a multivariable prediction model 
for Individual Prognosis Or Diagnosis’ (TRIPOD) adherence 
form. The study quality was assessed by applying six 
domains of potential biases. Due to expected heterogeneity 
among the studies, the data were qualitatively synthesised.
Results  Based on 28 studies, 37 predictive models were 
identified, which could potentially be used for determining 
individual 30-day UHR risk in paediatrics. The number of 
study participants ranged from 190 children to 1.4 million 
encounters. The two most common significant risk factors 
were comorbidity and (postoperative) length of stay. 23 
models showed a c-statistic above 0.7 and are primarily 
applicable at discharge. The median TRIPOD adherence 
of the models was 59% (P

25–P75, 55%–69%), ranging 
from a minimum of 33% to a maximum of 81%. Overall, 
the quality of many studies was moderate to low in all six 
domains.
Conclusion  Predictive models may be useful in identifying 
paediatric patients at increased risk of readmission. 
To support the application of predictive models, more 
attention should be placed on completeness in reporting, 
particularly for those items that may be relevant for 
implementation in practice.

INTRODUCTION
Hospital readmissions (HRs) are becoming 
increasingly important as a quality indi-
cator for paediatric inpatient care.1 2 HR is 
often defined as a subsequent, unplanned 

admission within a period of 30 days after the 
index hospitalisation.3 For paediatric popu-
lations, rates of all-cause 30-day unplanned 
hospital readmission (UHR) ranged from 
3.4% to 18.7%.3–5 In addition, taking 27 US 
states into account, it has been estimated that 
paediatric HRs can cost up to $2 billion annu-
ally, with approximately 40% of these occur-
ring HRs being potentially preventable.6

Identifying the reasons for paediatric HRs 
is a major challenge, as the health of children 
is also affected by factors aside of inpatient 
care.7 Predictive models can be applied as a 
tool for the identification of patients with a 
risk of HR higher than that of the average 
population and for the implementation of 
preventive interventions to reduce the risk of 
HR.8 Especially in the context of the ongoing 
COVID-19 pandemic, where children and 
adolescents are also being hospitalised with 
a variety of symptoms,9–11 the prevention of 
UHRs can be beneficial, as it would allow 
hospital resources to be used in a more target-
orientated way.

This systematic review aimed to address two 
research gaps that have been identified:
1.	 Predictive models with good performance 

are useful in practice when clinicians and 
other stakeholders have all the neces-
sary information for their application in 

Strengths and limitations of this study

	► Independent and standardised methodological ap-
proach for study selection, data extraction and risk 
of bias assessment.

	► Comprehensive presentation of predictive models 
that provide information about applicability, perfor-
mance and reporting quality at a model level, dif-
ferentiated by 30-day all-cause, surgical conditions 
and general medical condition-related paediatric 
unplanned hospital readmissions.

	► Due to study heterogeneity, the models were only 
narratively synthesised.

http://bmjopen.bmj.com/
http://orcid.org/0000-0002-4214-6898
http://orcid.org/0000-0001-8195-7717
http://orcid.org/0000-0003-1529-7647
http://orcid.org/0000-0002-5576-0192
http://dx.doi.org/10.1136/bmjopen-2021-055956
http://dx.doi.org/10.1136/bmjopen-2021-055956
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjopen-2021-055956&domain=pdf&date_stamp=2022-03-30


2 Niehaus IM, et al. BMJ Open 2022;12:e055956. doi:10.1136/bmjopen-2021-055956

Open access�

clinical practice and critical assessment.12 However, 
previous systematic reviews discussed the shortcomings 
in reporting the quality of prediction models13–15 and 
also for paediatric clinical prediction rules16.

2.	 A previous systematic review has already identified 36 
significant risk factors for UHRs in paediatric patients 
with different health conditions.3 The largest number 
of risk factors was identified for surgical procedure-
related UHRs. Among others, comorbidity was one of 
the most common risk factors across the 44 included 
studies.3 The review3 extends the findings of an earlier 
systematic review that focused on 29 paediatric studies 
targeting predictors for asthma-related UHRs17.

Both reviews3 17 were primarily addressed to predictor 
finding studies14,while to date, there is no published 
review of existing 30-day UHR predictive models in 
paediatrics.

The objective of this systematic review was to deter-
mine the potential application of multivariable predictive 
models for individualised risk prediction of 30-day UHR 
in the paediatric population by evaluating the models’ 
discriminative ability, completeness in reporting and 
the risk factors shown to be significant for prediction of 
30-day UHR.

METHOD
The 2020 Preferred Reporting Items for Systematic 
reviews and Meta-Analyses (PRISMA) statement was 
adhered to for conducting and reporting of this system-
atic review.18 Screening of the titles and abstracts, data 
extraction, quality assessment and analyses (eg, complete-
ness in reporting) were performed by two independent 
reviewers, while disagreements were discussed with a 
third author. A protocol for this non-registered systematic 
review was prespecified and is available from the corre-
sponding author. Based on expert recommendation, 
the analysis was subsequently focused on 30-day UHRs 
instead of 30-day HRs (ie, planned HRs and UHRs), devi-
ating from the prespecified protocol.

Data source and search strategy
CINAHL, Embase and PubMed were used for an elec-
tronic database search to identify studies published up 
to 7 October 2021. The key search terms include the 
outcome variables used for the model (ie, readmission/
rehospitalisation), elements of the study design (ie, 
prediction/c-statistic) and the population of interest (ie, 
paediatrics/children) (see online supplemental material 
for full search strategies—online supplemental tables 
A1–A3). The reference lists of the included studies and 
of comparable systematic reviews3 17 were examined for 
further potential studies.

Inclusion criteria
Studies addressing multivariable predictive models 
for children and adolescents (except newborns/
preterm newborns, as the index admission is the birth 

hospitalisation) were included if they were published 
in English or German and available as full texts in peer-
reviewed original journal articles. Studies aiming to 
develop a new model or to validate an existing model 
were included (1) if the model was potentially appro-
priate for the individual prediction of 30-day UHR from 
acute healthcare service after discharge or after index 
procedure in paediatrics and (2) if the model provided 
at least one discrimination measure (eg, c-statistic). 
Discriminative ability is a key factor in evaluating predic-
tive models19 and a necessary information to make well-
founded conclusions about the performance of a model. 
In addition, (3) predictive model studies that developed 
a new model (ie, development design) or determined 
the incremental or added value of a predictor for an 
existing model (ie, incremental value design) had to be 
based on a regression modelling approach. This inclu-
sion criterion enables us to identify significant risk factors 
and to apply the Transparent Reporting of a multivari-
able prediction model for Individual Prognosis Or Diag-
nosis (TRIPOD) adherence form, which was originally 
developed for regression models.20 This implies that 
predictive models using machine-learning (ML) tech-
niques (eg, least absolute selection and shrinkage oper-
ator21 or random forest22) are excluded and coded as 
non-regression models. Studies that aimed to identify 
30-day UHR predictors and did not provide a discrimi-
nation measure are classified as prognostic factor studies 
and are thus excluded from the analysis (so as not to 
bias them adversely in TRIPOD adherence). Prognostic 
factor studies, for example, are not required to present 
a simplified scoring rule (cf. TRIPOD item 15b23). Due 
to specific requirements of mental diseases, studies were 
only included (4) if they addressed non-mental health 
condition-related 30-day UHRs.3

Data extraction
Just as in previous systematic reviews,3 24 studies were cate-
gorised by health conditions in all tables. Basic study char-
acteristics were extracted according to criteria in tables 1 
and 2. To assess the applicability of the predictive models, 
significant risk factors (ie, odds ratio (OR) or hazard 
ratio>1 with a p value of <0.05) were assigned to estab-
lished and revised variable categories3 in table 3. If all vari-
ables of a predictive model are available for a patient at 
the time of index admission (eg, previous health service 
usage before index admission), the model is applicable at 
admission. Applicability of predictive models at discharge 
is given if all variables are available at this point for a 
patient (eg, length of stay and operative time).

Reporting quality and performance
Predictive models can just be used in practice when clini-
cians and other stakeholders have access to all informa-
tion required for their application in clinical practice.12 
The newly developed 'Critical Appraisal of Models that 
Predict Readmission (CAMPR)' contains 15 expert 
recommendations for predictive model development 
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relating to HRs. However, CAMPR should not be used as 
a reporting standard so far and relates to aspects that are 
out of the scope of this systematic review (eg, considering 
different time frames for UHRs).25 Due to the importance 
of high-quality information about predictive models, we 
decided to assess the completeness of reporting by using 
the TRIPOD adherence form and scoring rules.12 23 26 
The TRIPOD adherence form consists of 22 main criteria 
based on the TRIPOD statement,20 resulting in 37 items 
that are applicable to varying degrees to the development, 
validation and incremental value studies.23 We decided to 
apply the TRIPOD adherence form at predictive model 
level. Therefore, publications that report the develop-
ment and validation of the same predictive model, for 
example, are assessed separately. According to previous 
research, our analysis concentrates on items that could be 
reported in the main text or supplements27.

TRIPOD adherence at model level was merged with the 
performance results (ie, discrimination and calibration 
measures) and the applicability assignment in table  4. 
The discrimination of a predictive model is often eval-
uated by the c-statistic or area under the receiver oper-
ating characteristic curve. The c-statistic can take a value 
between 0.5 and 1. A value of 0.5 indicates that the model 
is not superior to a random prediction of outcome, while 
values between 0.7 and 0.8 indicate that the model is 
appropriate. A value of 0.8 or greater indicates a strong 
discrimination of a model.28

Quality assessment
Following previous systematic reviews,3 24 29 the refined 
version of the quality in prognosis studies (QUIPS) tool 
with its prompting items30 was used to appraise the studies 
critically with regard to the included predictive models 
based on six domains. Each domain was rated with a 
‘high’, ‘moderate’ or ‘low’ risk of bias.

The six domains are30 ‘study participation’, ‘study 
attrition’, ‘prognostic factor measurement’, ‘outcome 
measurement’, ‘study confounding’ and ‘statistical anal-
ysis and reporting’.

Data synthesis
Because a quantitative evaluation in the form of a meta-
analysis was not possible due to the high heterogeneity 
among the studies, the studies were qualitatively synthe-
sised; that is, the results for performance, completeness 
in reporting and significant risk factors were presented in 
a narrative and simplified quantitative form.

Patient and public involvement
Due to the study design, we did not involve patients or 
the public.

RESULTS
Search result
From the electronic database search, 10076 records were 
obtained. After duplicates had been removed, the titles H
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Table 4  Performance, application and TRIPOD adherence of 30-day UHR predictive models in paediatrics (n=37)

Reference Model name

Performance

TRIPOD score
Potentially 
applicable…

Discrimination
(c-statistic) Calibration

All-cause related UHRs

Brittan et al.64 Composite Score 0.62  �  73.33% At discharge

Sills et al.68 PACR+SDH 0.708  �  64.71% At discharge

Ehwerhemuepha et al.65

 �
Unnamed VC: 0.79  �  63.33% At discharge

LACE (validation) 0.68  �  44.44% At discharge

Bradshaw et al.63 HARRPS-tool Score: 0.65  �  73.33% At admission

Zhou et al.61 Unnamed 0.645  �  62.07% At discharge

Ehwerhemuepha et al.69 LACE (validation) 0.7014  �  33.33% At discharge

Zhou et al.22 Model 1: GLM 0.487  �  68.97% At admission

Model 1: G-S 0.477  �  68.97% At discharge

Model 2: GLM 0.585  �  68.97% At discharge

Model 2: G-S 0.593  �  68.97% At discharge

Model 3: GLM 0.609  �  68.97% At discharge

Model 3: G-S 0.617  �  68.97% At discharge

Surgical condition-related UHRs

Vo et al.57 Unnamed 0.747 Slope: 1, intercept: 
0.002

68.97% At discharge

Polites et al.56 Unnamed DC: 0.71; VC: 0.701 DC: p=0.95, O:E 
ratio=1.03; VC: p=0.36, 
O:E ratio=1.07

62.07% At discharge

Delaplain et al.70 30-day readmission 
model

VC: 0.799  �  51.72% At discharge

Chotai et al.67 Unnamed 0.72  �  42.86% At discharge

Davidson et al.73 Unnamed 0.73 H&L χ2: 7.5 (p=0.4474) 58.62% At discharge

Garcia et al.74 Unnamed 0.703  �  51.72% At discharge

Lee et al.75 Unnamed 0.712 H&L: 0.0974 58.62% At discharge

Minhas et al.58 Idiopathic scoliosis 0.760–0.769  �  55.17% At discharge*

Progressive infantile 
scoliosis

 �  55.17% At discharge*

Scoliosis due to 
other conditions

 �  55.17% At discharge*

Roddy and Diab59 Unnamed 0.75 H&L (p value): 0.46 55.17% At discharge

Sherrod et al.77 Unnamed 0.759  �  55.17% At discharge

Tahiri et al.60 Unnamed 0.784  �  55.17% At discharge

Wheeler et al.78 Unnamed 0.72  �  55.17% At discharge

Vedantam et al.31 Unnamed 0.71 H&L (p value): 0.94 41.38% At discharge

Basques et al.53 Unnamed 0.87 H&L: value not 
reported†

68.97% At discharge

Martin et al.54 Unnamed 0.77  �  62.07% At discharge

General medical condition-related UHRs

Leary et al.66

 �
Prediction at 
admission

0.65, score: 0.65 Calibration plot 79.31% At admission

Prediction at 
discharge

0.67, score: 0.67 Calibration plot 81.25% At discharge

Ryan et al.62 PASS (validation) 0.28  �  55.17% At discharge

O’Connell et al.72 Unnamed VC: 0.733  �  51.72% At discharge

Hoenk et al.71 Unnamed VC: 0.714  �  55.17% At discharge

Continued
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and abstracts were screened for 7694 records. Based on the 
predefined inclusion criteria, 7586 records were excluded. 
Adding one additional recommended article31,we found 
that this results in 109 records being included in the full-
text assessment. Among the 84 excluded records, 2 were 
predictive model studies for 30-day HRs (ie, UHRs and 
planned HRs) with discrimination metrics32 33; 12 studies 
analysed 30-day UHRs or 30-day HRs combined with 
another outcome (ie, emergency department return visits 
(n=5),34–38 mortality (n=3)39–41 and other complications 
(n=4)42–45); 3 were predictive model studies for 30-day 
UHRs or 30-day HRs with no discrimination metrics46–48; 
5 were non-regression-based predictive model studies for 
30-day UHRs or 30-day HRs in paediatrics21 49–52; and 59 
were prognostic factor studies for 30-day UHRs or 30-day 
HRs. Based on the full-text assessments (n=25) and the 
hand search of reference lists (n=353–55), 28 studies were 
included in the systematic review, with 6 of them55–60 
already presented in a previous systematic review3 with a 
different focus. The results of the review process regarding 
the database search are provided in online supplemental 
figure A1 in the online supplemental material (see online 
supplemental table A4 in the online supplemental mate-
rial for a summary of study characteristics of selected 
excluded models).

Quality assessment
Overall, the quality of many studies was moderate to low 
for several domains. For instance, the study quality had 
to be reduced due to a lack of sufficient information (eg, 
in the domain ‘study participants’ or 'study attrition'), 
while all studies were rated as ‘low’ for the domain 'study 
confounding' (see online supplemental table A5 in the 
online supplemental material for the results of the risk of 
bias assessment).

Study characteristics
All studies were based on retrospective data, with 
9 studies based on tertiary or paediatric hospital 
data,22 55 61–67 and 19 studies based on centralised data-
bases31 53 54 56–60 68–78. Four of 28 studies additionally 
included census data in the analysis.61 65 66 68 The period 
of data collection ranged from 1 year31 53 54 60 63 68 to 17 

years69 70. The majority of studies included patients up 
to an age of <18 or ≤18 years. Only 5 studies considered 
patients up to 21 years of age59 64 71 or younger than 1 
year74 76. The sample size was specified with different 
units in the individual studies (eg, encounters and 
admissions) and varies between 190 children74 and 1.4 
million encounters69.

The 28 included studies resulted in 37 predictive 
models for 30-day UHRs in paediatrics. 10 of 28 studies 
developed or validated more than one predictive model 
for UHRs,22 58 59 65–70 75 which were in part excluded due 
to non-agreement with the inclusion criteria. The models 
included were grouped into three health conditions: (1) 
all-cause UHR (n=13),22 61 63–65 68 69 (2) surgical condition-
related UHR (n=17)31 53 54 56–60 67 70 73–75 77 78 and (3) general 
medical condition-related UHR (n=7)55 62 66 71 72 76. The 
30-day UHR rates varies from 1.5%53 to 41.2%71.

Among the 37 predictive models included, 32 (87%) 
used a development design22 31 53–61 63–67 70–78; 3 (8%) 
used an external validation design62 65 69; and 2 (5%) 
used an incremental value design66 68. All external vali-
dated models were based on existing predictive models 
that had been previously used in the adult popula-
tion65 69 or for different outcomes62. Furthermore, 5 
of the 28 studies included did not state the primary 
aim to develop, validate externally or assess the incre-
mental value of the respective 30-day UHR predictive 
model.65 67–70

Of the predictive models with a development or 
incremental value design, 18 employed an apparent 
validation31 53–55 58–61 67 68 73–78 and 16 employed an 
internal validation22 56 57 63–66 70–72. The most commonly 
applied internal validation method was cross-validation 
(n=8)22 63 64 followed by split sample (n=5)56 65 70–72 and 
bootstrapping (n=3)57 66. In order to analyse the data, 
either a logistic regression22 31 53–55 57–61 63–68 70–78 or a Cox 
proportional hazard regression56 was used. Most models 
presented their results by ORs with a 95% CI. With a p 
value of  <0.05, we considered the results as statistically 
significant.3 A summary of characteristics of all included 
studies is provided in tables 1 and 2.

Reference Model name

Performance

TRIPOD score
Potentially 
applicable…

Discrimination
(c-statistic) Calibration

Sanchez-Luna et al.76 Unnamed 0.611  �  56.67% At admission

Sacks et al.55 Unnamed 0.75  �  58.62% At discharge

*Assumption for applicability based on variables included in the univariable analysis.
†H&L shows ‘no evidence of a lack of fit’ (Basques53 p290).
DC, derivation cohort; GLM, logistic regression; G-S, stepwise logistic regression; HARRPS, High Acuity Readmission Risk Paediatric 
Screen; H&L, Hosmer-Lemeshow; LACE, Length of stay, Acuity of admission, Comorbidity of the patient, Emergency department use; 
NR, not reported; PACR, paediatric all-condition readmission; PASS, Paediatric Asthma Severity Score; SDH, social determinants of 
health; TRIPOD, Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis; UHR, unplanned 
hospital readmission; VC, validation cohort.

Table 4  Continued
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Applicability and significant risk factors in predictive models
Based on the 28 predictive models with a development or 
incremental value design, 25 significant risk factors asso-
ciated with 30-day UHRs were identified (see table  3). 
The most common risk factors were comorbidity (n=18), 
(postoperative) length of stay (n=10), illness severity 
(n=9) and principal procedures (n=9). The significant 
risk factors were inconsistently defined across predic-
tive models, allowing a direct comparison only to a 
limited extent. ORs for comorbidity ranged from 1.0172 
to 10.0858 across predictive models. A length of stay of 
≥15 days (OR=2.39)61 and a postoperative length of stay 
of >4 days (hazard ratio=3.12)56 were considered to be a 
major risk factor. For illness severity, ‘intensive care unit 
stay’ (OR=3.302)67 and for principal procedures ‘isolated 
primary anterior spinal fusion’ (OR=7.65)54 were one 
of the most pronounced risk factors, respectively. The 
risk factor with the highest OR value was ‘any inpatient 
complication’ (OR=180.44).53 For all-cause UHRs, UHRs 
related to surgical conditions and UHRs related to 
general medical conditions, 14, 19 and 12 significant risk 
factors were found, respectively.

Most predictive models are potentially applicable at 
discharge (n=33), while 4 predictive models can be used 
at index admission,22 63 66 76 based on the significant and 
examined variables (see online supplemental table A6 in 
the online supplemental material for an overview of vari-
ables and table 4 for an application description).

Completeness in reporting and discriminative ability at model 
level
Information about TRIPOD adherence and performance 
at model level is provided in table 4. The median TRIPOD 
adherence of the models was 59% (P25–P75, 55%–69%; 
average: 60%), ranging from 33%69 to 81%66. Devel-
oped predictive models had a more favourable reporting 
quality in comparison with external validated models (ie, 
59% (P25–P75, 55%–69%; average: 61%) compared with 
44% (P25–P75, 39%–50%; average: 44%), respectively). 
Two models with poor adherence in reporting were based 
on an external validation design, and the validation of 
these models was not the primary aim of the study.65 69

Including all 37 items, we found that the overall median 
adherence per TRIPOD item across models was 65% (P25–
P75, 32%–92%; average: 57%), ranging from 0% to 100% 
(see online supplemental table A7 in the online supple-
mental material for a detailed description by model type). 
The overall adherence per TRIPOD item is illustrated in 
figure 1.

14% of the models reported the title (item 1) completely, 
while 19%62–66 68 of the models mentioned the predic-
tive model type in this context. 3% of the models had a 
completed abstract (item 2). The detailed predictor defi-
nition (item 7a) was fulfilled for more models (95%), in 
contrast to outcome definition (item 6a) (reported in 70%). 
The handling of predictors in the analysis (item 10a) showed 
incomplete reporting in 82% of the models. In addition, 
the handling (item 9, reported in 35%) and reporting of 

missing values (part of item 13b, reported in 32%) were not 
addressed in many models. Just 9% of the models displayed 
complete reporting of the model-building procedure (item 
10b), as the majority of the models (91%) did not address 
the testing of interaction terms22 31 53–61 64–68 70 72–75 77 78. 
The description (item 10d) and reporting of performance 
measures (item 16) were incomplete in 68% and 89% of 
the models. Just 24% of the models addressed results of cali-
bration measures (cf. table 4). No model presented the full 
predictive model (item 15a) by providing an example of an 
intercept. An explanation for using the prediction model 
(item 15b, eg, by a simplified scoring rule) was presented in 
21% of the models. One model provided detailed informa-
tion about a simplified scoring rule (item 15b) in the online 
supplemental material66.

The discriminative ability (c-statistic) of the models ranged 
from 0.2862 to 0.8753. 14 out of 37 predictive models had a 
c-statistic of <0.7. The linear correlation between c-statistic 
and TRIPOD score at model level was not statistically signif-
icant (r=−0.241, p=0.15). Models with good discriminative 
ability (c-statistic >0.7)31 53–60 65 67–75 77 78 are primary applicable 
at discharge and have a TRIPOD score ranging from 41%31 
to 69%57. The two models with the highest reporting quality 
(79% and 81%) are applicable for predicting 30-day UHRs 
of children with complex chronic conditions. The c-statistic 
values of these models were 0.6566 and 0.6766, respectively 
(see online supplemental figure A2 in the online supple-
mental material for an illustration of the models’ perfor-
mance and TRIPOD adherence).

DISCUSSION
Based on 28 studies, this systematic review identifies 
37 predictive models that could potentially be used for 
determining individual 30-day UHR risk in paediatrics. 

Figure 1  Overall adherence per TRIPOD item across all 
included predictive models (n=37). Notes: Percentages relate 
to the number of models for which an item was applicable 
(in this case, the respective item should have been reported). 
*Indication of derivation from the total number of models 
for which a TRIPOD item was applicable (N=# of models 
for which the TRIPOD item is applicable): 10a (N=34), 10b 
(N=34), 10c (N=4), 10e (N=2), 11 (N=5), 12 (N=5), 13c (N=5), 
14a (N=34), 14b (N=32), 15a (N=34), 15b (N=34), 17 (N=1), 
19a (N=5). TRIPOD, Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis
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According to the models, the 4 most common signifi-
cant risk factors in predictive models were comorbidity, 
(postoperative) length of stay, illness severity and prin-
cipal procedures. 23 validated predictive models have a 
c-statistic of >0.7. The median TRIPOD adherence of the 
predictive models included was 59% (P25–P75, 55%–69%), 
ranging from 33% to 81%, which is similar to that of 
other systematic reviews12 27.

Practical clinical and policy implications
In general, reporting quality and discriminative ability 
can provide crucial information about the strengths 
and weaknesses of a predictive model for implemen-
tation in practice (see online supplemental figure A2 
in the online supplemental material for a combined 
illustration). However, the results from this system-
atic review revealed considerable differences in the 
c-statistics (0.2862–0.8753) and in the TRIPOD scores 
(33%69–81%66) at the model level. When considering 
the available information about reporting quality and 
discriminative ability in relation to each other, it should 
be noted that the linear correlation between c-statistic 
and TRIPOD score at model level was not statistically 
significant (r=−0.241, p=0.15). Therefore, an indepen-
dent evaluation of both aspects for the selection of an 
appropriate predictive model is recommended.

Clinicians and decision makers should use predictive 
models with good discriminative ability (ie, c-statistic 
above 0.7) and sufficient data availability. Especially 
predictive models that are based on census data61 65 66 68 
or manual data entry (eg, written discharge documenta-
tion22) may be more difficult to implement than models 
relying on centralised databases31 53 54 56–60 69–78. The 
TRIPOD score at the predictive model level (see table 4) 
can be used as a first indicator if the predictive model can 
be assessed and implemented with the given information.

Similar to a previous systematic review,3 comorbidity and 
(postoperative) length of stay were identified as consis-
tently cited risk factors across the included studies. In 
addition, illness severity was one main risk factor among 
all three health condition groups. For surgical condition-
related UHR, the principal procedure has been shown to 
be crucial as a risk factor. The practical application of risk 
factors should be made with caution because risk factors 
are often inconsistently defined across studies. Therefore, 
knowledge about study-related predictor definitions is 
required before application.

Limitations
This systematic review has certain limitations:
1.	 The studies included needed be to published in 

English or German with full-text access.
2.	 Summarising the results of the included studies quan-

titatively was not possible due to the heterogeneity of 
the predictive models (resulting from differences in 
sample sizes, the examined variables or variations in 
the periods of data collection).

3.	 The sample size of the included studies was reported 
in different units (eg, encounters and discharges), im-
peding the comparisons of UHR rates.

4.	 Our assignment of the predictive models that are po-
tentially applicable at discharge assumes that the re-
quired variables are available at the time point. If clini-
cians and other stakeholders decide to use a predictive 
model, it should be checked beforehand whether com-
plete data collection is possible at the desired time.

5.	 In addition to the identified medical risk factors (eg, 
comorbidity) and several country-specific risk factors 
(eg, location of residence) that result in paediatric 
readmissions, health-policy initiatives may also affect 
the readmission rates in paediatric clinical practice79. 
However, due to a lack of data, these aspects could not 
be captured by this review.

Future research
This systematic review did not identify predictive models 
for individualised risk prediction of potentially prevent-
able UHRs in paediatrics, emphasising past discussions to 
expand the research field further.3

Current external validation studies were conducted 
in the USA and examined the applicability of existing 
predictive models with other outcomes or population 
backgrounds to paediatric 30-day UHRs.62 65 69 Therefore, 
external validation studies are needed for those models 
that are explicitly developed to predict 30-day UHRs in 
paediatrics. Because the number of predictive models 
related to medical condition-related UHRs was small 
(n=7)55 62 66 71 72 76, with 4 out of 7 models demonstrating a 
c-statistic below 0.762 66 76, there is a need for high-quality 
models in this area.

Non-regression-based techniques (eg, machine 
learning) are an increasing field in order to predict 30-day 
HRs in paediatrics, most of which show good discrimina-
tive ability21 22 47 49–52 69 (see online supplemental table A4 
in the online supplemental material). Future systematic 
reviews should summarise and critically assess existing 
non-regression-based HR predictive models in paediat-
rics, for instance, by applying the TRIPOD-ML statement 
that is going to be published.80

Existing studies discuss the benefit of shorter time inter-
vals in order to identify preventable readmissions more 
accurately6 81; one study concluded that a 30-day UHR 
metric was more precise (c-statistic=0.799) for paedi-
atric trauma patients than a 7-day UHR metric (c-sta-
tistic=0.737).70 To our knowledge, there is one predictive 
model for 365-day7, 3 for 90-day59 67 75 and one for 7-day70 
UHRs in paediatrics with good discriminative ability 
(c-statistic>0.7). Future studies should address the evalu-
ation of paediatric UHR predictive models with different 
time intervals.

CONCLUSION
This systematic review revealed an increase in the develop-
ment of predictive models for 30-day UHRs in paediatrics 
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in recent years. To support the implementation of the 
predictive models in the long term, it is essential to vali-
date existing models in order to test their applicability in 
different settings. To increase accessibility for use, more 
attention should be given on completeness in reporting, 
particularly for items that may be relevant for the imple-
mentation of paediatric 30-day UHR predictive models in 
practice (ie, those relating to outcome and predictor defi-
nitions, handling of missing values, full predictive model 
presentation and an explanation for its use).
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