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Abstract: The objective of this paper was to gain novel insights into the complex relationships
among Sustainable Development Goals (SDGs) in shaping productivity (GDP/capita) growth. Using
dynamic panel regressions on data collected in 138 countries between 2000 and 2017, we found that
rising temperatures negatively affect growth and mitigate the impact of other SDGs on growth. We
also found that CO2 emissions have a U-shaped relationship with growth; life expectancy negatively
influences growth (positively moderated by rising temperatures), and food security positively
impacts growth (negatively moderated by rising temperatures). This study highlights the difficulty
of simultaneously implementing SDGs and elucidates novel research perspectives and policies to
decrease the negative impacts of climate change on socio-economic and environmental well-being.

Keywords: Sustainable Development Goals (SDGs); productivity growth; climate change; global
warming; rising temperatures; CO2 emissions; food security; life expectancy

1. Introduction

Following the Millennium Development Goals (MDGs), the Sustainable Development
Goals (SDGs) were introduced in 2015 to emphasise global efforts toward reconciling
economic and social with ecological aspirations [1]. The 17 SDGs comprise 169 targets
related to poverty, hunger, health, education, gender equality, water, energy, work and
growth, industries, inequality, communities, consumption, climate, oceans, biodiversity,
institutions, and international partnerships [2]. Since development goals and targets
depend on and influence one another [3], implementing them simultaneously in a coherent
manner is a daunting task policymakers have to face. It is unclear how these interlinkages
work, or how progress on one goal or target influences other goals and targets through
causal relationships and feedback loops [4].

Mitigating the impact of global warming is vital for the future of humanity. In 2019,
the earth’s surface temperature was around 0.95 degrees Celsius (◦C) warmer than the
20th-century average [5]. Temperatures have consistently been among the hottest for years,
increasing sea levels and decreasing Arctic ice [6]. As a result of increasing global surface
temperatures, weather-related disasters have become much more frequent, and the number
of extreme events is increasing yearly [7]. Droughts, storms, and floods caused catastrophic
damages worldwide and resulted in almost $129 billion of economic loss in 2016 [8].

Rising temperature is likely to have a continued negative effect on societies and
economies. Shared socio-economic pathways explore possible paths for climate change
projections that could affect a wide range of future trends [9]. Xu et al. [10] forecast that
areas inhabited by one-third of the human population could become the hottest parts of the
world in 50 years unless greenhouse gas emissions (GHGs) are reduced. Climate change
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and global warming will lead to the permanent loss of critical resources, droughts and
floods, imbalances in ecosystems, extinction of species, and threats to human life [11].

Global warming has direct impacts on human productivity, i.e., output per capita
(productivity). Roson and Mensbrugghe [12] assessed various climate change effects (e.g.,
rising sea levels, variations in crop yields, water availability, human health, tourism, and
energy demand) and found that the effect of rising temperatures on real GDP is significant
and impacts are especially severe for developing countries. Recent studies have focused
on the extent to which temperature change and CO2 emissions contribute to per capita
growth or total factor productivity (TFP) [13].

This paper aims to better understand the impact of rising temperature on productivity
growth by examining its direct and moderating role. How rising temperature interacts with
other sustainability challenges in shaping growth has received very scant attention. After
examining the impact of food security (SDG2), life expectancy (SDG3), and GHG emissions
(SDG13) on productivity growth, we tested novel hypotheses vis-à-vis the moderating
effect of rising temperature.

We estimated two-step dynamic panel regressions built on a Cobb Douglas production
function, using a sample of 138 United Nations (UN) member states. The advantage of the
dynamic approach is to eliminate the deeper lags of the dependent variable, which reduces
the number of observations available while also taking endogenous economic growth into
account [14].

The remainder of the paper proceeds as follows. In Section 2, we elaborate six hy-
potheses based on the literature. In Section 3, we present the variables and data analysis
method. The results of the regression analyses are presented in Section 4. The final section
(Section 5) suggests conclusions and implications for future research and policy.

2. Literature and Hypotheses

Hypothesis 1 (H1). Global warming (rising surface temperature) has a negative impact on
productivity growth.

SDG13 aims to combat climate change and its impacts by regulating emissions and
promoting developments in renewable energy [15]. Our preliminary hypothesis assesses
the direct effect of climate change (temperature rise) on growth. It is generally accepted that
climate change impacts output and growth substantially, especially in emerging countries
and in the long run [16]. Rising temperature influences economic growth directly by
reducing agricultural output and crop yields [17], industrial output, and labour [18]. The
sensitivity of productivity to climate change could be much higher than predicted by direct
damage functions, estimating a 23 per cent decline in global GDP by 2100 [19]. The effects
would be overwhelmingly adverse at the end of the century and significantly higher in
developing countries [20].

Hypothesis 2 (H2). Increasing carbon dioxide (CO2) emissions have a negative effect on produc-
tivity growth.

While the direct impact of CO2 on temperature is well-documented, the overall
effect of emissions is not apparent because of feedbacks and complicated interconnections
in the ecosystem [21]. The atmospheric CO2 concentration has been seen as a significant
contributing factor that causes global warming [22]. It is also widely accepted that economic
growth is coupled with increased levels of CO2 emissions. However, the exact nature of the
relationship between growth and environmental degradation is not straightforward. While
much of the literature deals with the effect of economic output on CO2 emissions, some
scholars found reverse causality running from carbon emissions to growth [23]. Developing
economies are even more vulnerable, as they use more emission-intensive technologies,
ultimately decreasing their economic growth [24].
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The environmental Kuznets curve suggests an inverted U-shaped relationship be-
tween income per capita and environmental quality [25]. The environment gradually
degrades as countries increase production, but after a certain level of growth and standard
of living, societies begin to improve their relationship with the environment. Some other
studies [26–28] also indicated a robust non-linear relationship between CO2 and economic
growth as captured by TFP growth. However, the relationship between emissions and
economic growth is likely to be affected by the myopia of societies, the ability to imple-
ment intergenerational transfers, and the externalisation of pollution over borders [29].
Chavaillaz et al. [30] predicted an additional annual loss of labour productivity of about
two per cent of total GDP per unit of trillion tons of carbon emitted. However, some indi-
vidual countries (e.g., China, Japan, and the USA) show a significantly positive relationship
between economic growth and carbon emissions [31].

Hypothesis 3 (H3). Increasing life expectancy positively impacts productivity growth.

SDG3 envisions healthy lives and well-being for all people of all ages. It is generally
accepted that higher life expectancy is a good proxy of health associated with economic
growth. The subject of academic debate is whether an improvement in life expectancy
causes an increase in per capita income. On the one hand, improvements in life expectancy
generally lead to faster economic growth [32]. On the other hand, Acemoglu and John-
son [33] found that better health conditions trigger faster population growth, which is
expected to have a negative impact on productivity. The direction of the effect may depend
on the stage of “demographic transition”, after which individuals’ education and fertility
decisions start to depend on life expectancy reducing population growth and increasing
productivity [34]. The authors argue that most countries today are close to or have passed
the demographic transition. Therefore, the effect of increasing life expectancy on per capita
income are positive, on average.

Hypothesis 4 (H4). Higher food security (measured by MDER) has a positive impact on produc-
tivity growth.

SDG2 aspires to end hunger, achieve food security and improved nutrition, and
promote sustainable agriculture. Global hunger estimates are generally based on such indi-
cators as minimum dietary energy requirement (MDER). MDER is the minimum amount
of dietary energy (kcal/capita/day) that can be considered adequate to meet the minimum
energy needs with low physical activity. The modernisation of industries has improved
food supply, and food intake plays a vital role in increasing labour productivity [35]. At the
same time, the demand for certain food products sharply increases with economic growth,
posing many challenges for food supply chains and food safety [36]. Proper food intake
improves health, and better childhood nutrition raises educational attainment, improving
productivity through human capital [37].

Hypothesis 5a (H5a). Global warming alters (negatively moderates) the impact of life expectancy
on productivity growth.

The first four hypotheses evaluate the links between key SDGs (climate, health, and
food) and economic growth. In the following two hypotheses, we propose that rising
temperature alters the effect of other sustainability goals on growth. The interaction
of global warming with health and food safety can manifest through various factors,
such as mortality [38], extreme climatic events [39], crime and unrest [40], damage to
infrastructure [41], as well as adaptation efforts and the production of more expensive
carbon-free energy technologies [42]. The causal link between health (life expectancy) and
growth may also depend on the ecological consequences of rising temperature [43]. For
example, global warming changes the abundance and habitats of organisms that transmit
diseases, i.e., vectors, which can shift the seasonal occurrence of several infectious diseases
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(e.g., malaria, dengue fever, West Nile virus) and cause them to spread. The adverse health
effect of rising temperature is exacerbated by crowding, food, and water scarcity [44], and
a much depends on the adaptation skills of public health systems, including vaccines and
therapies [45].

Hypothesis 5b (H5b). Global warming alters (negatively moderates) the impact of food security
on productivity growth.

Rising temperatures can alleviate the positive effect of food security, and the impacts
fall disproportionately on the poor [46]. Warmer temperatures can increase the speed of
insect proliferation, increasing the need for food security measures and crop protection [47].
The stability of whole food systems may be at risk under global warming because of
short-term variability in supply, which aggravates food insecurity in areas vulnerable to
hunger and undernutrition [18]. Access to food and drinking water can indirectly affect
household incomes through damage to health [48].

3. Research Design and Methodologies

Table 1 presents the descriptions and sources of the variables. Our dependent vari-
able, productivity growth, is calculated by dividing the natural logarithm of real GDP at
constant (2011) prices by labour force. Explanatory variables were collected from various
sources such as the Penn World Table (9.1) [49], World Bank Databank [50], and Food and
Agricultural Organization (FAO) Database [51].

Table 1. Description, Abbreviations, and Sources of Examined Variables.

Variable Abbr. Description Source

GDP Y Real GDP at constant 2011 national prices (in million 2011 US$) Penn World Table (9.1)

Gross capital
formation (% of GDP) sk

Gross Fixed Capital Formation (GFCF) includes land
improvements; purchase of plants, machinery, and equipment;
and roads and railways, including schools, offices, hospitals,

private residential, commercial, and industrial buildings.

World Development
Indicators

(WDI), World Bank
Databank

Total employment N Number of persons engaged (in millions) Penn World Table (9.1)

Temperature change Temp The mean temperature change (◦C) range disseminates statistics
on the average surface by country, with annual updates.

Food and
Agriculture Organisation

(FAO)

CO2 emissions
(kg per 2011 US$ of

GDP)
CO2

Carbon dioxide emissions stem from burning fossil fuels and
cement manufacture during consumption of solid, liquid, and

gas fuels and gas flaring.
WDI

Life Expectancy at
birth, Total (Years) Life

Life expectancy at birth indicates how many years a new-born
infant would live if the prevailing mortality patterns remained

unchanged throughout life at birth.
WDI

Minimum Dietary
Energy Requirement

(kcal/kg/day)
MDER

The MDER is a crucial factor in malnutrition methodology, as it
sets a threshold for estimating the prevalence of an

undernourished population in a country.
FAO

Sources: based on [49–51].

The examined variables’ descriptive statistics (mean, standard deviation, minimum
and maximum values, skewness, and kurtosis), and the pairwise correlation matrix of
dependent and independent variables can be found in Appendix A (Tables A1 and A2).
The (LLC) test of stationarity statistics was also applied to a subset of the panel data to
examine whether the series contained unit root [52].

We employed an unbalanced panel dataset of 138 UN countries (see Figure 1) for the
period between 2000–2017. The selected countries cover about 71.5 per cent of the countries
in the world, giving the study overall global representativeness. Time-invariant features of



Int. J. Environ. Res. Public Health 2021, 18, 11034 5 of 13

static regression methods in the panel data can cause bias across countries [53]. Generalised
method of moment (GMM) approaches are better than fixed-effect regression estimates for
analysing panel databases, and dynamic methods used to quantify the impact of climate
change on economic growth have recently emerged [54]
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Similarly to that employed by Mankiw et al. [55], we assumed a Cobb-Douglas
production function (Equation (1)). The notations are standard:

Yt = K∝
t (AtLt)

1−∝ (1)

The sum of total income [Yt], physical capital [Kt], and labour [Lt], determined by past
accumulation in period t. α and (1− α) are the elasticities of capital and labour, and constant
returns to scale (0 < α < 1) are assumed in this model. The technical efficiency of production
is denoted by [At], as the residual output, which is not explained by expenditures of labour
and capital used in production. Both sides of Equation (1) should be divided by [Lt] to
determine output per worker (productivity) [yt] Equation (2):

yt = kt At
1−∝ (2)

The term [k] represents the capital/labour ratio as the amount of capital available per
unit of labour input. The dynamics of capital intensity [k*] is equal to the amount of [sk]
and the unit of effective labour (n + δ + g) that needs to be invested in preventing [k] from
falling [56]. Thus, depreciation [δ] and technological change [g] are assumed to have little
effect on the estimates, resulting in a constant (0.05) increase in employment growth [n].
Likewise, the steady-state level of productivity [yt*] corresponds with [k*] Equation (3):

yt∗ = At(
sk

n + δ + g
)

∝/(1−∝)
(3)

In our model specification, the economy will tend to return to long-term equilib-
rium. The steady-state prediction takes logs (ln) from both sides of Equation (3), and the
relationship between the explanatory variables is now linear Equation (4):

lnyt∗ = lnAt +
∝

(1− ∝)
[lnsk − (n + δ + g)] (4)
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Transform and arrange Equation (4) into a linear formula at country i, and time t
Equation (5):

lnyi,t∗ = βo + β1lnski,t
− β2ln(n + δ + g)i,t + β3lnAi,t + εi,t (5)

where [lnyi,t] is the dependent variable of GDP per capita at constant prices, lnski,t is the
ratio of gross capital formation per GDP, and [ln(n + δ + g)] is calculated as the sum of
the growth rate of employment. [lnAi,t] denotes the exogenous rate of TFP (total factor
productivity), the model remaining after the capital accumulation. TFP can capture the
impact of climate change, emissions, life expectancy, and food security on productivity.

The frequent misunderstandings about the neoclassical model is that it fails to explain
the catching-up countries. However, the real explanation for the economic growth needs
to be derived from the model, which can be understood as the changes that the economy
itself (endogenously) forms [57]. Arellano and Bond [58] proposed a generalised method
of moments (GMM) model that uses instrumental variables to resolve the endogeneity
problem of inconsistencies. Following this dynamic approach, lagged dependent and pre-
determined variables are used as exceptional instruments. The number of instruments and
the maximum lag of the independent variables are limited to avoid overestimating [59]. The
two-step (2SGMM) estimators are preferred to the less efficient one-step ones such as least
square (LS) and maximum likelihood (ML) [14]. 2SGMM is less likely to be mis specified,
and it is more flexible as it does not impose any restrictions on data distribution [60].

After taking the first differences of the dependent variable, the above Equation (5) was
transformed as follows Equation (6):

∆lnyi,t∗ = βo + β1∆lnyi,t−1 + β2lnski,t
− β3ln(n + δ + g)i,t + β4Tempi,t

+β5CO2i,t + β6CO2sqi,t + β7 + lnLi f ei,t + β8lnMDERi,t + εi,t
(6)

where the dependent variable [yi,t] is the growth ratio of real GDP per capita of the country
[i] in the period [t]. The first independent variable refers to the lagged dependent variable.
The second concerns the share of investment in output. [n] is the average growth rate of
employment, and [δ] + [g] is assumed to be constant (0.05). [Temp] denotes the average
temperature change. [CO2] refers to carbon dioxide emissions. [CO2sq] is included to
test the potential quadratic relationship between productivity and emissions. [Life] is life
expectancy at birth, and [MDER] is the minimum dietary energy requirement.

4. Results

Table 2 contains the results of the dynamic regression estimations based on Equation (6).
The significant Wald-tests validate the dynamic approaches’ exact choice. Wald-tests imply
that a GMM estimator is appropriate in all models, and empirical results can be relied upon
for statistical inference [61]. Autocorrelation tests are performed by AR(2) for second-order
serial correlations. In all models (1–8), the results demonstrate that all estimators are free
from serial correlations and are well-specified. The Sargan tests demonstrate the lack of
over-identifying restrictions, and instruments are lower than the number of countries.
Therefore, such violations from mean stationarity are not detectable [62]. Assuming
economic growth theories, an increase in GFCF as the proxy of the investment rate (sk)
positively impacts productivity growth, and employment growth (n + δ + g) is negatively
related to the dependent variable in both models.
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Table 2. Dynamic panel regression results of Equation (6).

Dependent Variable: Productivity Growth ∆ln(y)i,t

Independent Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

constant
−0.809 −0.072 −0.065 −0.051 0.459 0.582 −4.134 −4.447

(−12.53) *** (−1.34) (−0.96) (−0.85) (1.91) * (3.61) *** (−4.62) *** (−5.00) ***

∆ln(y)i,t−1
0.121 0.112 0.122 0.121 0.109 0.101 0.104 0.106

(5.66) *** (5.07) *** (4.88) *** (4.56) *** (4.37) *** (13.85) *** (14.43) *** (14.65) ***

ln(sk)i,t
0.048 0.048 0.053 0.053 0.053 0.021 0.019 0.022

(2.69) *** (2.72) *** (2.59) *** (2.84) *** (2.95) *** (3.86) *** (3.71) *** (3.97) ***

ln(n + g + δ)i,t
−0.809 −0.796 −0.807 −0.814 −0.804 −0.781 −0.778 −0.778

(−12.53) *** (−11.99) *** (−12.05) *** (−12.33) *** (−12.24) *** (−40.42) *** (−39.52) *** (−39.66) ***

Tempi,t
−0.005 −0.005 −0.005 −0.005 −0.068 −0.072 −0.031

(−2.53) ** (−2.60) *** (−2.56) ** (−2.55) ** (−1.93) * (−2.03) ** (−2.38) **

CO2i,t
−0.051 −0.103 −0.106 −0.114 −0.111 −0.116

(−1.63) * (−1.63) * (−2.61) *** (−9.38) *** (−9.01) *** (−9.36) ***

CO2sqi,t
0.016 0.017 0.021 0.019 0.021

(2.56) *** (2.67) *** (10.76) *** (10.29) *** (10.90) ***

ln(Life)i,t
−0.119 −0.123 −0.175 −0.197

(−1.95) * (−3.25) *** (−4.49) *** (−4.92) ***

Temp*ln(Life)i,t
0.014 0.015 0.041

(1.76) * (1.87) * (3.17) ***

ln(MDER)i,t
0.657 0.711

(5.27) *** (5.68) ***

Temp*ln(MDER)i,t
−0.081

(−2.81) ***

Observations 1787 1787 1787 1787 1787 1787 1787 1787

Instruments 18 19 19 20 21 68 69 70

Wald test 190.02 *** 207.58 *** 216.64 *** 240.75 *** 240.75 *** 2027.3 *** 1954.4 *** 2104.1 ***

AR(2) test −0.082 −0.137 −0.147 −0.171 −0.244 −0.211 −0.166 −0.205

Sargan test 31.29 *** 31.28 *** 31.06 *** 31.23 *** 31.24 *** 86.77 *** 87.26 *** 87.41 ***

Note: z statistics are in parenthesis, *** p < 0.01, ** p < 0.05, * p < 0.1.

The coefficients of temperature change (Temp) are relatively small and range from
−0.005 to −0.072, negatively affecting productivity growth. If the average surface tempera-
ture rises from 0 to 1.5 ◦C, productivity decreases by 0.008 units (0.022 to 0.014), keeping
all other variables constant, which is approximately 64 per cent lower than without a
temperature rise.

Results also show a U-shaped relationship between productivity growth and CO2
emission: a negative relationship between CO2 and growth, but a positive one between CO2
square and growth (Models 3 and 4). The overall t-test (value = 2.11**) also supports the
presence of a curvilinear U-shaped relationship. First, as pollution increases, productivity
growth decreases (negative relationship) until a local minimum, and afterwards, growth
starts to increase again (positive relationship). Models (5–8) indicate that the life expectancy
coefficient is significant; however, its sign is negative in all regression models. If life
expectancy increases by one unit, GDP per capita will decrease by 0.119–1.197.

Models 7 and 8 show that food security (MDER) positively contributes to GDP per
capita growth, while rising temperature negatively affects it. We also found significant
two-way interaction effects between temperature change and MDER. Figures 2 and 3 plot
these interaction effects; solid and dashed lines indicate significant differences between
slopes, based on Dawson [63]. The influence of MDER is more substantial (steeper) at low-
temperature change than high-temperature change; hence rising temperature negatively
moderates (decreases) the impact of MDER on productivity. Food security has a weaker
(positive) impact on growth if global warming increases.
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Similarly, we found significant interaction effects between temperature change and
life expectancy. Figure 3 shows that both increasing life expectancy and higher temperature
change negatively affect productivity growth, i.e., growth is the smallest in countries where
both temperature increases and life expectancy are relatively high. More interestingly,
global warming seems to mitigate the negative effect of life expectancy on growth, indicated
by the difference in slopes. Life expectancy has a weaker (negative) effect on growth if
global warming increases.
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5. Discussion and Conclusions

This study examined how critical sustainable development goals (SDGs) interact in
shaping economic growth. We tested the effects of global warming, CO2 emissions, life
expectancy, and food security on productivity growth and the interaction of increasing tem-
perature with life expectancy and food security. A dynamic panel regression (Arellano and
Bond) model estimates multidimensional data with longitudinal properties. This method
eliminates the problem of adding deeper lags of the dependent variable, reducing the num-
ber of observations available. Contrary to previous approaches, we also considered the
moderating effects of global warming, which is necessary for exploring the underestimated
relations between socio-economic and environmental challenges.

Our results indicate that global warming negatively affects GDP per capita growth
(H1). Carbon dioxide emissions have a U-shaped relationship with productivity growth
(H2). In addition to its direct negative impact, global warming also mitigates the effects
of other SDGs on growth. While life expectancy negatively influences growth (H3), it is
positively moderated by global warming (H5a). Food security positively impacts growth
(H4), which is negatively moderated by global warming (H5b). Hence, our data and
analysis support H1, H4, and H5b, partly support H2, and reject H3 and H5a.

The adverse effect of increasing temperature on living standards urges policymakers
to combat climate change and its devastating impacts worldwide. However, Hasegawa
et al. [64] claim that in vulnerable regions such as sub-Saharan Africa and South Asia, imple-
menting stringent climate mitigation policies impacts global hunger and food consumption
more adversely than the direct adverse effects of climate change.

The Paris Agreement of 2016 aims to strengthen the global response to the threat of
increasing temperature by keeping its increase below 1.5 ◦C compared to pre-industrial
levels [65]. According to our results, if the temperature rises from zero to 1.5 ◦C, productiv-
ity will decrease by 64 per cent. Moreover, the thresholds of heat exposure that will lead to
declined labour productivity are likely to be exceeded in warmer parts of the world, which
are often developing countries [30]. The most severely affected regions are tropical areas,
such as Southeast Asia, North Central Africa, and northern South America.

Contrary to Rigas and Kounetas [24], we found that the relationship between CO2
emissions and GDP per capita growth is robustly curvilinear at a global scale. Lower CO2
emissions and higher productivity growth are typical of developing (African) countries,
while higher pollution couples with higher growth in China, India, and the United States.
Several developed countries (e.g., Western European and Scandinavian countries) tend to
implement innovative green technologies to accelerate sustainable growth with decreasing
levels of GHGs. Meanwhile, countries rich in fossil fuel (e.g., in the Middle East) will also
show faster per capita growth with higher environmental degradation [66]. Lower-income
countries are more vulnerable to climate change and endure more substantial economic
losses than higher-income ones [67].

We found that food security positively influences growth, but life expectancy has a
negative impact on it. It appears that most countries have not achieved the demographic
transition yet when population growth decreases because of increasing life expectancy.
In the long run, increasing life expectancy will contribute to productivity growth due to
accelerated human capital accumulation [68].

Results also suggest that besides its direct (negative) effect, rising temperature mod-
erates the economic impact of other SDGs. Global warming can exert influence on other
SDGs in many ways as it impacts health, food and water scarcity, weather conditions, heat
exposure, and diseases [42]. SDGs should not be studied in isolation as there are com-
plex interdependencies among them. For example, global warming exacerbates poverty,
especially in developing countries, where the incidence of agriculture and other outdoor
activities is relatively higher [12]. Climate change negatively affects food quality due to
rising temperatures and declining plant growth periods [69]. Global warming also impacts
precipitation, which influences soil moisture content and groundwater balance [70]. The
effects of long-term climate change, including extreme frosts and sub-optimal temperatures,
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on the earlier occurrence of flowering and the phenology of (potato) vegetables, transform
food distribution and waste undesirably [71]. Food security problems mainly occur in
land-based developing countries due to unsustainable arable land usage and irrigation
systems. In contrast, land degradation is enhanced by extreme weather conditions such
as drought, environmental pollution caused by human activities, and deteriorating soil
quality [72].

There are several potential policy implications of the findings. Countries have decided
to rebuild their economies; they can only become cleaner, greener, healthier, safer, more
resilient, and sustainable by adhering to recovery plans [73]. The post-pandemic recovery
requires nations to discover innovative solutions and complex scientific approaches for
a more profound, systematic shift towards a more sustainable economy [74]. Climate-
positive actions need to trigger the trajectory of atmospheric CO2 levels; for instance,
green investments accelerate the decarburisation of all aspects of the economy [75]. The
availability and accessibility of food, clean water, and better sanitation and hygiene services
(WASH) are keys to preserving health and well-being [76]. Rapid progress in reducing
hunger and malnutrition over the next decade could pave the way for eradicating extreme
poverty through other SDGs [77]. Responses should include making economic recovery
packages more resilient to future crises and updating global environmental governance to
reverse the degradation of ecosystems worldwide [2].

This study is mainly limited by omitted variable bias, as the variables in the models
reflect only a few SDGs (climate, health, food) that we consider vital for the future of
humanity. We urge researchers to test further interactions between SDGs (e.g., education,
water, energy, innovation, consumption, production, institutions) to help policymakers
implement them simultaneously by minimising trade-offs. The Cobb–Douglas produc-
tion function can also be replaced by a constant elasticity of substitution function or an
alternative green growth approach.

Future research also needs to consider theories from various disciplines (e.g., green
growth, climate theories) to obtain results and develop global indicators that reflect the
complexity of SDGs and their potential future trajectories. Finally, growth should only be
supported if it ensures that the people and our planet will continue to provide resources
and environmental services for the well-being of all.
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Appendix A

Table A1. Descriptive statistics of examined variables.

Variables Obs. Mean SD Min. Max. Skewness Kurtosis LLC

∆ln(y) 2346 0.017 0.048 −0.456 0.469 −1.049 24.122 −18.1 ***

sk 2319 22.392 6.327 1.096 48.412 0.508 4.159 −8.3 ***

(n + δ + g) 2346 0.071 0.031 −0.269 0.494 1.828 40.409 −10.7 ***

Temp 2447 1.011 0.503 −0.494 2.917 0.518 3.363 −12.4 ***

CO2 2334 0.491 0.417 0.031 4.125 2.567 13.177 −9.7 ***

Life 2484 70.214 9.538 39.441 84.681 −0.874 2.961 −39.5 ***

MDER 2478 1829.26 105.69 1620 2072 −0.027 1.851 −16.7 ***
Notes: *** p < 0.01. LLC denotes Levin–Lin–Chu test.

Table A2. Pairwise correlation matrix of dependent and independent variables.

∆ln(y) ln(sk) ln(n+δ+g) Temp CO2 ln(Life) ln(MDER)

∆ln(y) 1

ln(sk) 0.133 *** 1

(n + δ + g) −0.370 *** 0.021 1

Temp −0.074 *** 0.128 *** −0.054 *** 1

CO2 0.075 *** 0.148 *** −0.01 0.084 *** 1

ln(Life) −0.050 ** 0.291 *** −0.176 *** 0.206 *** 0.034 * 1

ln(MDER) −0.019 0.210 *** −0.227 *** 0.307 *** 0.081 *** 0.720 *** 1
Notes: *** p < 0.01, ** p < 0.05, * p < 0.1.
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