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LETTER TO TH E EDITOR

LncRNAs harbouring regulatory motifs within repeat
elements modulate immune response towards COVID-19
disease severity and clinical outcomes

To the Editor:
Modulators of COVID-19 differential disease severity

and clinical outcome deserve focused attention. In the
background of paucity of comprehensive elucidation of
the functional role of lncRNAs in COVID-19 clinical
subphenotypes (mild, moderate, severe and mortality),
albeit infected by the same pathogen - SARS-CoV-2, we
undertook this novel study in a hospital admitted cohort
of 117 patients in India. Our integrative analysis high-
lights important role of lncRNAs in regulating immune
response with plausible functional role of transcription
factor binding sites (TFBS) within the repeat elements of
the significant differentially expressed (DE) lncRNAs.
Hospitalised COVID-19 patients were stratified into

subphenotypes based on their distinct disease pheno-
types and outcomes as per Indian Council of Medical
Research (ICMR). Patients outside the ICMR guidelines
were stratified into two groups: respiratory support (RS)
and shortness of breath (SOB) (detailed methodology,
results and literature supporting data interpretation as
File S1). Figure 1A summarises study highlighting patient
segregation into subphenotypes, experimental method-
ologies and downstream analysis for lncRNA differential
expression, lncRNA–miRNA–mRNA interaction, pathway
enrichment and role of regulatory sites with the repeat
elements.
The patient demographics and clinical data are sum-

marised in File S1: Table S1, wherein, the median Ct
value of E/RdRp gene was significantly different between
recovered/mortality and RS/SOB patients, respectively
(Figure 1B,C). SpO2 level was significantly different
between recovered/mortality and mild/moderate/severe
patients (Figure 1D), in addition tomedian age being differ-
ent between mild/moderate/severe and mortality patients
(Figure 1E). The duration of hospital stay was also sig-
nificantly different in mild/moderate/severe and RS/SOB
categories (Figure 1F).
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To understand role of lncRNAs in modulating host
response in the patients who succumbed to COVID-19,
we performed differential expression analysis between
recovered and mortality patients. We found three lncR-
NAs significantly downregulated in the mortality patients
(File S2; Figure 2A), with Figure 2B highlighting top 20
DE lncRNAs. Integration of lncRNA–miRNA–mRNA reg-
ulatory potential revealed that by virtue of LINC00174:11
downregulation in mortality, miR-1910-3p-mediated ele-
vation of NF-kB signalling and cytokine storm were
possible.1 Downregulation of RNASEH1-AS1:23 andROR1-
AS1:6 may modulate heightened immune, inflammatory
and stress response, as well as viral replication dur-
ing mortality, mediated by miR-218-5p and miR-375.2,3
DEG and GSEA analysis of study cohort in conjunc-
tion with LncRNA–miRNA–mRNA interaction network,
highlight heightened inflammatory response (Files S3–S5;
Figure 2C,D).
Subsequently, to elucidate the role of lncRNAs in mod-

ulating host response to COVID-19 disease trajectories,
we identified DE lncRNAs among COVID-19 subpheno-
types (mild vs. moderate/severe/mortality, moderate vs.
severe/mortality and severe vs. mortality) (Figure 3A,B;
File S2). We observed LINC00294:1 upregulation and
LINC00504:9 and RNASEH1-AS1:23 downregulation-
mediated decreased inflammatory responses in the
moderate (vs. mild), whereas MALAT1 downregulation-
indicated heightened immune response in moderate
patients.4 The downregulation of UGDH-AS1:11 in the
severe indicates a MOV10 and UPF1-mediated decreased
antiviral response.5 Downregulation of LINC00504:9
also indicates decreased immune response in the severe
patients. In the mild versus mortality patients, we
observed downregulation of MALAT1:9, LINC00504:9
and RNASEH1-AS1:23 in the mortality. Downregulation of
LINC00504:9 and RNASEH1-AS1:23 suggests a decreased
inflammatory and antiviral response in the mortality
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F IGURE 1 Overview of study design, patient segregation with clinical characterisation and significant analysis. (A) Sample distribution
and schematic workflow for transcriptomic analysis, followed by analysis for differentially expressed lncRNAs, downstream functional
analysis and visualisation. (B–F) Sample-wise distribution of clinical parameters across subphenotypes along with their statistical
significance. (B) Ct value of E gene, (C) Ct value of RdRp gene, (D) SpO2 level, (E) age in years, and (F) hospital stay in days. *p-value < .05,
**p-value < .01, ***p-value < .001, ****p-value < .0001

patients, whereas downregulation of MALAT1:9 suggests
an increased innate immune response in the mortality,
contrary to other findings.6 Upregulation of LUCAT1:3
in mortality indicates activation of interferon immunity,
whereas downregulated LINC01537 reflects increased
iNOS-mediated stress and decreased T-cell activation
in mortality.7,8 MALAT1:9 upregulation in the severe
(vs. moderate) indicates decreased immune response
in severe, whereas UGDH-AS1:11 downregulation sug-
gests decreased antiviral response and increased disease
severity in the severe.5 Finally, LINC00273 downregu-
lation in the mortality group (vs. severe) could possibly
explain the decreased early innate immune response in
mortality.
Pearson correlation analysis of DE lncRNAs across

subphenotypes revealed distinct lncRNA expression
pattern correlating with disease severity (Figure 3C).
Large cluster of 16 lncRNAs (lnc-STIM2-7:1, lnc-MSH3-2:1,
lnc-KCNE1B-3:5, lnc-IRS4-2:1, lnc-PRR32-4:2, lnc-MYO16-
7:1, lnc-UTY-17:1, lnc-KCNE1B-155:1, lnc-KCNE1B-3:3,

LINC00273:1, lnc-GPR39-10:2, lnc-TMEM132C-11:1,
lnc-KCNE1B-3:2, lnc-KCNE1B-3:4, LINC00273:11,
LINC00273:13) was obtained downregulated in mortality
patients, suggesting possible association of these lncRNAs
with COVID-19 mortality. We found an autophagy-related
antisense transcript RTCA-AS1:8 to be downregulated
in the RS compared to the SOB patients (Figure 3D).
Importantly, downregulation of the RTCA-AS1 in SARS-
CoV-2-infected human bronchial organoids has been
reported.9 Additionally, we found that SOB patients were
closer to the mild, while the RS were similar to moderate
for their lncRNA expression (Figure 3E).
LncRNA–miRNA–mRNA interaction network and

DEG analysis helped us to understand the possible bio-
logical functions of the DE lncRNAs (Figure S2A–E),
followed by GSEA for the interacting genes (Files S3–S5;
Figure S2F–M). We found lncRNA-mediated regulation of
CALM3/VAV3/WIPI2/MAD2L1/CDKN1A/CD47/IGF1R/
ACTB genes, leading to immune/inflammatory response
and some housekeeping biological function regulation.
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F IGURE 2 Differentially expressed lncRNAs in the recovered patients (compared to mortality) and functional analysis. (A) Volcano plot
showing the differential expression of lncRNAs in recovered versus mortality patients. The green dots represent lncRNAs with more than log2
fold change of ±2 only, while red dots represent lncRNAs significant based on log2 fold change and q-value both. (B) Differential expression
profile of top 20 lncRNAs (based on log2 fold change) based on average normalised counts between recovered and mortality patients. (C)
lncRNA–miRNA–mRNA interaction network, brown box represents miRNA, purple circle represents lncRNAs and green circle represents
mRNAs. (D) Gene set enrichment analysis of the genes interacting with the differentially expressed lncRNAs, where x-axis represents the
normalised enrichment score (NES), and the colour represents the direction of NES

For understanding the possible mechanism of gene
regulation by specific lncRNAs, we analysed for repeat ele-
ment distribution within the DE lncRNAs, with focus on
LINE and SINE repeat elements (File S6). We observed
significantly higher distribution of SINE/Alu, SINE/MIR
and LINE/L1 elements across the comparison groups
(Figure 4A,B). The distribution of SINE/Alu and LINE/L1
was higher in our DE lncRNA compared to that of over-
all distribution of these repeats (File S6; Figure S3A,B).
Importantly, higher presence of Alu elements (SINE) was
found in the DE lncRNAs in the mortality patients. This
indicates heightened stress response during mortality as
highlighted by existing literature, suggesting functional
role of Alu repeats during viral infection.10 Subsequently,
we analysed for the genes present within 5 kb upstream
and downstream of the seven lncRNAs (12 genes) and per-
formed pathway enrichment analysis to understand the

biological functions of the genes (File S7; Figure 4C). Based
on the pathway enrichment analysis, we selected TRPM2-
AS1 and RNASEH1-AS1, and explored the role of TFBS
in regulating the overlapping genes. We found four TFs
(majorly bind to TFBS within Alu and L1 elements in
TRPM2-AS1), SOX2, GATA3, FOXO1 and FOXO3, to reg-
ulate the TRPM2 gene expression, while TFs, SOX10 and
GATA6, bind with RNASEH1-AS1 to regulate the RPS7
expression (Figure 4D). This highlights possible TFBS-
mediated regulation of genes upstream/downstream of the
lncRNAs.
In summary, our study highlights lncRNA-mediated

dysregulation of immune and stress responses and their
potentialmechanism during the early phase of SARS-CoV-
2 infection, which potentially modulates different degrees
of disease severity subphenotypes: mild, moderate, severe
and mortality.
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F IGURE 3 Differential expression of lncRNAs across COVID-19 subphenotypes. (A) Volcano plot showing the differential expression of
lncRNAs in the COVID-19 subphenotypes. The green dots represent lncRNAs with more than log2 fold change of ±2 only; red dots represent
significant lncRNAs based on both log2 fold change and q-value. (B) Expression profile of the differentially expressed lncRNAs across groups
(based on average normalised counts). (C) Pearson correlation plot of the differentially expressed lncRNAs across groups. The clusters are
highlighted, where the expression of the lncRNAs is mentioned by U (upregulated) or D (downregulated). All the positively correlated
clusters are statistically significant (p ≤ .05). (D) Volcano plot showing the differential expression of lncRNAs between RS and SOB groups.
(E) Expression profile of the differentially expressed lncRNAs across mild, moderate, SOB and RS (based on average normalised counts)
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F IGURE 4 Repeat element distribution and functional analysis of TFBS within lncRNAs. (A) Density plot of the LINEs/SINEs within
lncRNAs (frequency of repeat elements normalised to the length of the LncRNA), where the x-axis represents the length of the lncRNAs. (B)
Frequency distribution of the repeat elements across COVID-19 subphenotypes. (C) Pathway enrichment analysis of the genes present within
±5 kb upstream and downstream of the lncRNAs, having LINES/SINEs within them. The x-axis represents the enrichment score, circle size
the number of genes involved in the pathway and the colour of the circle the significance of the pathway. (D) TFBS prediction within the
repeat element regions in lncRNAs, and transcription factor-mediated regulation of genes overlapping with lncRNAs. The arrow represents
the transcription factor-mediated upregulation/downregulation of the overlapping genes
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