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The occurrence and development of atherosclerosis could be influenced by intermittent

hypoxia. Obstructive sleep apnea (OSA), characterized by intermittent hypoxia, is

world-wide prevalence with increasing morbidity and mortality rates. Researches remain

focused on the study of its mechanism and improvement of diagnosis and treatment.

However, the underlying mechanism is complex, and the best practice for OSA

diagnosis and treatment considering atherosclerosis and related cardiovascular diseases

is still debatable. In this review, we provided an update on research in OSA in the

last 5 years with regard to atherosclerosis. The processes of inflammation, oxidative

stress, autonomic nervous system activation, vascular dysfunction, platelet activation,

metabolite dysfunction, small molecule RNA regulation, and the cardioprotective

occurrence was discussed. Additionally, improved diagnosis such as, the utilized

of portable device, and treatment especially with inconsistent results in continuous

positive airway pressure and mandibular advancement devices were illustrated in detail.

Therefore, further fundamental and clinical research should be carried out for a better

understanding the deep interaction between OSA and atherosclerosis, as well as the

suggestion of newer diagnostic and treatment options.

Keywords: obstructive sleep apnea, atherosclerosis, hypoxia, mechanism, treatment

INTRODUCTION

Obstructive sleep apnea (OSA) is known to commonly occur worldwide, with a recent dramatic
increase in prevalence. Globally, an estimated 936 million and 425 million adults aged between
30 and 69 years experience mild-to-severe and moderate-to-severe OSA respectively (1). OSA is
characterized by recurrent pauses in breathing during the sleep and results in upper airway collapse
and intermittent hypoxemia (IH) (2). OSA is a systemic disorder and recognized as an independent
factor for cardiovascular disease (3).

Atherosclerosis (AS) is a chronic disease of medium- and large-sized arteries leading to ischemic
heart disease and cardiovascular disease (4). Over the past few years, many studies have shown
a link between OSA and atherosclerosis, and sex-based differences were surprisingly observed.
Female patients with OSA but not males were significantly associated with incident heart failure or
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death (5). Further, in a larger scale, female patients were more
likely to have cardiovascular diseases compared with males
(6). OSA causes endothelial dysfunction (7), unstable plaque
characteristics (8) and further atherosclerosis (9). Similarly,
IH also causes endothelial dysfunction (10) and accelerated
atherosclerosis (11, 12). However, some reports argue that OSA
may play a protective role in ischemic insult (13) and coronary
occlusion (14) recently. Thus, the relationship between OSA and
AS and related diseases needs to be further explored.

This review includes the clinical and fundamental research
undertaken in the last 5 years describing the mechanism of
OSA and its role in AS, as well as the latest research advances
in the diagnosis and treatment of OSA and its influence on
AS-related diseases.

MECHANISM

The process of AS development in patients with OSA is
complex. We discuss the underlying mechanism focusing on
inflammation, oxidative stress, autonomic nervous system,
vascular dysfunction, platelet activation, metabolite dysfunction,
small molecule RNA, and the cardioprotective function
(Figure 1).

Inflammation
Since AS is a chronic inflammatory process, IH can produce
a variety of inflammatory cytokines; therefore IH-mediated AS
may be primarily due to the activation of inflammatory pathways
(15). NF-κB is a key inflammation pathway that has been
extensively studied.

Some reports illustrated the development of AS when NF-κB
pathway was blocked. Mice with apolipoprotein E deficiency and
knocked down NF-κB p50 showed higher serum levels of TNF-
α, IL-6, and cholesterol and more pronounced atherosclerotic
lesions than mice with apolipoprotein E deficiency alone (16).
When IKKβ, a regulator of NF-κB, was deleted in mice, IH-
mediated pulmonary artery atherosclerosis was abolished (17).
Another study utilized the overexpression of IkBα, an inhibitor
of NF-κB, only in mice endothelial cells and showed a decline in
developing atherosclerotic lesions. IkBα overexpression resulted
in the suppression of E-selectin and vascular cell adhesion
molecule-1 (VCAM-1) and inhibited the NF-κB pathway. Hence,
AS was weakened under IH exposure (18). Collectively, these
studies supported IH-induced AS via the NF-κB pathway.

Upstream of NF-κB has also been discussed in the IH-
mediated AS. Besides common molecules such as IL6, TNF-
α, and p38 MAPK, TLR4/ NF-κB was discovered as a new
therapeutic target. Increased TLR4 expression was observed both
in IH-treated mice (19) and OSA patients (20). When TLR4 was
inhibited in mice, enhanced NF-κB pathway, and augmented
atherosclerotic plaque loads were diminished (19). When TLR4
was depleted in mice, smaller intima-media aorta thickness
was observed than in normal mice (21). Thus, TLR4/NF-κB
plays an important role in inflammation, indicating alternative
therapeutic option.

Oxidative Stress
Oxidative stress is another fundamental mechanism contributing
to the cardiovascular diseases in OSA. It has been shown that
IH triggers the activation of NADPH oxidase and increases
leukocytes oxidation, resulting in lipid peroxidation and
isoprostane formation. Meanwhile, the function of nitric oxide
in endothelial cells is inhibited because of reduced endothelial
nitric oxide (NO) synthase and regulation of asymmetric
dimethylarginine (22). All these processes are involved in the
formation of AS and related cardiovascular diseases. Further,
other proteins were found to participate in AS formation in
IH, such as, non-muscle myosin light chain kinase which was
discovered in the mouse model (23). Interestingly, recent studies
have also shown that IH and oxidative stress can activate the
protective mechanism of endothelial cell-colony forming units in
a cell model extracted from healthy volunteers, which is closely
linked with vascular function and maintains vascular health (24).

Hypoxia inducible factor-1 (HIF-1) is a transcription factor
that promotes genes involved in adaptation to insufficient
oxygen and hypoxia environment. ROS induced by desaturation-
reoxygenation under IH could up-regulate HIF-1 activity
through complex processes (25). In brief, ROS activates
phospholipase C, followed by calcium-calmodulin kinase and
protein kinase C activation. Protein kinase C stimulates
the mTOR-dependent production of HIF-1α and inhibited
PHD-dependent degradation of HIF-1α (26). HIF-1 promotes
numerous adaptive genes such as, endothelin-1, which could
destroy the cardiovascular system (25). It is reported that
the profiling of gene expression including HIF-1 in skin
biopsies from OSA patients could possibly be utilized to predict
cardiovascular risk (27).

Autonomic Nervous System
The autonomic nervous system including the sympathetic
and vagal system is altered in patients with OSA. In brief,
IH stimulates the peripheral chemoreceptor and activates
sympathetic nervous system, followed by an increase in renin,
angiotensin II, and aldosterone, and the enhancement of
vasoconstrictor activity. At the same time, impaired baroreflex
and reduction of NO resulted in the increase of endothelin
and receptor as well as intracellular calcium sensitivity (28). In
these ways, IH induces abnormal vasoconstriction and elevates
systemic blood pressure.

Vascular Dysfunction
Disruption of vascular endothelium homeostasis in OSA is
triggered by inflammation and oxidative stress of endothelial
cells (29) and is modestly linked with subclinical atherosclerotic
coronary artery disease (CAD) (30). Also, individual patient
data meta-analysis showed that severe OSA is independently
linked with an increased endothelial dysfunction (31). Non-
muscular myosin light chain kinase was discovered to have
been involved in IH-induced endothelial dysfunction through
the secretion of IL-6, NO production, and acetylcholine in
human aortic endothelial cells (32). Besides, the endothelial
barrier function was also destroyed by phosphorylated ERK and
JNK in human lung microvascular endothelial cells (33). Some
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FIGURE 1 | The mechanism and latest discoveries of the link between obstructive sleep apnea and atherosclerosis. NO, nitric oxide; HIF-1, hypoxia inducible

factor-1; IH, intermittent hypoxemia.

protective measures have recently been investigated to improve
endothelial dysfunction. Infliximab and glutathione, served as
anti-inflammatory and antioxidant treatment, were shown to
inhibit the vascular injury process from mouse models (34).
Rhodiola Crenulata extract might protect the damage of human
umbilical vein endothelial cells through the AMPK and ERK
pathway (35).

IH triggers excessive proliferation of vascular smooth muscle
cells, which play important roles in AS progression (36). It is
reported that the production of IL-6 induced the upregulation
of epiregulin, which contributed to the proliferation of smooth
muscle cells (37).

Platelet Activation
Patients with OSA suffer persistent platelet activation, as a
consequence of increased sympathetic activity, inflammation,
and endothelial dysfunction, which leads to AS lesions (38).
Platelet activation leads to alteration in their shape and
the phospholipid bilayer, resulting in the stimulation of
coagulation factors and upregulation of surface receptors
and adhesion molecules, enabling them to interact with
other cells. The platelet-lymphocyte ratio is observed to be
associated with OSA severity regardless of OSA progression,
indicating that it may serve as an independent marker (39).
In addition, platelets were reported to serve as immune cells
participating in the pathophysiology of autoimmune disorders

(40). Persistent platelet activation induces constant production
of pro-inflammatory and proatherogenic substances, infiltration
of immune cells in the endothelium and further the progression
of AS plaques.

Metabolite Dysfunction
Patients with OSA have abnormal glucose and lipid metabolism,
contributing to the generation of AS (41, 42). The functional
proteins involved in glycolipid metabolism in IH-mediated AS
has garnered considerable research interest. A recent study
described SREBP-1 signaling in the aorta, skeletal muscle,
and liver, considering the synergistic effect of both IH and
abnormal glucose metabolism. It was found that SREBP-1c and
FAS increased, while IRS-1 and its phosphorylation decreased,
thereby promoting AS in vitro and in vivo (43). In addition,
augmented angiopoietin-like 4 in OSA via HIF-1 also played
an important role in abnormal IH-induced lipid metabolism
contributed to AS formation (11, 44).

Small Molecule RNA
Small molecules RNAs such as miRNA, mRNA, and lncRNA
provide detailed information about AS development in patients
with OSA miRNAs from plasma exosomes were identified via
arrays, and differentially expressed miRNAs would describe the
altered endothelial function accounting for the mechanism of
cardiovascular morbidities in OSA (45). Another report depicted
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the profiling of mRNAs and lncRNAs in the aorta when treated
with IH. The description of this system may provide potential
candidates for future research on IH-induced AS (46). In
addition, its unique RNA was also explored to understand its
function. It was reported that miR-193a-3p impaired human
umbilical vein endothelial cells under IH exposure via Fas
apoptotic inhibitory molecule 2 (47). Similarly, miR-146a-5p
aggravated IH-induced heart myoblast injury through an X-
linked inhibitor of apoptosis protein (48). However, both studies
were only conducted in vitro only. Taken together, RNA showed
its potentiality in inspecting the mechanism and treatment
therapy of cardiovascular diseases in OSA.

Cardioprotective Pathway
More recently, increasing evidence has shown that intermittent
hypoxia can trigger an adaptation in cardiovascular system (49),
such as, the resistance to an ischemic insult (50) and attenuation
of ischemic brain injury (51). In acute coronary syndrome,
myocardial infarct size significantly decreased in patients with
OSA compared to in patients without, as determined by
measuring peak, and area of serial cardiac troponin I levels
(52). These results were consistent with the study that patients
with OSA and acute myocardial infarction showed lower peak
troponin-T levels (53). However, these results should interpreted
with cautions because of some limitations (13). First, the
measurement of infarct size can hardly be accurate and would
be affected by multiple factors. Second, the number of cases
recruited was small, and the results need to be verified in a larger
study. Third, the patient group had a large dynamic range of
troponin levels with approximately a 100-fold difference. Thus,
although the clinical protective effect of IH cannot yet be clearly
established, these results indicated that OSAmight upregulate the
cardioprotective pathway and promote adaptive process.

UPDATE ON DIAGNOSIS

The apnea-hypopnea index (AHI) is widely used in the
identification and classification of clinical OSA. The gold
standard of AHI detection is measured by overnight
polysomnography in the sleep laboratory, and values of 5–
15, 15–30, and >30 are defined as mild, moderate, and severe
OSA, respectively (54). Further, polysomnography could give
mechanistic indices such as loop gain, arousal threshold, and
pharyngeal collapsibility with validated methods, and it was able
to distinguish sex differences in patients with OSA (55). However,
cost and accessibility limit the application of polysomnography
in all settings. Recently, other methods such as, home sleep
apnea testing and questionnaires have been further investigated
to diagnose patients with OSA and those with AS. Moreover, new
algorithms have also emerged to ensure a much more convenient
diagnosis (Table 1).

Home sleep apnea testing (HSAT), also known as out-of-
center sleep testing, portable sleeping monitoring, and portable
monitoring, is an alternative for the diagnosis of moderate-to-
severe OSA (56). However, according to the statement of the
American Academy of Sleep Medicine, the decision should not
be based solely on the automatically scoredHSAT data (57).More

recently, HSAT has been used to assess the relationship between
sleep apnea and cardiovascular diseases. The results showed
that a portable ApneaLink device could be used to identify
patients with heart failure with sleep apnea (AHI≥15 and <5
events/h), which contained both obstructive and central apneas
(58). In another study, researchers distinguished the central and
obstructive AHI values in another study, and also found a strong
correlation coefficient between HSAT and polysomnography,
which indicated a possible diagnosis (59). However, HSAT does
not appear to have reduced the cost, as it is only 10% lower than
the cost of polysomnography for the provider (60).

To screen patients with OSA, researchers developed
questionnaires such as the Berlin questionnaire (BQ), Epworth
Sleepiness Scale (ESS), STOP questionnaire (STOP), and STOP-
Bang questionnaire (SBQ). It was found that SBQ showed the
most sensitivity and diagnostic odds ratio among these four
questionnaires and was used to estimate OSA severity (61, 62).
However, it remained obscure whether a sleep disorder with
cardiovascular diseases could be diagnosed by questionnaires,
as typical sleep-disordered symptoms may not be observed
in these patients. According to the results of 89 patients
with cardiovascular diseases, ESS showed no association with
sleep disorder while BQ showed the sensitivity of 73% with a
specificity of 42%. SBQ showed the most sensitivity (97%) with
low specificity (13%) (63). Besides, insufficient specificity was
observed in OSAwith atrial fibrillation (64), and poor correlation
was discussed in OSA with stroke (65). Taken together, to better
reflect the phenotypes in patients with co-morbid conditions, the
questionnaires need to be improved.

A new algorithm was developed for identifying OSA.
Electrocardiograph-based algorithm, such as, support vector
machines (66), Kernel density classifier (67), and convolutional
neural network (68), provide an alternative approach to
screen suspected patients with OSA. It was observed that
the convolutional neural network strategy exhibited the
highest accuracy, sensitivity, and specificity among all existing
algorithms. An alternative algorithm comprising optimized
cardiovascular signals showed good representation of AHI
and could be utilized to screen for OSA severity (69). Another
study used six objective parameters including age, sex, body
mass index, blood pressure, neck circumference, and the ESS
and demonstrated the possibility for OSA screening and risk
prediction (70).

OSA patients with cardiovascular conditions such as the
heart failure and hypertension has been discussed before (71,
72), but their link to peripheral arterial disease (PAD) has
been underestimated. The mechanism such as inflammation,
oxidative stress, and endothelial dysfunction also contributed
to the development of PAD in patients with OSA, and clinical
evidences have been paid attention recently (73). Underdiagnosis
of OSA in PAD were observed. A sleep apnea prevalence
accounted for 78.0% in patients with lower extremity artery
disease, and AHI increased with the severity of lower extremity
artery disease (74). On the other hand, PAD prevalence of
98% in patients with confirmed OSA was observed (75). The
association of OSA and PAD was further verified by a larger
extent (76).
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TABLE 1 | Update on diagnosis.

Method Key points in OSA References Key points in patients with

OSA and AS - related

diseases

References

Home sleep apnea

testing

An alternative for diagnosis of

moderate to severe OSA

(56, 57) The strong correlation

coefficients of HSAT and

polysomnography in OSA with

heart failure

(58, 59)

Questionnaires STOP-Bang questionnaire

showed the most sensitivity and

diagnostic odds ratio and was

used to estimate the severity of

OSA

(61, 62) STOP-Bang questionnaire

showed the most sensitivity with

low specificity in OSA with

cardiovascular diseases

(63, 64)

New algorithm Provided an alternative approach

to screen suspected patients

with OSA

(66–68,

70)

Algorithm constituted by

optimized cardiovascular signals

provided a good representation

of AHI

(69)

TABLE 2 | Update on treatment.

Method Key points References

Continuous positive airway

pressure (CPAP)

CPAP treatment was controversial

regarding cardiovascular effects

Attenuate atherosclerosis (79–82)

Lack of clinical benefit in

cardiovascular events

(83–85)

Telemonitoring increased the CPAP adherence. (87–91)

Mandibular advancement

devices (MAD)

MAD treatment was controversial

regarding cardiovascular effects.

Beneficial outcome in cardiovascular

consequences

(80, 93)

No effect on blood pressure and

endothelial function

(94, 95)

MAD may be an alternative compared to CPAP treatment (80, 95, 96)

Exercise Reduction of AHI, the increase of peak oxygen consumption (98–102)

Hypoglossal nerve

stimulation (HNS)

Beneficial for subjective and objective outcomes of sleep (103–106)

Medications Antioxidant (108–110)

Phenotype-based approach (111–115)

UPDATE ON TREATMENT

Different approaches to treat OSA have been illustrated, and their
influence on the AS and related diseases have gained considerable
attention. The update treatment is discussed in detail in Table 2.

Continuous Positive Airway Pressure
Continuous positive airway pressure (CPAP) is widely used in
the treatment of OSA to reduce excessive daytime sleepiness
(77) and improve sleep quality (78). However, the cardiovascular
effects of CPAP remain controversial. Some reports have
supported that CPAP treatment attenuates AS (79). A further
well-designed randomized controlled trial showed the modest
ability of CPAP treatment to decrease blood pressure (80),
indicating the potential to reduce cardiovascular morbidity
and mortality. Patients with CAD also showed the attenuation
with CPAP treatment. The risk of coronary heart disease in
patients with OSA treated with CPAP was similar to those
without OSA (81), and the risk of repeat revascularization under

percutaneous coronary intervention was lowered when utilizing
CPAP treatment (82). On the other hand, some evidence showed
that CPAP therapy in preventing cardiovascular events lacked
clinical benefit. A RCT showed that CPAP treatment did not
significantly prevent hypertension or cardiovascular events (83).
According to a large trial of sleep apnea cardiovascular endpoints
in patients with OSA, additional CPAP treatment under usual
care did not demonstrate the prevention of cardiovascular events
(84). Most importantly, the average duration of CPAP should be
paid attention to. In patients with CAD, CPAP had no significant
effects on cardiovascular outcomes, but significant improvement
was observed in patients with CPAP treatment for over 4 h
(85). Therefore, improving CPAP compliance seems essential
for treatment.

Many more studies have looked into CPAP adherence.
Educational videos were utilized in patients with poor CPAP
adherence and did not show superiority compared with usual
care (86). In addition, remote telemonitoring for CPAP seems
to be an effective alternative to improve adherence (87,
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88). Text messages showed great improvement in medication
compliance in chronic disease (89), and CPAP telemonitoring
with automated feedback messages improved adherence in
patients with OSA (88). The utilization of mobile applications
associated with telemonitoring increase CPAP adherence with
an average of 1 h (90). Notably, cardiovascular consequences in
patients with OSA has been discussed under the CPAP treatment
of remote patient telemonitoring. Given the large sample size
of 306 patients, home self-measured blood pressure in patients
with high cardiovascular risk did not show a significant difference
between telemonitoring and usual care in CPAP treatment after
6 months (91). It was argued that telemonitoring focuses on
CPAP without encouraging physical activity and thus, may not
contribute to the reduction of blood pressure (91). However, the
increase in CPAP adherence and the improvement of life quality
was observed in favor of telemonitoring (91). Taken together,
CPAP telemonitoring might allow better scrutiny of individual
patient risks by connecting with devices measuring physical
activity and blood pressure and further provide personalized care
to patients with OSA and high cardiovascular risk.

Mandibular Advancement Devices
Oral appliances have become an alternative way to treat OSA,
especially mandibular advancement devices (MAD) (92). Some
evidence has shown that MAD had a beneficial outcome in
cardiovascular consequences. Compared with inactive control
from the meta-analysis, MAD was associated with significant
lower blood pressure in both systolic and diastolic blood pressure
with a reduction of 2.1 and 1.9mm Hg, respectively (80).
Interestingly, it was reported that sex might affect the treatment
with MAD. For women with MAD, the nighttime systolic and
diastolic blood pressure was 10.8 and 6.6mm Hg, respectively,
lower than those in the sham group, while no significant
differences were observed in men (93). However, the results
comprised of 27 women and 58 men and might not present an
unbiased conclusion. On the other hand, some reported that
MAD had no effect on blood pressure and endothelial function
although MAD improved the AHI, micro-arousal index and
symptoms of fatigue, sleepiness and snoring (94). It was worth
noting that patients included in this study had severe OSA
without overt cardiovascular disease, which could not provide
an objective result. Another study also failed to show significant
beneficial effect on the endothelial function and sleep-time blood
pressure under MAD treatment in patients with 20–40/h of AHI
(95). That is, the cardiovascular outcome of MAD treatment
remained unclear and needs further investigation.

In contrast to CPAP, the clinical effectiveness of MAD
treatment was not good enough in terms of AHI reduction,
but the cost effectiveness was better considering quality-adjusted
life-years based on the questionnaire in moderate OSA (96). As
for cardiovascular outcome, systolic and diastolic blood pressure
showed no significant differences in both treatments according
to the meta-analysis (80). Additionally, endothelial function, and
sleep-time blood pressure showed similar performances (95).
In conclusion, MAD may be a good alternative approach for
patients refusing CPAP therapy or for those who preferMAD due
to the less-invasive nature of the device.

Exercise
Reduced exercise capacity was observed in patients with OSA,
and comorbidities such as, daytime hypoxemia and severe mean
nocturnal desaturation made the exercise capacity lower (97).
Further, exercise training contributed to either decrease of
AHI (98) or reduction of body weight (99) in patients with
OSA. Recent studies emphasized the importance of exercise
treatment, and evidence showed exercise would bring a great
improvement in patients with OSA and cardiovascular diseases.
In all, 35% (100) and 33% (101) reduction of AHI was observed
in OSA patients with heart failure and CAD, respectively,
after exercise treatment. In addition, peak oxygen consumption,
muscle strength, and endurance greatly improved with exercise
treatment instead of CPAP (100) in patients with OSA and
heart failure, which have important clinical implications. The
performance of increasing peak oxygen consumption was also
observed in patients with OSA and CAD (102). Therefore,
exercise is an important therapy for patients with OSA, especially
with cardiovascular comorbidity.

Hypoglossal Nerve Stimulation
Hypoglossal nerve stimulation devices are used to
dilate/reinforce the airway by neuromodulation. A case
report showed that in a patient with unsuccessful surgery, HNS
treatment drastically improved their condition and outcome
(103). Then, long-time HNS treatment with 48 months were
investigated, and stable improvement was observed among 91
patients with moderate-to-severe OSA (104). Alternation of the
nocturnal sleep architecture and improvement of the objective
level of alertness were also reported after HNS therapy (105).
However, the side effect of pain, tongue abrasion, and device
malfunction should be noted for further use (106).

Drug Therapy
Some medications have recently been investigated for OSA.
As oxidative stress is an aspect of OSA, antioxidants was
designed for treatment (107–109). Losartan, an antioxidant,
and anti-inflammatory drug (108), showed a significant effect
in the treatment of cardiovascular complications in OSA
(109). Another therapeutic candidate is melatonin, a regulating
hormone with antioxidant properties, which showed its
cardioprotective effects on myocardial injuries (110). Taken
together, antioxidants might be considered as a prospective drug
in patients with OSA and cardiovascular diseases.

Some drug therapies have focused on the phenotype in OSA,
such as, high loop gain, pharyngeal hypotonia, and low arousal
threshold (111). Oxygen could be utilized for downregulation
of the loop gain. Thirty-six patients with an average AHI of
57.9 events/h accomplished two nights of polysomnography in
favor of supplemental oxygen (40%) and sham (air). Nine of
the patients exhibited a reduction of 70% in AHI and 7mm
Hg overnight change in blood pressure (112). The decrease
of pharyngeal dilator muscle activity during sleep is one of
the key factors resulting in upper airway collapse. It was
reported that desipramine, a noradrenergic agonist, improved
pharyngeal collapsibility, and might be a new pharmacologic
therapy for patients with OSA (113, 114). In addition, it
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was observed that the respiratory arousal threshold could be
increased by drugs such as, trazodone, but it was insufficient
to improve the compromised upper airway anatomy (115).
However, drug-induced prolonged arousal trait might contribute
to the undesirable high loop gain trait, which could be hazardous
in patients with cardiovascular diseases. The precision-medicine
approach targeting the phenotypic traits of OSA showed a
fair degree of uncertainty and thus, more research should be
undertaken to comprehensively investigate its safety and efficacy.

CONCLUSION AND PROSPECT

Many studies have provided descriptions of patients with OSA
and AS-associated cardiovascular diseases. Intermittent hypoxia,
an important characteristic of OSA, facilitates the occurrence,
and development of AS. The mechanism discussed in this review
have not develop into diagnosis and therapy. Although, some
proteins and molecules showed its distinct characteristics in the
progress, they almost remained in a cell or mouse model without
the support of human experiments. In addition, the relationship
between IH and AS is extremely complex and the results
from in vitro and in vivo studies are sometimes inconsistent.
Thus, signaling processes need further exploration, and the
comprehensive theory is also required for better diagnosis
and treatment.

Updated diagnosis and treatment methods are summarized
in Tables 1, 2, except for the gold standard polysomnography

and CPAP. Since the relationship of PAD and OSA was
underestimated in the diagnosis and treatment, much more
attention should be paid in the further research. The development
of portable device for diagnosis gave the possibility to cover
more and more patients with OSA especially for those without
hospitalization, and it is much more convenient and cost-
efficient. Additionally, treatments are well-discussed, and their
effect on AS and related cardiovascular diseases are not clear. For
example, the clinical effect of CPAP and MAD on cardiovascular
diseases is controversial. Therefore, large-scale and long-term
clinical studies with a robust scientific design are crucial for the
comparison of different methods that contribute to diagnosis and
treatment of acute apnea syndrome with AS and related diseases.
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