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ABSTRACT

The past decades have witnessed a surge of discov-
eries revealing RNA regulation as a central player
in cellular processes. RNAs are regulated by RNA-
binding proteins (RBPs) at all post-transcriptional
stages, including splicing, transportation, stabiliza-
tion and translation. Defects in the functions of
these RBPs underlie a broad spectrum of human
pathologies. Systematic identification of RBP func-
tional targets is among the key biomedical research
questions and provides a new direction for drug
discovery. The advent of cross-linking immunopre-
cipitation coupled with high-throughput sequenc-
ing (genome-wide CLIP) technology has recently en-
abled the investigation of genome-wide RBP–RNA
binding at single base-pair resolution. This technol-
ogy has evolved through the development of three
distinct versions: HITS-CLIP, PAR-CLIP and iCLIP.
Meanwhile, numerous bioinformatics pipelines for
handling the genome-wide CLIP data have also been
developed. In this review, we discuss the genome-
wide CLIP technology and focus on bioinformatics
analysis. Specifically, we compare the strengths and
weaknesses, as well as the scopes, of various bioin-
formatics tools. To assist readers in choosing opti-
mal procedures for their analysis, we also review ex-
perimental design and procedures that affect bioin-
formatics analyses.

INTRODUCTION

The diversity of RNA in sequence and structure underpins
much of cell heterogeneity and complexity. RNA-binding
proteins (RBPs) are proteins that bind to double- or single-
stranded RNAs in cells and form ribonucleoprotein com-
plexes with the bound RNAs. Located in either the nucleus
or cytoplasm, or both, they engage in every step of the post-
transcriptional modification process, including alternative
splicing, regulation of mRNA levels, transport between cel-
lular compartments, alternative polyadenylation, transcript
stability, etc. (1,2). For example, the TIAR protein has been
shown to be transported from the nucleus to the cytoplasm
during Fas-mediated apoptotic cell death (3). One example
of an intra-nuclear RBP is Yra1p, which has been found
to be involved in mRNA export (4). Cytoplasmic RBPs, on
the other hand, include Unr, which has been shown to be
required for internally initiating the translation of human
rhinovirus RNA (5).

RBPs bind target RNAs by recognizing their sequences
or/and RNA secondary structures through RNA-binding
motifs. For example, the AUF1 protein recognizes RNAs
through a signature motif composed of 29–39 nt with high
A and U contents and a secondary structure specific to the
RNAs (6). Binding of RBPs with RNA targets can also be
regulated through competition with other RBPs and non-
coding RNAs (7,8). RBPs may influence the global coordi-
nation of gene expression by organizing nascent groups of
RNAs into downstream chains of the post-transcriptional
modification process, through what is known as the ‘RNA-
operon’ theory (9). RBPs have been implicated in various
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types of human diseases (1,10–13). For instance, the RBP
Musashi1 was found to be related to many cancer types,
including those of the breast, colon, medulloblastoma and
glioblastoma, as well as to neurogenesis and neurodegener-
ative diseases (13). In addition, lack of Fragile X mental re-
tardation protein (FMRP) results in a deficiency in human
cognition and premature ovarian insufficiency (14) and the
FUS, EWSR1, and TAF15 (FET) protein family is respon-
sible for RNA editing and plays important roles in many
diseases (15,16). In summary, studying RNA-protein inter-
actions is necessary to achieve a systematic understanding
of transcription, translation and other biological processes.

CLIP (cross-linking immunoprecipitation) is a molecu-
lar biology technology that employs ultraviolet (UV) cross-
linking and immunoprecipitation in order to identify RBP–
RNA interactions (17,18). The advantage of CLIP lies in
allowing identification of interactions within cells (where
the crosslinking occurs) versus interactions that might oc-
cur after cells are lysed. CLIP increases the confidence
that observed interactions are physiologically relevant and
can better justify identification of candidates for experi-
mental validation. In early reports, CLIPed cDNAs were
sequenced in a low-throughput manner that yielded a
few hundred sequence reads. Recently, next-generation se-
quencing (NGS) techniques have been applied to globally
analyzing transcriptional and post-transcriptional regula-
tion, including mRNA sequencing (19), alternative splicing
(20) and miRNA profiling (21). The combination of CLIP
with NGS technology has greatly improved our ability to
study RBP–RNA interactions on the genome scale (22).
While earlier genome-wide CLIP studies focused more on
the binding of RBP to mRNAs, recent studies have impli-
cated a wide range of regulatory functions of RBP binding
sites in long noncoding RNA (lncRNA) (23), circular RNA
(24) and mitochondrial RNA (25).

In this study, we first review the general procedure and
then compare current genome-wide CLIP technologies.
Next, we discuss the major experimental design and bioin-
formatics analysis considerations. Finally, we provide an
overview of the current analysis software and databases for
genome-wide CLIP data.

Current genome-wide CLIP technologies

There are three major technologies for genome-wide CLIP
experiments: (i) HITS-CLIP (high-throughput sequencing
of RNA isolated by crosslinking immunoprecipitation)
(22,26), which is the first version of genome-wide CLIP-
Seq technology; (ii) Photoactivatable-Ribonucleoside-
Enhanced Crosslinking and Immunoprecipitation (PAR-
CLIP) (27), which improved the signal-to-noise ratio of
the characteristic mutations observed in sequencing data
by use of nucleoside analog; and (iii) Individual-nucleotide
resolution CLIP (iCLIP) (28), which achieved a much
higher efficiency in reverse-transcription compared with
HITS-CLIP and PAR-CLIP. Throughout this text, we used
genome-wide CLIP as a generic name for HITS-CLIP,
PAR-CLIP and iCLIP. The field of RNA-regulation has
seen rapid growth for all versions of genome-wide CLIP
technology (Figure 1). In general, genome-wide CLIP
technology involves cross-linking, partial RNA digestion,
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Figure 1. Number of related scientific articles found by Google Scholar by
searching for each of the key terms in the given year interval. Since ‘iCLIP’
could have many other meanings, it is searched together with ‘CLIP-Seq’.

immunoprecipitation, reverse transcription and sequenc-
ing. The similarities and differences in the experimental
procedures of these three CLIP methods are detailed below:

Cross-linking. The HITS-CLIP method exposes the pro-
cessed biomaterials from cells or tissues to UV light to cross-
link RNAs with bound RBPs (17). It was the first CLIP
platform developed for the genome-wide identification of
RBP binding sites. Although successful, it is limited by its
low efficiency of UV-induced crosslinking, which makes it
difficult to locate high-confidence binding sites. The PAR-
CLIP method resolves this efficiency problem by incor-
porating photoreactive ribonucleoside analogs, such as 4-
thiouridine (4-SU) and 6-thioguanosine (6-SG), into living
cells in the culture system before the UV light treatment
(27). Although ribonucleoside analogs improve the signal-
to-noise ratio in PAR-CLIP data, treatment of living ani-
mals with these chemicals could be toxic. iCLIP employs a
UV cross-linking strategy similar to HITS-CLIP.

Immunoprecipitation and enzymatic digestion. The im-
munoprecipitation step is similar for all HITS-CLIP,
PAR-CLIP and iCLIP experiments. It generally involves
bead preparation, cell lysis, partial RNA digestion im-
munoprecipitation, labeling and sodium dodecyl sulphate-
polyacrylamide gel electrophoresis. The purified protein–
RNA complexes are then treated by proteinase K. In the
RNA digestion step, substantial bias could be introduced
due to sequence specificity and amount of RNase being
used. Less bias is expected with a low sequence-specificity
RNase, like RNase I, and mild digestion strength. Impor-
tantly, recombinant ligase and proteinase K enzymes con-
tain bacterial RNAs, mostly rRNAs. If the 3′ linker liga-
tion is performed with free RNAs rather than with on-bead
RNAs, these bacterial RNAs can also be cloned (29).

Reverse transcription. In HITS-CLIP experiments, the re-
maining cross-linked amino acid(s) are attached to the
RNAs, which then become an obstacle for reverse transcrip-
tion. The reverse transcriptase can read through these ob-
stacles on cDNAs with a certain probability, but errors, re-
flected as mutations after sequencing, may be introduced
on the cross-linking sites. In PAR-CLIP, chemical property
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changes as a result of nucleoside analog treatment (4SU for
example) and UV light stimulus will induce a dA to dG mu-
tation that can be detected in the sequencing data. These
cross-linking induced mutations could serve as markers for
RBP binding sites and are sometimes referred to as ‘char-
acteristic mutations’. In HITS-CLIP experiments, the char-
acteristic mutations could be substitutions, insertions, dele-
tions or a combination of the above, depending on specific
RBPs. For example, it has been shown that deletions are
preferably induced in Argonaute (AGO) HITS-CLIP exper-
iments (30). On the other hand, PAR-CLIP experiments in-
duce a specific type of substitution depending on the nu-
cleotide analog used: applying 4SU or 6SG leads to T→C
or G→A substitutions, respectively (31).

In reverse transcription, a significant number of cDNAs
will be truncated at the attached residues since the reverse
transcriptase fails to read through these obstacles. These
truncated cDNAs are normally not sequenced in HITS-
CLIP and PAR-CLIP. The iCLIP procedure is designed to
capture these truncation sites of cDNA fragments with high
efficiency through replacement of the intermolecular liga-
tion procedure with intramolecular circularization. There-
fore, the 5′ ends of the sequencing reads, rather than char-
acteristic mutations, are supposed to accurately mark the
RBP targeting sites (28).

High-throughput sequencing. cDNA libraries can be sub-
ject to deep sequencing. Since the RNAs are sheared into
short fragments of 20–100 bp, it was initially thought
that single-end sequencing would usually be sufficient to
cover whole cDNA fragments (32). However, some exper-
iments require libraries of RNA fragments that are longer
than those that could be covered by single-end sequencing,
mainly due to dissimilar preferences in the library size selec-
tion step. Paired-end sequencing may be desirable in these
cases so that whole cDNA fragments can be covered, be-
cause the lengths of RBP–RNA contact regions are com-
parable to the length of sequencing reads. Argonaute pro-
tein (AGO) is a key protein involved in RNAi that forms
critical complexes with micro RNAs. AGO–RNA contact
regions were estimated to be around 60 bp long (26). There-
fore, exact coverage is important since identification of RBP
binding sites usually requires a much higher resolution com-
pared to ChIP-Seq experiments for transcription factors,
whose resolution requirements are at least a few hundred
base pairs (33).

EXPERIMENTAL DESIGN AND BIOINFORMATICS
ANALYSIS CONSIDERATIONS

The three variants of genome-wide CLIP experiments pro-
vide opportunities to understand RBP–RNA interactions
on a genome-wide scale. There remain, however, many is-
sues confronting experimental design, such as which CLIP
method to use and how to conduct control and replicate
experiments. The specific goal of the study should always
be considered when making decisions regarding experimen-
tal design. For example, many earlier studies sought just to
identify binding sites of the RBP of interest. More contem-
porary studies are concerned with RBP function such as
splicing. Other recent studies are starting to venture into the

realm of comparative analysis. Therefore, the genome-wide
CLIP experiments should be designed differently to accom-
modate the specific goal of each study. Proper bioinformat-
ics analysis should be carried out to best suit the choice
of experimental procedure. In this section, we will discuss
experimental design and bioinformatics analysis consider-
ations following the natural order of how a genome-wide
CLIP study is done.

Choosing a CLIP method

The goal of a specific study is the primary consideration
for choosing a CLIP method. Table 1 gives a brief sum-
mary of the advantages and disadvantages of the three
genome-wide CLIP techniques that should be considered
when choosing a CLIP version for the RBP under spe-
cific experimental conditions. Whether the experiment is
to be done in vivo is one reason for favoring HITS-CLIP
or iCLIP over PAR-CLIP, since the ribonucleoside ana-
log treatment could be toxic. This is why HITS-CLIP and
iCLIP have broad applications in cultured cells, animal tis-
sues and plants. On the other hand, if the study wishes to
reach a higher resolution at determining binding sites, PAR-
CLIP or iCLIP should be favored. This is because PAR-
CLIP has a much higher proportion of reads with char-
acteristic mutations on cross-linking sites compared with
HITS-CLIP and in iCLIP truncation sites can be directly
used to accurately map interaction events. Thirdly, iCLIP
is technically more challenging compared with HITS-CLIP
and PAR-CLIP, which has probably limited its use. iCLIP
requires the protein-bound RNA to be mildly digested by
an endonuclease, which ensures the reads originating from
truncated cDNA are long enough to be aligned. There-
fore, a researcher needs to first experimentally determine the
best condition to achieve an acceptable partial RNA diges-
tion. In addition, iCLIP implements cDNA circularization
and re-linearization steps. These steps require researchers
to properly cut desired bands from polyacrylamide gels and
carry out product elution and isolation. RNA obtained
from CLIP techniques are generally in minute quantities.
Extra manipulations on hardly-detectable cDNA will give
an additional challenge to preparing an iCLIP sequencing
library.

Replicates

In RNA-Seq experiments, it has been shown that increasing
the number of biological replicates consistently improves
expression level quantifications and increases the statisti-
cal power to detect differentially expressed genes (34). It
has become routine for most RNA-Seq experiments to have
replicates to improve data quality and reproducibility. For
genome-wide CLIP experiments, there is as yet no rigor-
ous study on how the replicates affect the experimental
results. Many genome-wide CLIP studies are based on a
very limited number of replicated experiments, and repli-
cates are often pooled during analysis (15,35). We examined
10 genome-wide CLIP studies published between 2009 and
2014 (15,26,36–43). We found that most experiments con-
ducted 1–5 replicates per RBP under each treatment (Table
2) and most of these studies pooled the reads from replicates
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Table 1. Features of the three genome-wide CLIP platforms, as well as the major considerations for data analysis

HITS-CLIP PAR-CLIP iCLIP

Ribonucleoside analog treatment No Yes (4-SU, 6-SG) No
Cross-linking UV light cross-linking Ribonucleoside analog treatment

and UV light cross-linking
UV light cross-linking

UV light wavelength 254 nm 365nm 254 nm
Adaptor ligations Inter(molecular)/Inter Inter/Inter Inter/Intra
Diagnostic sites No definite type of mutations T→C or G→A Pattern of cDNA truncations
PCR duplicates Estimated by similarity in read

sequence and alignment positions
Estimated by similarity in read
sequence and alignment positions

Found by random barcodes

Advantages Broad applications (from cultured
cells, animal tissues and plants)

Enhanced UV-crosslinking
efficiency; high signal-to-noise
ratio at determining true binding
sites

Broad applications; high
signal-to-noise ratio at determining
true binding sites

Disadvantages Low characteristic mutation ratios Potential toxicity of
ribonucleoside analogs fed to cells

Technically more challenging

for the data analysis. The number of replicates that should
be obtained depends on many factors, including the goal of
the experiments, the variations of experiments, the sequenc-
ing depth and also the binding patterns of specific RBPs.
For example, if the goal of the study is to conduct a compar-
ative analysis between genome-wide CLIP conditions, then
the quantification of within- versus between-group varia-
tion is very important and replicates will be of great value.
A decision on the number of replicates to conduct can also
take into consideration previously published studies for the
experimental variations and binding patterns.

With respect to bioinformatics analysis, it is undesirable
to pool the replicates. As each replicate could have a differ-
ent sequencing depth, pooling will tend to down-weigh the
replicates with less-sequenced reads. Moreover, the varia-
tion information on binding intensity at each binding site
is lost after pooling. A measurement called biologic com-
plexity (BC) has been applied to identifying RBP binding
sites using replicates (26). Other than BC, PARma is the
only algorithm that can consider replicates in its statisti-
cal algorithm (44). The DESeq package implements a sta-
tistical model that can incorporate replicate information to
call differentially expressed regions (45). It was originally
proposed for ChIP-Seq and RNA-Seq data, but could be
adapted to CLIP-Seq studies where replicates are available
(46). However, more advanced statistical approaches are
also needed to address specific data features from CLIP-
Seq experiments to better analyze such data with replicates
more efficiently. In summary, no rigorous and comprehen-
sive study has been conducted to investigate the effects of
the number of replicates on statistical power and the ac-
curacy of binding site detection for genome-wide CLIP ex-
periments. Future studies and the development of bioinfor-
matics tools for analyzing such experiments with replicates
would improve the experimental design and data analysis.

Control experiments

Most recently published genome-wide CLIP studies did not
use background control experiments for identification of
binding sites. Accordingly, few analysis approaches could
process the sequencing data with both genome-wide CLIP
and control conditions, with the exception of Piranha (47)
in regression mode and dCLIP (48). Since genome-wide

CLIP experiments involve stringent washes, such exper-
iments without controls can still identify high-confident
RBP binding sites. However, generating control experi-
ments for CLIP studies would improve the accuracy and
interpretation of the results. First, the ranking of identi-
fied binding sites from analyzing genome-wide CLIP data
is usually biased toward abundantly expressed genes. If the
CLIP cluster binding intensities are not normalized by con-
trol experiments, some clusters with high apparent bind-
ing strength could simply be intermediate-level-binding-
strength sites on highly expressed RNA transcripts. There-
fore, having background control experiments could help
reduce such bias. Secondly, background RNA-Seq experi-
ments could also help to identify SNPs in cell lines or tis-
sue samples, as previously mentioned. In addition, if the
study’s goal is to understand RBP functions such as splic-
ing, conducting an RNA-Seq experiment will help to dis-
cern which sites are functionally relevant. Konig et al. sug-
gested a few ways to conduct background experiments (28)
for iCLIP experiments, such as a no-antibody sample, non-
crosslinked cells or immunoprecipitation from a knockout
condition. Liu et al. experimentally showed that using input
RNA or RNA-Seq in an experiment is also a good control
(49). Again, the type of control experiment to conduct can
vary and the choice depends on the specific goal of the study.

Sequencing depth

Sequencing depth is a measure of the number of reads that
are sequenced in one experiment. There is no consensus on
the required sequencing depth for genome-wide CLIP ex-
periments. We selected a few representative genome-wide
CLIP studies as examples and summarized the summary
sequencing statistics in each study (Table 2). The summary
shows big variations in the total number of reads used in dif-
ferent studies, ranging from <10 million reads to more than
300 million reads for one experiment. The early studies gen-
erated low numbers of reads, while more recent studies gen-
erated much deeper reads for an RBP under one treatment.
Due to the generally limited complexities of the cDNA li-
braries, very deep sequencing may not necessarily capture
more unique events of RBP–RNA interactions for HITS-
CLIP and PAR-CLIP experiments. However, this seems not
to be the case for some iCLIP studies. The library complex-
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Table 2. Sequencing reads statistics for some genome-wide CLIP studies

Experiment
# Total sequencing reads
(million by default)

# Unique sequencing
reads (million by default)

# Uniquely mapped
reads (million by default) # Replicate

Method to handle
replicates Year Citation

HITS-CLIP 26 (all replicates
combined)

∼1.8 of all mapped reads Unclear whether
mapping allows
non-unique alignment

5 Biologic complexity 2009 (26)

PAR-CLIP 4.1–33 (all replicates
combined)

0.65–7.0 20–70% of sequencing
reads after adaptor
removal

1–7 Pooled 2010 (38)

iCLIP 6.5 (all replicates
combined)

0.6 out of 4.2M uniquely
mapped reads

4.2 3 Pooled 2010 (39)

PAR-CLIP 22–24 (all replicates
combined)

Not reported 2.6–4.1 2 Pooled 2011 (15)

iCLIP 113 (all replicates
combined)

33 out of 43M uniquely
mapped reads

43 3 Focus on binding
sites reproduced in
all replicates

2012 (40)

HITS-CLIP 36–37 (second replicate) 0.95–1.5 out of
11M–15M uniquely
mapped reads

11–15 2 Analyze the second
replicate

2012 (36)

PAR-CLIP 60 (all replicates
combined)

1.1 0.32 4 Pooled 2013 (37)

HITS-CLIP 72 0.35 0.22 out of 0.35M unique
sequencing reads

1 NA 2014 (42)

HITS-CLIP 250–340 (each protein) 0.87–2.3 Not reported 4–5 Pooled 2014 (43)
iCLIP 169–433 (all replicates

combined)
0.16–9.6 out of all
mapped reads

12–48% 2 Pooled 2015 (41)

ities vary greatly for different CLIP experiments depending
on many factors (50), such as how many binding sites the
RBP under investigation truly binds. If the RBP has very
specific binding sites, the expected library complexity would
be small. Overall, the type of genome-wide CLIP experi-
ment, the cost of sequencing and the number of true binding
sites of the RBP should all be considered in determining the
proper sequencing depth for the genome-wide CLIP experi-
ments. Readers may refer to another review that thoroughly
discusses the matter of sequencing depth in genomics stud-
ies (51).

Mapping

Aligning the reads to a genome or transcriptome is the first
step in genome-wide CLIP analysis. Mapping to a genome
is usually chosen since there are sometimes many genome-
wide CLIP clusters that locate within-reference gene in-
trons. Mapping to a transcriptome or to both genome and
transcriptome would be a good choice if the focus of the
study is on detecting RBP binding sites on mature RNAs
that have already been spliced. Table 3 lists commonly-used
alignment software (52–56) for genome-wide CLIP datasets
(26,44,47,57–62). In general, an aligner such as Gsnap that
can handle short deletions and spliced-mapping will be a
good choice. Gsnap is preferred by the CLIPper software
(61) and it scored high in a systematic comparison of RNA
aligners (63).

Another issue to consider is whether rRNAs, tRNAs and
other types of repetitive sequences are of interest or should
be removed by screening them from the pool. If they are
not of interest, mapping to a pre-masked genome or remov-
ing rRNAs at the experimental stage using kits like Ribo-
Zero may be more efficient. But this may not be the case
with experiments that are conducted to make a comparative
analysis, where 18S rRNAs can be used as a control invari-
ant gene (64) Also, it is common practice for genome-wide
CLIP data mapping to discard reads that can be mapped
to multiple locations (15,57–58). However, some RBPs may

have real binding sites in genes that have multiple copies in
the genome. In such cases, discarding non-uniquely mapped
reads will result in the loss of some true binding sites.

PCR duplicates

Since genome-wide CLIP experiments involve polymerase
chain reaction (PCR) amplification from cDNA libraries
with limited complexities, removal of PCR duplicates am-
plified from common unique cDNA fragments is an impor-
tant step. After duplicate removal, the size of the sequencing
data usually drops dramatically (Table 2). There are a few
ways to define PCR duplicates in genome-wide CLIP data.
(i) Introducing random barcodes into the cDNA adaptor.
This approach has been primarily applied to iCLIP experi-
ments and has made it relatively easy to define PCR artifacts
from the iCLIP data. Barcoding can give the clearest an-
swer to whether a sequencing read is a PCR duplicate, and
in fact it can also be applied to HITS-CLIP and PAR-CLIP,
though this is not commonly done yet. PIPE-CLIP (65)
has a bioinformatics procedure that can remove PCR dupli-
cates according to barcodes for genome-wide CLIP data of
all three sorts. (ii) For HITS-CLIP and PAR-CLIP, earlier
studies defined PCR duplicates as sequencing reads having
the same aligned genomic starting sites and duplicates were
collapsed to a single sequencing tag (30). This may be too
conservative, which usually leads to a collapsed sequencing
read dataset that is <1/10 of its original size. (iii) Another
popular approach adopted in many studies (48,66–67) is to
define reads that have exactly the same mapping coordinates
as PCR duplicates. (iv) Alternatively, it is also possible to de-
fine PCR duplicates as those having the same nucleotide se-
quence. Unfortunately, to our knowledge, there hasn’t been
any strict comparison reported in the literature to help select
the best approach from (ii)–(iv) for HITS-CLIP and PAR-
CLIP, and the scenario is even more complicated for paired-
end sequencing reads. One consideration to choose among
approaches (ii)–(iv) is the number of reads left after dupli-
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Table 3. Mapping software used in genome-wide CLIP analysis

Aligner Title/Citation Example studies

Bowtie Ultrafast and memory-efficient alignment of short DNA sequences to the human genome (52) (44,59–60)
Novoalign http://www.novocraft.com/main/index.php (57,58)
BLAT BLAT––the BLAST-like alignment tool (53) (26)
Gsnap Fast and SNP-tolerant detection of complex variants and splicing in short reads (54) (61)
BWA Fast and accurate short-read alignment with Burrows–Wheeler transform (55) (62)
RMAP Updates to the RMAP short-read mapping software (56) (47)

cate removal. If this step is too stringent, too few reads may
be left for downstream analysis.

Intron-locating clusters and spliced-mapping reads

Most genome-wide CLIP experiments do not distinguish
nucleic RNAs from cytoplasmic RNAs because the RNA is
obtained from whole cells. Since libraries could contain cD-
NAs converted from nascent pre-mRNAs, it is possible that
a significant portion of CLIP reads will be mapped to refer-
ence gene introns. For example, in a few published studies,
the proportions of intron-locating reads or CLIP clusters
could be as low as 15% but also as high as 90% (68–70,36).
This proportion depends on both the compartment of the
cell that is being investigated and the property of the RBP
under investigation. For example, Chu et al. found through
PAR-CLIP that nucleic AGO2 preferentially binds intron
regions while cytoplasmic AGO2 mainly binds 3′ UTR re-
gions (71).

On the other hand, there are varying amounts of cDNAs
generated from mature mRNAs in the libraries. Therefore,
some of the sequencing reads could be mapped across splic-
ing junctions. As a result, it is sometimes important to use
an aligner that can handle splice junction mapping, or alter-
natively, to map the sequencing reads to the transcriptome
in addition to the reference genome. However, usually fewer
than 5% of all CLIP reads are mapped across splice junc-
tions, due to two possible reasons: (i) only a small fraction
of RBP binding sites are close to or on top of splice junc-
tions or (ii) current aligners are not very efficient in map-
ping reads across splice junctions. CLIPZ (72) and PARma
(44) are able to internally handle CLIP clusters that span
junctions, while other pipelines such as dCLIP (48) must be
fed externally with mapping data on both the genome and
transcriptome in order to be splice-junction-aware.

Peak-calling

Several statistical algorithms have been developed for peak-
calling from genome-wide CLIP seq data and an overview
of these algorithms will be detailed in the next section.
The read counts are usually the primary measure for
peak-calling from most algorithms and some statistical ap-
proaches were used to utilize the spatial patterns of the
mapped reads. In addition, the characteristic mutations in-
duced by cross-linking procedures have also been utilized to
improve peak calling algorithms.

Characteristic mutations. In HITS-CLIP and PAR-CLIP,
the cross-linking procedure induces mismatches in the final
sequencing data, which could be used to pinpoint the loca-
tion of RBP target sites at single-base-pair resolution and

have been used to improve the binding target identifications.
However, the proportion of sequencing reads with charac-
teristic mutations varies greatly from 20%-80% for PAR-
CLIP data (15,27,73,37). For HITS-CLIP data, the propor-
tion is only around 10% (35) and even as small as <1% in
one case (46). Another recent study (74) analyzed data from
20 genome-wide CLIP studies and found similar results. In
addition, mutant bases are usually sparsely spread within
CLIP clusters, normally leading to small ratios of mutant
tags out of total tags on the exact cross-linking sites. Low
mutant tag ratios in some experiments could be problematic
for bioinformatics pipelines for analyzing HITS-CLIP and
PAR-CLIP data that utilize mutation ratios, such as MiClip
(75) and wavClusteR (31). On the other hand, there may
be a small number of bases covered by CLIP clusters that
show close to 100% mutant rates, which are likely SNPs in
the cell lines or tissue samples instead of true RBP binding
sites. To address these issues involving mutations, wavClus-
teR (31) introduces a parameter that effectively discards
bases with mutation rates higher than a user-defined cut-
off. Other ways to solve this problem include conducting
control RNA-Seq experiments to detect SNPs or compar-
ing results to databases of known SNPs. These observations,
in addition to the obscurity of true characteristic mutations
for some HITS-CLIP data, suggest that although charac-
teristic mutation can help pinpoint the binding site and in-
crease peak calling accuracy in most cases, careful exami-
nation of mutations from genome-wide CLIP experiments,
especially from HITS-CLIP data, are necessary.

Using Hidden Markov Models (HMM) in binding sites de-
tection. Similar to ChIP-Seq data, genome-wide CLIP
reads counts are correlated among neighboring genomic lo-
cations, a phenomenon called spatial dependency. This oc-
curs because protein binding regions span a certain length
that is longer than the binned unit for counting binding in-
tensity in the bioinformatics pipeline. In ChIP-Seq or ChIP-
chip data analysis, it has been recognized that incorporat-
ing spatial dependency can greatly improve performance in
identifying protein–DNA binding sites. Computational al-
gorithms that consider this effect have been developed pre-
viously (76,77). However, these methods cannot be directly
applied to genome-wide CLIP due to the unique features
associated with genome-wide CLIP data: these data (i) are
strand-specific; (ii) can reach a near-single base pair resolu-
tion; and (iii) contain information on cross-linking-induced
mutations, which serve as markers for RNA–protein bind-
ing sites. An Hidden Markov Model (HMM) is a statistical
model that could be used to model the observations with
spatial dependency. In genome-wide CLIP data, HMM
models usually have three main characteristics: (i) each ge-

http://www.novocraft.com/main/index.php
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nomic location has an unobserved hidden state indicating
whether this location is a binding site, (ii) the hidden states
along the genomic locations follow a Markov process, i.e.
the hidden state of each location depend on only the states
of its immediate neighboring locations; (iii) given the unob-
served state, the observed total read/tag counts and muta-
tions counts are independent across genomic locations, i.e.
the dependency is in the hidden states. This structure en-
ables the HMM to incorporate the spatial dependency of
the genome-wide CLIP data. Among the tools developed
for CLIP data, dCLIP and MiClip used HMM while also
accounting for the other special properties of the genome-
wide CLIP data and they have been shown to improve the
identification of RBP-binding targets or differential binding
sites.

Downstream analysis: motif, structure and function

Following peak-calling, downstream analysis will generally
focus on characterization of RBP–RNA interaction sites.

Motif discovery. Some RBP recognition motifs have been
previously identified. For example, YCAY elements were
found to be the biochemically-defined binding site for
NOVA (78,79). Another study identified a 29–39 nt long
AUF1 motif that contained 79% As and Us (6). HOMER
(80) and MEME (81) are two popular bioinformatics tools
for searching for sequence motifs. Zagros is a software that
uses both secondary structure and characteristic mutations
to improve motif discovery in genome-wide CLIP data (74).
On the experimental side, an in vitro assay called RNAcom-
pete was developed to determine RBP binding motifs from
a pool of a complete range of k-mers in a single binding re-
action (82). Much useful information has been gained from
RNAcompete experiments, but the in vivo binding proper-
ties of the RBPs may be different from in vitro experiments.
Compared with protein-binding motifs on DNAs, RNA se-
quence motifs tend to have less well-defined nucleotide pref-
erences on each base and have degenerate and repeating el-
ements.

Secondary structure. Also different from DNA–protein
interactions, some RBPs recognize their targets mainly
through RNA secondary structures or are sensitive to struc-
tural context (83,84), though paradoxically the RNAcom-
pete method seems to make the contradictory observation
that the vast majority of RBPs do not require RNA struc-
tures for specific binding. For example, the FUS protein has
been shown to bind AU-rich stem-loops but does not seem
to recognize any sequence motif (15). Interestingly, it has
also been found that certain RBPs recognize single-strand
RNAs, so intramolecular structures formed by the double-
strand part of RNAs could actually inhibit RBP binding
(85). Many tools have been developed to predict the sec-
ondary structures of RNA, such as CapR (86), RNAcon-
text (87) and RNAfold (88).

Functional characterization. Finally, it is important to in-
vestigate functions of identified RBP binding sites after
peak-calling, since physical bindings may not necessarily
lead to phenotypic consequences. The above-mentioned

motif and structure information could be utilized to predict
functional binding sites, such as in mCarts (89). Other high-
throughput datasets, such as RNA expression, altnernative
splicing or even clinical data, may also be integrated with
genome-wide CLIP data to reveal functions of RBP–RNA
interaction events. For example, one recent study (90) iden-
tified 22 735 RBP–lncRNA regulatory relationships from
>100 public genome-wide CLIP datasets.

OVERVIEW OF ANALYSIS METHODS AND
DATABASE SERVERS

The previous section discussed some bioinformatics analy-
sis approaches after high-throughput sequencing data has
been aligned. In this section, we will give an overview of
bioinformatics analysis software and databases for genome-
wide CLIP experiments. Figure 2 shows a streamlined sum-
mary of genome-wide CLIP data analysis. Table 4 summa-
rizes the major software programs, pipelines and databases
to help readers choose the ones that best fit their pur-
pose (65,31,44,46–48,50,72,75,91–99). We will discuss some
of these in more detail in this section.

CLIPZ

CLIPZ is mainly a database for genome-wide CLIP
datasets. There were 94 publicly-visible samples stored on
CLIPZ as of April 2015. CLIPZ also provides simple bioin-
formatics analysis for stored samples. It first aligns the se-
quencing reads to genomes and transcriptomes, allowing
alignments with more than one error (substitution, inser-
tion or deletion). Then it generates clusters of sequencing
reads and computes statistics like T->C substitutions for
PAR-CLIP dataset. Finally, CLIPZ allows users to sort the
clusters based on these computed features.

StarBase v2

StarBase v2 is a database designed for decoding pan-
cancer and interaction networks of RBPs, mRNAs and var-
ious types of non-coding RNAs from genome-wide CLIP
datasets and CLASH datasets (100). As of April 2015, Star-
Base v2 contained 111 genome-wide CLIP datasets from
37 studies. StarBase v2 processes all the stored datasets
and presents the analysis results through disparate portals
such as miRNA–lncRNA interactions, miRNA–target in-
teractions, protein–mRNA interactions and function pre-
dictions. The analysis conducted by StarBase v2 mostly re-
lies on previously published software, such as PARalzyer for
PAR-CLIP dataset analysis and TargetScan (101) and other
similar pipelines for miRNA target site predictions.

PARalyzer

PARalyzer is a popular peak-calling algorithm for PAR-
CLIP datasets only. PARalyzer employs a non-parametric
kernel-density estimation classifier to identify the RNA–
RBP interaction sites using both total binding intensity in-
formation and T->C mutation information. It provides a
dozen parameters, such as minimum number of reads and
minimum number of conversions for a cluster, to help users
filter the final results.
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Figure 2. Summary of the analysis software, pipelines and databases for CLIP-Seq analysis mentioned in this review.

Table 4. Summary of genome-wide CLIP analysis software programs and databases

Software/Database Type Comment Citation

CLIPZ Database Can carry out simple bioinformatics analysis (72)
StarBase v2 Database Contains CLASH datasets as well (91,92)
doRiNA Database Focuses on miRNA biology (93,94)
CLIPdb Database Contain uniformly identified binding sites of publicly available

genome-wide CLIP datasets
(50)

PARalyzer Software Peak-finding algorithm for PAR-CLIP dataset only (95)
Piranha Software Peak-finding and differential binding detection algorithm (47)
dCLIP Software Differential binding detection algorithm (48)
PIPE-CLIP Software Peak-finding algorithm (65)
wavClusteR Software Peak-finding algorithm for PAR-CLIP dataset only (31)
PARma Software Differential binding detection algorithm for AGO PAR-CLIP dataset only (44)
MiClip Software Peak-finding algorithm wrapped as an R package (75)
PAR-CLIP HMM Software Peak-finding algorithm employing Hidden Markov Model (96)
GraphProt Software Peak-finding algorithm that can handle both RNAcompete and

genome-wide CLIP data flexibly
(97)

Pyicos Software Peak-finding algorithm that can handle ChIP-Seq, genome-wide CLIP
and RNA-Seq data flexibly

(98)

miRTarCLIP Software Peak-finding algorithm that employs a novel C to T reversion strategy in
PAR-CLIP dataset analysis

(99)

Piranha

Piranha is mainly a peak-calling algorithm, but it also pro-
vides a way to detect differential binding across a range
of conditions. All reads are binned and each bin repre-
sents a genomic interval. Piranha allows the users to flex-
ibly choose an underlying model, including Poisson distri-
bution and Negative Binomial distribution. It permits users
to add additional covariates such as mutation data or tran-
script abundance data in a regression framework. This en-
ables Piranha to incorporate mutation data in peak-finding
or to conduct a differential binding analysis.

dCLIP

dCLIP is designed specifically for identifying differential
binding sites. The majority of the RBP binding sites be-
tween the two conditions should have roughly unchanged
binding profiles, so dCLIP applies a MA-plot method to
first normalize the two conditions. It uses a HMM to
solve the common and differential binding sites. The HMM
model incorporates the spatial dependency among neigh-
boring locations to improve identification accuracy. Users
can choose to input background transcript abundance pro-
filing data as controls. dCLIP summarizes total tag count

and mutant tag count data, as well as statistical inference
results, into bedGraph and bed files that can be directly up-
loaded to Genome Browser for visualization.

PIPE-CLIP

PIPE-CLIP is a Galaxy-based comprehensive online
pipeline for genome-wide CLIP data analysis. It processes
BAM files by filtering out reads that do not meet mis-
matched numbers and/or aligned read-length criteria and
by removing PCR duplicates according to reads locations
or sequences. Then it applies zero-truncated negative bino-
mial regression to identify the enriched clusters and fits a
binomial distribution to assess the significance of featured
mutations/truncations. After that, enriched clusters with
significant mutations/truncations are reported as binding
sites.

wavClusteR

wavClusteR is designed for identifying RBP peaks in a
single PAR-CLIP experiment. It defines a mixture model
where the first component indicates random substitutions,
which are not induced by cross-linking and the second
component indicates cross-linking-induced substitutions
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that serve as markers of RBP-protein binding sites. wav-
ClusteR relies on the assumption that all types of non-
experimentally-induced substitutions have approximately
the same distribution as the first component, while only
PAR-CLIP-induced T->C mutations exist in the second
component of the mixture model. However, this may not be
the case for tumor cell lines where the background mutation
profiles are distinct for each type of substitution (102).

MiClip

MiClip is an R package for identifying RBP binding sites
using HITS-CLIP and PAR-CLIP datasets. It leverages
the spatial dependency in sequencing tag data by using
HMM and it also takes advantage of characteristic mu-
tation counts to increase peak-calling accuracy. It is user-
friendly and requires only that users feed in several param-
eters to optimize the performance of the algorithm. MiClip
is freely available on CRAN (The Comprehensive R Archive
Network).

PARma

PARma is a tool for differential AGO PAR-CLIP data anal-
ysis. In PARma, a statistical model and a novel pattern
discovery tool are iteratively applied to estimate probabil-
ities and to assign the most probable miRNAs until con-
vergence. The statistical model is composed of three inde-
pendent parts that consider the T->C mutation frequencies
as well as the properties of the nucleotide compositions at
both ends of the sequencing reads. The PARma algorithm
addresses several important issues in the data preprocess-
ing step, such as the handling of spliced-mapping reads and
consideration of experimental replicates. However, it can
only be applied to differential AGO PAR-CLIP datasets.

CONCLUSION AND DISCUSSION

In this review, we discussed the genome-wide CLIP tech-
nology from the perspectives of experimental design and
bioinformatics analysis. The development of technology
and bioinformatics in this field has greatly improved our
capacity to study protein–RNA interactions and under-
stand the functions of different RNA species in physio-
logical and pathological process. There are several related
technologies, such as CLASH and RIP-Seq, which may be
complementary to genome-wide CLIP to study the func-
tion of RNAs. CLASH is short for cross-linking, ligation
and sequencing of hybrids, which was invented for charac-
terizing intramolecular and intermolecular RNA–RNA in-
teractions (100). Recently, this technology was adapted to
straightforwardly detect miRNA–mRNA pairs as chimeric
reads in high-throughput sequencing data (103). Integra-
tive analysis can be carried out that combines CLASH data
that can directly capture reliable miRNA–mRNA interac-
tions and genome-wide CLIP data that focuses more on
detecting RBP–RNA interactions. RNA immunoprecipita-
tion sequencing (RIP-Seq) can also complement genome-
wide CLIP for identifying RBP–RNA interactions (104).
RIP-Seq bears some similarity to genome-wide CLIP, but
lacks high-stringency washes and crosslinking of RBP to

RNAs, which leads to high background noise and mis-
interpretations in the data analysis. For example, RIP-Seq
identifies both direct and indirect RBP–RNA interactions,
while genome-wide CLIP can accurately identify direct
RBP–RNA association events (105). However, genome-
wide CLIP is more technically challenging and also re-
quires high-quality antibodies to work properly. Therefore
the data from CLIP experiments and RIP-Seq experiments
could be complementary in studying RBP–RNA bindings.

The genome-wide CLIP has accumulated extensive
knowledge in both experimental procedures and how to
process genome-wide CLIP data properly, but it requires
fundamental improvements to reach its potential. First,
more systematic studies on experimental design issues such
as replicates, the use of background controls and the se-
quencing depth are greatly needed to improve the experi-
mental efficiency, reduce systematic bias and increase the re-
producibility of genome-wide CLIP experiments. Another
direction for further study is to conduct genome-wide CLIP
experiments of different proteins under different treatments
simultaneously in an experimental system to methodically
understand and model transcriptional events. The MOV10
and UPF1 proteins have recently been shown to bind in
close proximity and interact directly (106), pointing to the
importance of studying the coordination pattern of RBPs
and its functional impact. A third future direction is to com-
bine genome-wide CLIP with other types of data, includ-
ing ChIP-Seq, RNA-Seq and proteomics data for integra-
tive analysis. EZH2 was reported to bind lncRNAs (37), de-
spite its chromatin-binding capability and its role in epige-
netic regulation. This intriguing phenomenon suggests that
ChIP-Seq data and genome-wide CLIP data can be ana-
lyzed together to reveal novel RNA-binding functions of
well-characterized DNA-binding proteins. There are a lot of
interesting discoveries yet to be made from mining genome-
wide CLIP data. All of these efforts will help us better un-
derstand transcriptional regulation in biological systems.
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