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Abstract: Cadmium (Cd) is a toxic heavy metal that is widely present in the environment. Renal proxi-
mal tubule disorder is the main symptom of Cd chronic poisoning. Our previous study demonstrated
that Cd inhibits the total activities of peroxisome proliferator-activated receptor (PPAR) transcription
factors in human and rat proximal tubular cells. In this study, we investigated the involvement of
PPAR in Cd renal toxicity using the HK-2 human proximal tubular cell line. Among PPAR isoform
genes, only PPARD knockdown significantly showed resistance to Cd toxicity in HK-2 cells. The
transcriptional activity of PPARδ was decreased not only by PPARD knockdown but also by Cd
treatment. DNA microarray analysis showed that PPARD knockdown changed the expression of
apoptosis-related genes in HK-2 cells. PPARD knockdown decreased apoptosis signals and caspase-3
activity induced by Cd treatment. PPARD knockdown did not affect the intracellular Cd level after Cd
treatment. These results suggest that PPARδ plays a critical role in the modification of susceptibility
to Cd renal toxicity and that the apoptosis pathway may be involved in PPARδ-related Cd toxicity.
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1. Introduction

Cadmium (Cd) is an environmentally toxic metal that adversely affects various tissues
such as kidney, liver, and lung [1,2]. Because Cd has a long biological half-life (15–30 years),
it accumulates in the kidney and liver upon chronic exposure through dietary intake of
contaminated rice, vegetables, fish, and shellfish [1,2]. Several decades ago, many areas in
Japan were affected by Cd contamination caused by mining, and long-term Cd ingestion
causes renal toxicity [3]. Moreover, it is well known that itai-itai disease was caused by
Cd concentration in Toyama, Japan [3]. Proximal tubular cells are the primary target of
Cd-induced renal toxicity. Cd causes cell death through necrosis, apoptosis, autophagy,
disruption of cell–cell adhesions, and production of reactive oxygen species in various
tissues, including mouse kidney, and cultured cells [4–6]. Among the toxic pathways, cell
death of proximal tubular cells of the kidney via the apoptotic pathway is one of the major
events of Cd-induced nephrotoxicity.

Our recent studies show that changes in transcriptional activity may be involved in Cd
renal toxicity [7–9]. Cd decreases the activity of transcription factor MEF2A in HK-2 human
proximal tubular cells [9]. MEF2A regulates the expression of GLUT4. Cd decreases the
cellular levels of GLUT4 and the transportation of glucose into cells. The decreased glucose
level affects ATP production, which causes cytotoxicity in Cd-treated HK-2 cells [9].

Our previous studies demonstrated that Cd inhibits the activities of peroxisome
proliferator-activated receptor (PPAR) transcription factors in human and rat proximal
tubular cells [8,10]. PPARs belong to the nuclear receptor superfamily of transcription
factors and have three isoforms (PPARα, PPARδ, and PPARγ) in humans. PPARs form

Int. J. Mol. Sci. 2022, 23, 8652. https://doi.org/10.3390/ijms23158652 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23158652
https://doi.org/10.3390/ijms23158652
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms23158652
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23158652?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 8652 2 of 14

heterodimers with the retinoid X receptor (RXR) and bind to specific DNA elements [11–13].
PPAR affects lipid metabolism, regulation of glucose homeostasis, cell proliferation, differ-
entiation, and apoptosis. PPARα is abundant in tissues with active fatty acid conversion,
such as the liver, heart, and digestive tract, and has functions such as fatty acid metabolism
and anti-inflammatory actions [14]. PPARγ is mainly expressed in adipose tissue and the
immune system, which functions in adipocyte differentiation and insulin regulation [14].
PPARδ is present in various tissues, such as the small intestine, colon, liver, and even cancer
tissues; moreover, it regulates metabolism, inflammation, and cell proliferation [14–17].

As described above, PPARs play diverse and important physiological roles. Fur-
thermore, we have demonstrated that Cd changed the transcriptional activity of PPAR.
However, the roles of PPAR in the Cd renal toxicity has not been elucidated. Therefore, this
study investigated the effect of PPAR knockdown on Cd toxicity and the role of PPAR in
Cd-induced apoptosis of HK-2 cells.

2. Results
2.1. Identification of PPAR Affecting Cd Toxicity in HK-2 Cells

To investigate the involvement of PPAR in Cd toxicity in HK-2 cells, we examined the
effect of knockdown of each PPAR gene on Cd toxicity. In human cells, PPARs consist of
PPARα (PPARA), PPARδ (PPARD), and PPARγ (PPARG). Among the isoforms, only PPARD
knockdown significantly conferred resistance to Cd toxicity (Figure 1A,B). Additionally,
each siRNA against PPAR genes significantly reduced their mRNA levels in HK-2 cells
(Figure 1C).
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Figure 1. Effect of PPAR knockdown on the survival rate of HK-2 cells treated with Cd. (A,B) After 
treatment with PPARA, PPARG or PPARD siRNA for 48 h, HK-2 cells were treated with Cd for 24 
h. Cell survival was examined by an Alamar blue assay. Values are means ± SD (n = 3). * Significantly 
different from the control siRNA group, p < 0.05. (A) PPARA siRNA and PPARG siRNA. (B) PPARD 

Figure 1. Effect of PPAR knockdown on the survival rate of HK-2 cells treated with Cd. (A,B) After
treatment with PPARA, PPARG or PPARD siRNA for 48 h, HK-2 cells were treated with Cd for 24 h.
Cell survival was examined by an Alamar blue assay. Values are means ± SD (n = 3). * Significantly
different from the control siRNA group, p < 0.05. (A) PPARA siRNA and PPARG siRNA. (B) PPARD
siRNA. (C) Efficiency of PPARA, PPARG, and PPARD knockdown was examined after HK-2 cells
were treated with siRNA against the gene of PPARA, PPARG or PPARD for 48 h. PPARA, PPARG, and
PPARD mRNA levels were examined by real-time RT-PCR and normalized to GAPDH mRNA levels.
Values are means ± SD (n = 3). $ Significantly different from the control group, p < 0.05.
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2.2. Effects of Cd and PPARD Knockdown on the PPARδ Transcriptional Activity in HK-2 Cells

To investigate the transcriptional activity of PPARδ by exposure to Cd and PPARD
knockdown, we examined PPARδ transcriptional activity in Cd-treated or PPARD knock-
down HK-2 cells. Cd treatment for 6 h significantly and dose-dependently decreased
PPARδ transcriptional activity in HK-2 cells (Figure 2A). PPARδ transcriptional activity
was significantly decreased after PPARD knockdown in HK-2 cells (Figure 2B).
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significantly and dose-dependently increased the PPARD mRNA level in HK-2 cells (Fig-
ure 3). This result implies that the gene expression of PPARD may not contribute to the 
Cd-inhibited transcriptional activity of PPARδ in HK-2 cells. 

 
Figure 3. Effect of Cd on the PPARD mRNA level in HK-2 cells. HK-2 cells were treated with Cd for 
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Figure 2. Effect of Cd and PPARD knockdown on the PPARδ transcriptional activity in HK-2 cells.
(A) HK-2 cells were treated with Cd for 6 h. PPARδ transcriptional activity was examined by a PPAR
delta Transcriptional Factor Assay Kit after Cd treatment for 6 h. Values are means ± SD (n = 3).
* Significantly different from the control group, p < 0.05. (B) PPARδ transcriptional activity by PPARD
knockdown was examined after HK-2 cells were treated with PPARD siRNA for 48 h. Values are
means ± SD (n = 3). * Significantly different from the control siRNA group, p < 0.05.

2.3. Effect of Cd on the PPARD mRNA Level in HK-2 Cells

To clarify the effect of Cd treatment on PPARD expression in HK-2 cells, the PPARD
mRNA level was examined after HK-2 cells were treated with Cd. Cd treatment for
6 h significantly and dose-dependently increased the PPARD mRNA level in HK-2 cells
(Figure 3). This result implies that the gene expression of PPARD may not contribute to the
Cd-inhibited transcriptional activity of PPARδ in HK-2 cells.
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Figure 3. Effect of Cd on the PPARD mRNA level in HK-2 cells. HK-2 cells were treated with
Cd for 6 h. PPARD mRNA levels were examined by real-time RT-PCR after Cd treatment for 6 h.
PPARD mRNA levels were normalized to GAPDH mRNA levels. Values are means ± SD (n = 3).
* Significantly different from the control group, p < 0.05.
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2.4. Effect of RXR Knockdown on the Viability of HK-2 Cells Treated with Cd

PPAR forms a dimer with RXR, and therefore resistance to Cd toxicity by PPARD
knockdown may be associated with RXR activity. To investigate the involvement of RXR in
the resistance Cd toxicity by PPARD knockdown in HK-2 cells, we examined the effect of
RXR knockdown on Cd toxicity. RXR also consists of three isoforms [11–13]. Cd cytotoxicity
in RXRA and RXRB knockdown cells was similar to that in control cells (Figure 4A). We
also confirmed that RXRA and RXRB siRNA treatments significantly reduced the levels of
RXRA and RXRB mRNAs in HK-2 cells (Figure 4B). Therefore, RXR may be independent of
PPARD knockdown-decreased sensitivity to Cd toxicity in HK-2 cells.
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CCL19, FSIP1, and MLXIPL are involved in apoptosis [18–28]. PPARD knockdown de-
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Figure 4. Effect of RXR knockdown on the survival rate of HK-2 cells treated with Cd. (A) After
treatment with siRNA against the gene of RXRA or RXRB for 48 h, HK-2 cells were treated with
Cd for 24 h. Cell survival was examined by the Alamar blue assay. Values are means ± SD (n = 3).
* Significantly different from the control siRNA group, p < 0.05. (B) Efficiency of RXRA and RXRB
knockdown was examined after HK-2 cells were treated with siRNA the gene of RXRA or RXRB
for 48 h. RXRA and RXRB mRNA levels were examined by real-time RT–PCR and normalized to
GAPDH mRNA levels. Values are means± SD (n = 3). * Significantly different from the control group,
p < 0.05.

2.5. Identification of Genes Regulated by PPARD Knockdown in HK-2 Cells

PPARδ regulates gene expression by transcriptional activity, and therefore PPARδ-
related Cd toxicity may affect downstream factor(s) of PPARδ. To identify genes regulated
by PPARδ, we performed DNA microarray analysis of HK-2 cells transfected with PPARD
siRNA. PPARD knockdown increased the expression of 53 genes by more than three-
fold (Table 1). Among the genes, RYR2, ITPK1, PALD1, ZNF488, TFF2, IL9R, PANX2,
CPA4, CCL19, FSIP1, and MLXIPL are involved in apoptosis [18–28]. PPARD knockdown
decreased the expression of 39 genes by less than or equal to 0.5-fold (Table 2). Among
these genes, LPAR3, GAL3ST1, PTPN11, and RORA are involved in apoptosis [29–32]. We
examined the effect of Cd on the expression of 15 of the above genes (Figure 5, data not
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shown). Cd increased the mRNA levels of CPA4 and FSIP1 whose expression was induced
by PPARD knockdown (Figure 5). Increases in cellular levels of CPA4 and FSIP1 negatively
act on apoptosis signals [20,23]. These results indicated that apoptosis was associated with
resistance to Cd toxicity by PPARD knockdown.
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Figure 5. Effect of Cd on CPA4 and FSIP1 mRNA levels in HK-2 cells. HK-2 cells were treated with
Cd for 6 h. CPA4 and FSIP1 mRNA levels were examined by real-time RT–PCR after Cd treatment
for 6 h (A,B). CPA4 and FSIP1 mRNA levels were normalized to GAPDH mRNA levels. Values are
means ± SD (n = 3). * Significantly different from the control group, p < 0.05.

Table 1. Genes with expression increased by PPARD knockdown (>3-fold).

Gene Accession Number Description Fold Change

RYR2 NM_001035 Ryanodine receptor 2 5.75
CDHR2 NM_017675 Cadherin related family member 2 5.31
PCDH19 NM_020766 Protocadherin 19 4.92

TMEM184A NM_001097620 Transmembrane protein 184A 4.91
GLYAT NM_005838 Glycine-N-acyltransferase 4.89
AUTS2 NM_001127231 Activator of transcription and developmental regulator AUTS2 4.86
MSR1 NM_002445 Macrophage scavenger receptor 1 4.80
CRLF2 NM_001012288 Cytokine receptor like factor 2 4.77

SLC23A3 NM_144712 Solute carrier family 23 member 3 4.76
IL27 NM_145659 Interleukin 27 4.71
PSG2 NM_031246 Pregnancy specific beta-1-glycoprotein 2 4.70

PITPNM3 NM_031220 PITPNM family member 3 4.46
ITPK1 NM_014216 Inositol-tetrakisphosphate 1-kinase 4.42

ACTN2 NM_001278344 Actinin alpha 2 4.39
BTBD16 NM_001318189 BTB domain containing 16 4.38
PALD1 NM_014431 Phosphatase domain containing paladin 1 4.38
RGS11 NM_003834 Regulator of G protein signaling 11 4.34
SMCO1 NM_001077657 Single-pass membrane protein with coiled-coil domains 1 4.29
ZNF488 NM_153034 Zinc finger protein 488 4.21

GAL3ST1 NM_004861 Pentatricopeptide repeat domain 2 4.20
CACNG7 NM_031896 Calcium voltage-gated channel auxiliary subunit gamma 7 4.19

SERPINF1 NM_002615 Serpin family F member 1 4.19
ESPNL NM_194312 Espin like 4.19
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Table 1. Cont.

Gene Accession Number Description Fold Change

LONRF2 NM_198461 LON peptidase N-terminal domain and ring finger 2 4.19
PDE4C NM_001330172 Phosphodiesterase 4C 4.18
PTPN11 NM_002834 Transmembrane protein 225B 4.16
PRDM11 NM_001359633 PR/SET domain 11 4.11

TFF2 NM_005423 Trefoil factor 2 4.11
PDZD4 NM_032512 PDZ domain containing 4 4.02
CHRNE NM_000080 Cholinergic receptor nicotinic epsilon subunit 4.01
LRRC3 NM_030891 Leucine rich repeat containing 3 4.00

IL9R NM_176786 Interleukin 9 receptor 3.94
PANX2 NM_001160300 Pannexin 2 3.88
CPA4 NM_016352 Carboxypeptidase A4 3.76

PLCB1 NM_182734 Phospholipase C beta 1 3.65
TLDC2 NM_080628 TBC/LysM-associated domain containing 2 3.63
PPCDC NM_134260 Phosphopantothenoylcysteine decarboxylase 3.61
RGMB NM_001366509 Repulsive guidance molecule BMP co-receptor b 3.51

PDE4DIP NM_001350522 Phosphodiesterase 4D interacting protein 3.51
RNF125 NM_017831 Ring finger protein 125 3.50

JRK NM_001279352 Jrk helix-turn-helix protein 3.50
TPRX1 NM_198479 Tetrapeptide repeat homeobox 1 3.44
HAAO NM_012205 3-Hydroxyanthranilate 3,4-dioxygenase 3.41

SLC43A1 NM_003627 Solute carrier family 43 member 1 3.35
CCL19 NM_006274 C-C motif chemokine ligand 19 3.29
RBM20 NM_001134363 RNA binding motif protein 20 3.23
FSIP1 NM_152597 Fibrous sheath interacting protein 1 3.19

MPZL3 NM_198275 Myelin protein zero like 3 3.18
SMKR1 NM_001195243 Small lysine rich protein 1 3.12
MLXIPL NM_032951 MLX interacting protein like 3.11
PLXNC1 NM_005761 Plexin C1 3.11
OR6T1 NM_001005187 Olfactory receptor family 6 subfamily T member 1 3.10

EGF NM_001178130 Epidermal growth factor 3.06

Table 2. Genes with expression decreased by PPARD knockdown (≤0.5-fold).

Gene Accession Number Description Fold Change

TTLL9 NM_001035 Tubulin tyrosine ligase like 9 0.10
TNF NM_000594 Tumor necrosis factor 0.23

SAA1 NM_000331 Serum amyloid A1 0.24
CCL20 NM_004591 C-C motif chemokine ligand 20 0.25

FLG NM_002016 Filaggrin 0.26
PPARD NM_006238 Peroxisome proliferator activated receptor delta 0.32
LPAR3 NM_012152 Lysophosphatidic acid receptor 3 0.35

PCOTH NM_001348114 Pro-X-Gly collagen triple helix like repeat containing 0.36
HACD3 NM_016395 3-Hydroxyacyl-CoA dehydratase 3 0.38
ANKS1B NM_001352196 Ankyrin repeat and sterile alpha motif domain containing 1B 0.39
TRAK2 NM_015049 Trafficking kinesin protein 2 0.40

ST3GAL6 NM_006100 ST3 beta-galactoside alpha-2,3-sialyltransferase 6 0.40
LTB NM_014216 Lymphotoxin beta 0.40

UHMK1 NM_175866 U2AF homology motif kinase 1 0.40
DDR1 NM_001202522 Discoidin domain receptor tyrosine kinase 1 0.41
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Table 2. Cont.

Gene Accession Number Description Fold Change

KCNS3 NM_014431 Potassium voltage-gated channel modifier subfamily S member 3 0.42
SAA2 NM_030754 Serum amyloid A2 0.42
FSIP1 NM_152597 Fibrous sheath interacting protein 1 0.43

EFHC1 NM_153034 EF-hand domain containing 1 0.43
GAL3ST1 NM_004861 Galactose-3-O-sulfotransferase 1 0.43

IL18R1 NM_003855 Interleukin 18 receptor 1 0.44
SGCB NM_000232 Sarcoglycan beta 0.44

PCDH20 NM_022843 Protocadherin 20 0.44
CA9 NM_001216 Carbonic anhydrase 9 0.44

ZDHHC11B NM_001351303 Zinc finger DHHC-type containing 11B 0.44
PTPN11 NM_002834 Protein tyrosine phosphatase non-receptor type 11 0.45
CXADR NM_001338 CXADR Ig-like cell adhesion molecule 0.46

YES1 NM_005423 YES proto-oncogene 1, Src family tyrosine kinase 0.46
LOC391322 NM_032512 D-dopachrome tautomerase-like 0.47
CCDC146 NM_020879 Coiled-coil domain containing 146 0.47
EIF1AY NM_004681 Eukaryotic translation initiation factor 1A Y-linked 0.47
PTX3 NM_176786 Pentraxin 3 0.47

PTGFRN NM_001160300 Prostaglandin F2 receptor inhibitor 0.47
CSF2 NM_016352 Colony stimulating factor 2 0.48

ANKRD37 NM_181726 Ankyrin repeat domain 37 0.48
ENTPD2 NM_001246 Ectonucleoside triphosphate diphosphohydrolase 2 0.49

RORA NM_134260 RAR related orphan receptor A 0.49
PACC1 NM_018252 Proton activated chloride channel 1 0.50
CD83 NM_004233 CD83 molecule 0.50

2.6. Involvement of PPARD Knockdown in Cd-Induced Apoptosis

Previous studies have demonstrated that Cd induces apoptosis in HK-2 cells [4,7,8,33].
Furthermore, some downstream factors of PPARδ are involved in the apoptosis pathway [34,35].
Therefore, we examined whether the resistance to Cd toxicity by PPARD knockdown was
involved in apoptosis. To compare apoptosis levels, staurosporine (STS) was used as an
apoptosis inducer. The apoptosis was significantly induced in control cells by 20 and 30 µM
Cd treatment for 12 h. Additionally, Cd-induced apoptosis was significantly inhibited by
PPARD knockdown. The apoptosis induced by 20 and 30 µM Cd treatment was similar
to that induced by 0.1 µM STS treatment for 12 h (Figure 6A). Induction of apoptosis by
Cd is mediated through caspase-3 activation in Cd renal toxicity [4]. Therefore, we investi-
gated whether inhibition of Cd-induced apoptosis by PPARD knockdown was involved in
caspase-3 activation. Cd treatment (10–30 µM) for 9 h increased the level of cleaved caspase-
3, whereas PPARD knockdown decreased cleaved caspase-3 increased by Cd (Figure 6B).
The treatment with 10 µM Cd for 12 h markedly increased the level of cleaved caspase-3 and
PPARD knockdown decreased the increased one by Cd treatment (Figure 6C). However,
the increased level of cleaved caspase-3 by 20 and 30 µM Cd for 12 h was not affected by
PPARD knockdown. These results indicated that PPARD knockdown partly protected HK-2
cells from the Cd-induced apoptosis through a decrease in the cleaved caspase-3 level.
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caspase-3 and cleaved caspase-3 were examined by western blotting after Cd treatment for 9 or 12 h.
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2.7. Effect of PPARD Knockdown on the Intracellular Cd Concentration

PPARD knockdown may affect the Cd accumulation in HK-2 cells. Therefore, we
investigated the effect of PPARD knockdown on the intracellular Cd concentration after
Cd treatment. The intracellular Cd level was increased dose-dependently on the treatment
concentration (Figure 7). However, PPARD knockdown did not affect the intracellular Cd
level (Figure 7).
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3. Discussion

This study strongly suggests that the transcription factor PPARδ modifies susceptibility
to Cd toxicity. Additionally, PPARδ transcriptional activity is inhibited in response to Cd
stimulation in HK-2 cells. Furthermore, the decrease in PPARδ activity inhibits the apoptosis
pathway induced by Cd in HK-2 cells and PPARD knockdown is resistant to Cd toxicity in
HK-2 cells. The inhibitory effect of Cd on the transcriptional activity of PPARδ may be a
biological reaction to protect against Cd toxicity. Moreover, PPARD knockdown did not
change the concentration of Cd in cells, suggesting that PPARD knockdown is not involved
in Cd uptake and excretion in HK-2 cells.

Cd increased the level of PPARD mRNA. However, transcriptional activity of PPARδ
was suppressed by Cd. Therefore, the induction of gene expression of PPARD is un-
likely to be associated with the suppression of PPARδ transcriptional activity. Several
research groups have reported on the regulation of PPARδ activity. In the skeletal mus-
cle, it has been reported that the activity of PPARδ is regulated by AMPK, CRYs, and
PGC [36,37]. AMPK promotes PPARδ-dependent transcription. However, AMPK does not
increase the PPARδ phosphorylation. AMPK may be present in a transcriptional complex
with PPARδ [37]. CRY1 and CRY2 can selectively repress the transcriptional activity of
PPARδ [36]. In addition, NCOA6 deficiency suppresses the activity of PPARδ in human
and mouse hearts [38,39]. Recent studies demonstrated that Cd changes the AMPK-related
pathway and disrupts the expressions of CRY1 [40,41]. These findings suggest that Cd
may affect the transcriptional activity of PPARδ via the various mechanisms including the
interaction with the cofactors and PPARδ.

Individual differences have been observed in the onset of chronic renal toxicity caused
by Cd. Previous studies reported that there are gene polymorphisms in PPARD [42,43].
Our study demonstrated that PPARδ is a modification factor in Cd renal toxicity because
PPARD knockdown is resistant to Cd renal toxicity. The presence of gene polymorphisms
in PPARD means that there is a population with low PPARδ levels, which may be a
population less sensitive to Cd renal toxicity. Moreover, changes in PPARδ may be one
of the factors that cause individual differences in the development of Cd renal toxicity.
Therefore, these findings suggest PPARδ plays an important role as a modification factor
against Cd renal toxicity.

Cd decreases the activities of transcription factors YY1 and FOXF1. As a result, gene
expression of the UBE2D family—downstream factors of YY1 and FOXF1—decreases in
HK-2 cells [7]. Suppression of UBE2D family expression causes accumulation of apoptosis-
inducing factor p53 in the cells, which induces apoptosis [7,33]. Cd decreases transcriptional
activity of ARNT in HK-2 cells [8]. The cellular level BIRC3, a downstream factor of ARNT,
was decreased by Cd treatment. BIRC3 is an inhibitor of apoptosis. Cd-decreased BIRC3
also induces apoptosis in the HK-2 cells [8]. PPARγ is involved in Cd-induced apoptosis
and oxidative stress in renal epithelial cells and hepatocytes [44,45]. In the rat heart cells,
DHA (docosahexaenoic acid), which acts as a ligand for PPARδ, has been reported to
promote apoptotic cell death, increase caspase-3 activity, and reduce Akt phosphorylation
via PPARδ [46]. Furthermore, it has been reported that intracellular prostacyclin promotes
apoptosis by activating PPARδ in the human kidney cells [47]. On the other hand, it has
also been reported that in mouse brain, PPARδ activation suppresses caspase-3 activa-
tion through miR-15a and its downstream Bcl-2 and protects cerebrovascular vessels by
reducing apoptosis [48]. We demonstrated that PPARδ is a crucial factor that influences
Cd-induced apoptosis in human proximal tubular cells. These findings indicate that Cd
triggers renal toxicity via an apoptosis pathway with associations between various related
factors. Depending on the various physiological circumstances, there may be differences in
the contribution of each apoptosis-related factor to Cd-induced renal toxicity.
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4. Materials and Methods
4.1. Cell Culture and Treatment

HK-2 cells purchased from the American Type Culture Collection (Manassas, MA,
USA) were cultured in Dulbecco’s modified Eagle’s medium/Ham’s F-12 nutrient mixture
(Sigma-Aldrich, St. Louis, MO, USA) containing 10% fetal bovine serum (Gibco, Grand
Island, NY, USA), 25 U/mL penicillin (DS Pharm, Osaka, Japan), 25 µg/mL streptomycin
(DS Pharm), 1% insulin-transferrin-selenium X (Gibco), 10 ng/mL epidermal growth factor
(Sigma-Aldrich), and 5 ng/mL hydrocortisone at 37 ◦C in a humidified incubator with 5%
CO2. The cells were cultured in test plates at a density of 250 cells/mm2 for 48 h. After
discarding the culture medium, the cells were treated with Cd (CdCl2; 98.0%; Fujifilm Wako
Pure Chemical Co., Tokyo, Japan) in serum-free culture medium.

4.2. Small Interfering RNA (siRNA) Transfection

Silencer Select Predesigned siRNAs against human PPAR and RXR mRNAs were
purchased from Ambion (Grand Island, NY, USA). Control siRNA (Silencer Select Negative
Control #1 siRNA) was also purchased from Ambion. siRNA transfection was performed
with Lipofectamine RNAiMAX (Invitrogen, Grand Island, NY, USA). After the siRNA
mixture was incubated for 15 min with Lipofectamine RNAiMAX and Opti-MEM I Reduced
Serum Medium (Opti-MEM; Gibco), HK-2 cells were transfected with the siRNA mixture
(1 nM siRNA per sequence, 0.2% Lipofectamine RNAiMAX, and 10% Opti-MEM) for 48 h.

4.3. Cell Survival Rate

HK-2 cells were treated with the siRNA mixture in 96-well plates for 48 h. After
treatment, Alamar blue (10%; Invitrogen) was added and the cells were incubated for 4 h
at 37 ◦C. Fluorescence was measured at an excitation wavelength of 540 nm and emission
wavelength of 595 nm with a SpectraMax® iD3 microplate reader (Molecular Devices, San
Jose, CA, USA).

4.4. RNA Extraction

HK-2 cells were treated with the siRNA mixture and Cd in 6-well plates. Cd-treated
HK-2 cells were washed twice with ice-cold phosphate-buffered saline (PBS(−); Nissui,
Tokyo, Japan). Total RNA was extracted with a PureLinkTM RNA Mini Kit (Ambion) in
accordance with the manufacturer’s instructions. RNA quantity and purity were measured
using a BioSpec-nano spectrophotometer (Shimadzu, Kyoto, Japan).

4.5. DNA Microarray Analysis

DNA microarray analysis was performed by Hokkaido System Science Co., Ltd.
(Sapporo, Japan). Complementary RNA (cRNA) was synthesized from 50 ng total RNA
using a Low Input Quick Amp Labeling Kit (Agilent Technologies, Santa Clara, CA, USA).
HK-2 cells were treated with the siRNA mixture in 6-well plates for 48 h. The total RNAs
were pooled from the independent three samples. Double-stranded cDNA from control
siRNA- or PPARD siRNA-treated cells was transcribed in the presence of cyanine (Cy)
3-CTP or Cy5-CTP, respectively. These two sets of labeled cRNAs (300 ng each) were mixed
and hybridized to a SurePrint G3 Human 8 × 60 K ver. 3.0 (Agilent Technologies) by a
Gene Expression Hybridization Kit (Agilent Technologies) for 17 h at 65 ◦C. Fluorescent
images were recorded with the Agilent Microarray Scanner (G2600D). Digitized image data
were processed with Agilent Feature Extraction ver. 12.0.3.1. Information on each gene was
obtained from the National Center for Biotechnology Information database.

4.6. Real-Time Reverse Transcription (RT)-PCR

To generate cDNA, total RNA was subjected to a PrimeScript RT Reagent Kit (Per-
fect Real Time) (Takara Bio, Shiga, Japan). Real-time PCR was performed with SYBR®

Premix Ex TaqTM II (Perfect Real Time) (Takara Bio) on the Thermal Cycler Dice Real
Time System (Takara Bio). The thermal cycling conditions were 10 s at 95 ◦C followed by
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40 cycles of 5 s at 95 ◦C and 30 s at 60 ◦C. Gene expression was normalized to GAPDH
mRNA levels. The oligonucleotide sequences of the primers used were as follows: sense,
5′-GAAACAGGCCTTCTCAGTGC-3′ and antisense, 5′-TTGCTGGGTCGTCTTTTTCT-3′

for the human PPARD gene; sense, 5′-ACGATTCGACTCAAGCTGGT-3′ and antisense,
5′-GTTGTGTGACATCCCGACAG-3′ for the human PPARA gene; sense, 5′-TTCAGAAATGCC
TTGCAGTG-3′ and antisense, 5′-CCAACAGCTTCTCCTTCTCG-3′ for the human PPARG
gene; sense, 5′-CAAGGACTGCCTGATTGACA-3′ and antisense, 5′-CTGGTCGACTCCAC
CTCATT-3′ for the human RXRA gene; sense, 5′-CCTGAGGGCAATCATTCTGT-3′, and an-
tisense, 5′-CCTGCTGCTCAGGGTACTTC-3′ for the human RXRB gene; sense, 5′-GCACCG
TCAAGGCTGAGAAC-3′ and antisense, 5′-TGGTGAAGACGCCAGTGGA-3′ for the hu-
man GAPDH gene.

4.7. Western Blot Analysis

HK-2 cells were treated with the siRNA mixture and Cd in 6 cm dishes. After treat-
ment, the cells were washed twice with ice-cold PBS(−) and harvested in RIPA buffer
(25 mM Tris, pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, and 0.1% sodium
dodecyl sulfate (SDS); Thermo Fisher Scientific, Waltham, MA, USA). Protein concentra-
tions were measured by PierceTM BCA Protein Assay Kit (Thermo Fisher Scientific). Protein
samples were separated on an SDS-polyacrylamide gel and transferred to a polyvinylidene
difluoride membrane. The membrane was probed with primary antibodies and then with
a horseradish peroxidase-conjugated secondary antibody (1:10,000 dilution; GE Healthcare,
Little Chalfont, UK). The proteins were detected by enhanced chemiluminescence using
Chemi-Lumi One Super (Nacalai Tesque, Kyoto, Japan). Chemiluminescence images were
acquired with the ChemiDocTM imaging system (BIO-RAD, Hercules, CA, USA). The pri-
mary antibodies were anti-GAPDH (1:1000 dilution) from American Research Products
(Waltham, MA, USA), and anti-Caspase-3 (1:1000 dilution) and anti-Cleaved Caspase-3
(diluted 1:1000) from Cell Signaling Technology (Danvers, MA, USA).

4.8. Nuclear Protein Extraction

Nuclei were extracted with a Nuclear Extraction Kit (ab113474; abcam, Tokyo, Japan).
HK-2 cells were treated with Cd or the siRNA mixture in 10 cm dishes. The treated cells
were pooled from the independent two samples. After treatment, HK-2 cells were washed
twice with ice-cold PBS(−) and harvested in PBS(−). The cells were shaken at 200× g
for 10 min at 4 ◦C in Pre-extraction Buffer that included a Protease Inhibitor Cocktail and
dithiothreitol (DTT). The cytoplasmic fraction was collected by centrifugation at 14,000× g
for 3 min at 4 ◦C. The nuclear pellet was resuspended in Extraction Buffer, which included
the Protease Inhibitor Cocktail and DTT, and incubated at 4 ◦C for 1 h with agitation every
15 min. The mixture was centrifuged at 16,000× g for 10 min at 4 ◦C, and the supernatant
was collected. Protein concentrations were measured by PierceTM BCA Protein Assay Kit.

4.9. PPARδ Transcriptional Activity Assay

PPARδ transcriptional activity was determined by a PPAR delta Transcriptional Factor
Assay Kit (ab133106; abcam). After treatment, nuclei were extracted from HK-2 cells.
Complete Transcription Factor Binding Assay Buffer (CTFB) was prepared by adding
Transcription Factor Binding Assay Buffer, Reagent A, and DTT. Nuclei and CTFB were
added to 96-well plates. After covering the 96-well plates with the included cover, the
plates were incubated overnight at 4 ◦C without agitation. The 96-well plates were washed
five times with Wash Buffer. Transcription Factor PPAR delta Primary Antibody was
prepared by adding Transcription Factor Antibody Binding Buffer (ABB) and PPAR delta
Primary Antibody. After completely removing the Wash Buffer, Transcription Factor PPAR
delta Primary Antibody was added to the 96-well plates. After covering the 96-well plates
with the included cover, the plates were incubated for 1 h at room temperature without
agitation. The 96-well plates were then washed five times with Wash Buffer. Transcription
Factor Goat Anti-Rabbit HRP conjugate was prepared by adding ABB and Goat Anti-Rabbit
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HRP conjugate. After completely removing the Wash Buffer, Transcription Factor Goat
Anti-Rabbit HRP conjugate was added to the 96-well plates. After covering the 96-well
plates with the included cover, the plates were incubated for 1 h at room temperature
without agitation. The 96-well plates were washed five times with Wash Buffer. After
completely removing the Wash Buffer, Transcription Factor Developing Solution was added
to the 96-well plates. The 96-well plates were incubated for 45 min at room temperature
with gentle agitation while protected from light. Absorbance at 450 nm was read within
5 min after adding Stop Solution to the 96-well plate with an iMarkTM Microplate Reader
(BIO-RAD).

4.10. Apoptosis Assay

Apoptosis was examined by a Cell Death Detection ELIZAPLUS Kit (Roche, Basel,
Switzerland). HK-2 cells were treated with the siRNA mixture and Cd in 96-well plates.
After treatment, the HK-2 cells were washed twice with ice-cold PBS(−). Lysis Buffer was
added to the cells, followed by incubation for 30 min at room temperature to lyse the cells.
The cell lysates were repeatedly pipetted and then transferred to 96-well plates. Incubation
buffer containing Anti-Histone Biotin and Anti-DNA POD was added to the 96-well plates.
After covering with a close contact cover, the mixture was incubated at room temperature
for 2 h while shaking at 300 rpm. The 96-well plate was washed three times with Incubation
Buffer and then the Incubation Buffer was completely removed. ABTS solution, in which
ABTS tablets were dissolved in the Substrate Buffer, was placed in a 96-well plate and
incubated for 20 min with shaking at 250 rpm. After adding the ABTS stop solution, the
absorbance was measured at 405 nm and 490 nm with the SpectraMax® iD3 microplate
reader. Staurosporine (STS) was used for the positive control treatment [49]. The degree
of Cd-induced apoptosis was normalized to apoptosis induced by 0.1 µM STS treatment
(12 h).

4.11. Determination of Cd Content

After siRNA or Cd treatment using 6-well plates, cells were washed twice with ice-cold
PBS(−) and then three times with PBS(−) containing 2 nM ethylene glycol tetraacetic acid
(Nacalai Tesque). The cells were then harvested in 1 mL RIPA buffer and digested with
nitric acid and hydrogen peroxide. After sample digestion, metal analysis was carried
out using an atomic absorption spectrometer (200 series AA; Agilent Technologies). Pro-
tein concentrations were measured by PierceTM BCA Protein Assay Kit to normalize the
Cd content.

4.12. Statistical Analysis

Statistical analyses were performed by one- or two-way ANOVA. When the F-value
was significant (p < 0.05), Bonferroni’s multiple t-test was performed for post-hoc comparison
(p < 0.05). Statistical analyses were performed with SPSS Statistics (IBM, Tokyo, Japan).
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