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Abstract

Continued alteration of the nitrogen cycle exposes receiving waters to elevated nitrogen 

concentrations and forces drinking water treatment services to plan for such increases in the 

future. We developed four 2011–2050 land cover change scenarios and modeled the impact of 

projected land cover change on influent water quality to support long-term planning for the 

Minneapolis Water Treatment Distribution Service (MWTDS) using Soil Water and Assessment 

Tool. Projected land cover changes based on relatively unconstrained economic growth led to 

substantial increases in total nitrogen (TN) loads and modest increases in total phosphorus (TP) 

loads in spring. Changes in sediment, TN, and TP under two “constrained” growth scenarios were 

near zero or declined modestly. Longitudinal analysis suggested that the extant vegetation along 

the Mississippi River corridor upstream of the MWTDS may be a sediment (and phosphorus) 

trap. Autoregressive analysis of current (2008–2017) chemical treatment application rates (mass 
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per water volume processed) and extant (2001–2011) land cover change revealed that statistically 

significant increases in chemical treatment rates were temporally congruent with urbanization and 

conversion of pasture to cropland. Using the current trend in chemical treatment application rates 

and their inferred relationship to extant land cover change as a bellwether, the unconstrained 

growth scenarios suggest that future land cover may present challenges to the production of 

potable water for MWTDS.
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1 ∣ INTRODUCTION

The benefits of source water protection were recognized in the United States (U.S.) Safe 

Drinking Water Act Amendments of 1996 (P.L. 104–182) (Tiemann, 2017; Wickham et 

al., 2011). Natural landscapes (e.g., forests) protect drinking water sources by minimizing 

sediment erosion and other nonpoint source pollution, thereby maintaining the quality of 

raw water that will eventually be treated and distributed for consumption (McDonald et al., 

2016). Postel and Thompson (2005) highlighted seven cities in the U.S. that have avoided 

expenditure of millions of dollars in capital and operational costs through protection of their 

source water. Warziniack et al. (2017) found that source water turbidity increases as forest 

cover declined and that treatment costs increased as turbidity increased. Fiquepron et al. 

(2013), Elias et al. (2014), and Heberling et al. (2015) have further advanced the research by 

developing quantitative relationships between drinking water treatment costs and watershed 

condition.

The benefits of source water protection are clear, but watershed condition continues to 

decline globally due to population growth, urbanization, and agricultural expansion. Since 

1900, 90% of the largest cities (>750,000 population) in the world experienced degradation 

of their source watersheds, and 29% of these cities had a significant increase in their water 

treatment costs due to that degradation (McDonald et al., 2016). Threats to source water 

are apparent in the U.S., including urbanization, agricultural expansion, and the loss of 

natural lands. Population in the U.S. is projected to increase by 98.1 million between 2014 

and 2060 (Colby & Ortman, 2017). Urban expansion is a threat to protected areas in the 

U.S., potentially displacing natural vegetation (Martinuzzi et al., 2015), and cropland area 

increased by 3 million acres between 2008 and 2012 in the U.S. (Lark et al., 2015).

Minnesota has experienced loss of natural lands to both agriculture and urbanization. 

Multiple studies have documented conversion of natural grassland to agriculture in 

Minnesota during 2008–2013 (Lark et al., 2019; Mladenoff et al., 2016). Minnesota's 

population grew by 6.1% from 2010 to 2018 (MN State Demographic Center, 2019a), with 

the largest growth occurring in the Minneapolis metropolitan region. By 2050, Minnesota's 

population is projected to increase from 5.62 million people to 6.37 million people (MN 

State Demographic Center, 2019b). These stressors are expected to impact surface water 

quality and drinking water in Minneapolis, which withdraws water from the Mississippi 
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River. The forests in the city's source water watershed are important for protecting drinking 

water (Weidner & Todd, 2011).

Considering these ongoing and future threats to drinking water quality, the objective of this 

study was to develop projections of land cover change and associated impacts of change 

on water quality constituents relevant to Minneapolis' drinking water treatment process. We 

use Soil Water and Assessment Tool (SWAT) to model the effects of projected land cover 

change for the year 2050. Modeling the effect of future land cover on source water quality is 

also supported by autoregressive (AR) models of recent trends in the application of drinking 

water treatment chemicals and the effect of recent land cover change (2001–2011) on water 

quality.

2 ∣ METHODS

2.1 ∣ Study area

The study watershed is the Mississippi Headwaters (MHW), 4-digit hydrologic unit code 

(HUC-4) 0701, in Minnesota with the outlet defined just south of the Minneapolis, MN 

drinking water intake. The land cover composition (Figure 1) of the 50,335 km2 MHW 

watershed is primarily agriculture (33%), forest (27%), and wetlands (24%). Surface water 

(lakes and rivers) and urban land cover about 8% and 6% of the MHW, respectively. 

Dominant crops are corn and soybeans. Pastureland is about 29% of the land devoted to 

agriculture (10% of the watershed). There is a strong north–south gradient in the distribution 

of land cover, with the north dominated by forest, wetland, and surface water, and the 

south dominated by agriculture. The Minneapolis-St. Paul metropolitan area and other 

urban centers are in the southeastern section of the watershed. The southeastern parts of 

the watershed receive more precipitation than the northwest. Annual average precipitation 

from 1981 to 2010 for Minneapolis-St. Paul is 777 mm, whereas northwestern parts of the 

watershed average 676 mm annually.

The Minneapolis Water Treatment Distribution Service (MWTDS) withdraws water from 

the Mississippi River as its sole source, pumping about 21 billion gallons per year (79.5 

million m3/year) and providing drinking water for over 500,000 people. Multiple treatment 

processes are used, including softening, sedimentation, filtration (both granular activated 

carbon and membrane ultrafiltration), and disinfection. About 100 km upstream from 

Minneapolis, St. Cloud, MN produces potable water for over 68,000 people. Raw water 

from the Mississippi River is treated using a three-stage system, where it is treated with 

powder activated carbon (PAC) and alum (stage 1), followed by treatment with lime and 

CO2 (stage 2), and then sent to a detention basin where it is filtered and disinfected (stage 3). 

A substantial upgrade of the St. Cloud water treatment facility is ongoing.

2.2 ∣ Watershed model

Soil Water and Assessment Tool (Arnold et al., 1998) is a semi-distributed, process-based 

watershed model that examines the impacts of land management practices on watershed 

hydrology and water quality at various spatial scales. Major routines within SWAT include 

landscape runoff and water balance, erosion, river routing, nutrient cycling, crop growth, and 
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land management operations. In SWAT, the watershed is delineated into subbasins, which 

are further partitioned into hydrologic response units (HRUs). HRUs are nonspatial units of 

uniform land cover, soil type, slope class, and agricultural practices within each subbasin. 

The Modified Universal Soil Loss Equation is used to estimate sediment yield from the 

HRU. Transport and transformation of multiple forms of nitrogen and phosphorus are 

simulated in their respective cycles, with in-stream transport occurring via forms adsorbed to 

sediment or dissolved in water (Neitsch et al., 2011).

SWAT2012 (revision 670; Arnold et al., 2012) was used for simulation. The primary 

spatial and temporal inputs for parameterization were as follows: the one arc-second 

digital elevation model from the U.S. Geological Survey (USGS) 3D Elevation Program, 

the 30 m National Land Cover Database (NLCD) (Homer et al., 2015), which includes 

land cover for 2001, 2006, and 2011, the State Soil Geographic Database (STATSGO2) 

at 1:250,000 resolution, and gridded daily precipitation, minimum temperature, and 

maximum temperature from PRISM at 4 km resolution (PRISM Climate Group, Oregon 

State University, http://prism.oregonstate.edu). Secondary datasets and sources used to 

parameterize the SWAT model are listed in Table A1 (Supporting Information). The MHW 

was delineated into 815 subbasins and 14,160 HRUs.

The NLCD 2006 was used for calibration and uncertainty analysis because it was temporally 

central to available water quality data for SWAT calibration. Corn–soybean crop rotations 

were implemented on NLCD cropland. The most common crop rotations in the watershed 

were corn following corn and corn following soybeans (Bierman et al., 2012). Planting and 

harvest dates were defined using the U.S. Department of Agriculture (USDA) Field Crops 

Usual Planting and Harvesting Dates guide (USDA, 2010).

Calibration, validation, and uncertainty analysis were performed using the Sequential 

Uncertainty Fitting (SUFI-2) algorithm within SWAT-CUP v5.1.6.2 (SWAT Calibration 

and Uncertainty Programs) (Abbaspour, 2007). SUFI-2 expresses parameter uncertainty as 

uniform distributions, where the uncertainty is propagated to the model outputs, expressed 

as 95% probability distributions or 95% prediction uncertainty (95PPU). Nash Sutcliffe 

Efficiency greater than 0.5 (Moriasi et al., 2007) was used as the objective function for 

95PPU behavioral simulations. To quantify the model fit between observations and the 

95PPU, P-factor (percentage of observations enveloped by 95PPU) and R-factor (mean 

95PPU thickness divided by standard deviation of observations) were used. P-factor >0.7 

and R-factor <1.5 were desirable (Abbaspour et al., 2015).

Six USGS stream gages were used for discharge calibration/uncertainty analysis and six 

co-located Minnesota Pollution Control Agency (MPCA) water quality sampling locations 

(Figure 1) were used for calibration/uncertainty analysis of sediment load, total nitrogen 

(TN) load, and total phosphorus (TP) load.

The USGS Load Estimator (LOADEST) (Runkel et al., 2004) was used to estimate monthly 

constituent loads for the water quality sampling locations based on regression equations of 

grab sample concentrations as a function of daily discharge and date. LOADEST outputs 

(Tables A2-A4 in the Supporting Information) had low positive bias in the load estimation 
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of sediment (<10% percent bias) and negligible bias in TN and TP estimation (<2%) for any 

given water quality sampling and discharge location pair.

The simulation time period was 2001–2012, which included all available water quality data. 

Measurement uncertainty was included in SWAT-CUP for discharge, sediment, TN, and 

TP based on average values from Harmel et al. (2006). Results of combined calibration, 

validation, and uncertainty analysis are presented in Table A5 (Supporting Information) for 

all locations.

2.3 ∣ Land cover change model

The FOREcasting Scenarios of Land-use Change (FORE-SCE) modeling framework 

developed by the USGS (Sohl et al., 2007) was used to create land cover scenario 

projections for 2050. FORE-SCE consists of annual land cover projections to 2100 

for the continental U.S. at a 250-m resolution, based on scenarios developed for the 

Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios 

(SRES) (Nakicenovic et al., 2000).

We downscaled four SRES scenarios rendered at 250-m pixel resolution (Sohl et al., 2014) 

to a 30-m pixel resolution: A1B, A2, B1, and B2 (Supporting Information). The first letters 

(A, B) in the scenarios denote a dichotomy between material wealth (A) and sustainability 

and equity (B) and the numerals (1, 2) denote a dichotomy between globalization (1) 

and regionalization (2) of economic drivers and social policy (Strengers et al., 2004). 

Summaries of the four scenarios are as follows: a consumption-oriented population operates 

in a world where socioeconomic forces operate globally (A1); local constraints focused 

on sustainability constrain global socioeconomic forces (B1); a consumption-oriented 

population operates in a world where socioeconomic forces vary regionally (A2); and a 

population focused on sustainable use operates in a world where socioeconomic forces 

vary regionally (B2). The A1 group has three outcomes (scenarios), whereas the other 

three groups have only one outcome. A1B is a “balanced” scenario intermediate between 

a fossil fuel intensive (A1FI) scenario and a non-fossil fuel dominated (A1T) scenario 

(Nakicenovic et al., 2000). Agricultural trade is a useful example to distinguish between 

globally and regionally predominant socioeconomic forces. The amount of agricultural land 

in the U.S. might increase under the scenarios where socioeconomic forces are globally 

predominant to satisfy demand elsewhere, whereas an increase in the amount of area devoted 

to agriculture might be less when socioeconomic forces vary regionally. Sustainability 

denotes world views that emphasize efficient use of fertilizers or public transportation, 

whereas a consumption-oriented world view would not. Each scenario exhibits different 

land cover characteristics when the narratives are translated. These global characteristics 

(Strengers et al., 2004) were modified by Sohl et al. (2014) to better fit the conditions and 

characteristics of the conterminous U.S.

The downscaling techniques used were consistent with recommendations for localizing the 

global IPCC scenarios (Sleeter et al., 2012; van Vuuren et al., 2007, 2010). We created 

2010–2050 land cover change matrices for the four scenarios (hereafter, scenario database). 

The land cover change matrices were used to derive a target estimate of the area of change 

for each land cover transition (e.g., deciduous forest to urban). Land cover changes were 
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restricted to the classes in scenario database that also occurred in NLCD 2011. We did not 

include changes in the scenario database classes “Disturbed National Forest,” “Disturbed, 

other,” “Disturbed, private,” and “Mining” because these classes were not mapped in NLCD 

2011. We also did not include changes in “Barren,” “Grassland,” and “Shrubland.” These 

classes occurred in NLCD 2011 and the scenario database, but they were essentially 

nonexistent in the scenario database for the MHW. After determining the area of each 

change class, we overlaid the changes on a map of NLCD 2011 land cover patches, where 

a patch was defined as contiguous (8-neighbor) pixels of the same land cover class. NLCD 

2011 patches that included a change pixel with the same land cover labels for NLCD 2011 

and the 2010 scenario database served as the set of NLCD land cover patches that could 

transition from a 2010 land cover class to a 2050 land cover class. Random selection of 

NLCD 2011 patches was used when the total area of land cover patches that could change 

exceeded the target estimate for that change class. In some cases, the total area of NLCD 

2011 patches was less than the estimated area of change in the scenario database. This 

issue tended to arise when the NLCD 2011 land cover classes evergreen forest, mixed 

forest, woody wetland, or emergent wetland changed to urban, cropland, or pasture in 2050. 

We increased the total amount of deciduous forest loss between 2010 and 2050 when this 

occurred. There was only a single class for urban in the FORE-SCE scenarios and therefore 

our downscaled scenarios did not identify change to the four, more detailed urban classes 

in NLCD. Because of the lack of urban specificity in the FORE-SCE models, our 2010 

scenarios included the four NLCD urban classes and our 2050 scenarios included the same 

four NLCD urban classes plus a generalized urban land cover representing urbanization 

between 2010 and 2050.

Because of the random selection of patches for 2010–2050 land cover change, the resulting 

per-scenario spatial pattern was just one rendition of perhaps an infinite number of spatial 

patterns of change that could be realized from repeated implementation of the change model. 

The resulting spatial pattern likely influences SWAT results and is a source of uncertainty 

in the model. For example, if forest loss was heavily concentrated north of St. Cloud (gage 

05270700 in Figure 1), the effects of forest loss on water quality at the MWTDS may 

be different than if forest loss was concentrated in and around the Minneapolis-St. Cloud 

corridor.

We implemented two versions of each scenario. One implementation allowed cropland and 

pasture to revert to forest, labeled with an f (e.g., A1Bf). The other version did not allow 

agriculture to revert to forest (e.g., A1B). We implemented the version that excluded 2010–

2050 conversions of agriculture to forest to highlight the benefits of natural succession, 

conservation, and restoration in the context of the four scenarios. The amount of forest 

succession (e.g., A2f) was based on the amount cropland and pasture (2010) to forest (2050) 

in the FORE-SCE change matrices. This transition was simply ignored in the versions of the 

scenarios that did not allow cropland and pasture to revert to forest.

Each future scenario was implemented separately within SWAT, in addition to NLCD 2001, 

2006, and 2011 scenarios. Consistent crop rotations were used in 2001, 2006, 2011, and 

2050 scenarios, that is, the same type of corn–soybean rotation variants were implemented 

on cropland, wherever it occurred, regardless of scenario. Table 1 lists the scenarios that 
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were run within SWAT. Note that all SWAT behavioral simulations in the 95PPU were run 

for each land cover scenario, allowing for propagation of parameter uncertainty.

2.4 ∣ Drinking water treatment analysis

Water quality degradation is a concern for most drinking water quality managers because 

it tends to increase treatment costs (Dearmont et al., 1998; Postel & Thompson, 2005) 

and may increase risks to human health (Ward et al., 2018). Water quality degradation 

often arises from loss of natural lands to agricultural and urban uses, which has motivated 

many jurisdictions to protect the natural lands in their source water watersheds (Postel 

& Thompson, 2005, p. 100). Where land cover change is still a concern, such as in 

MHW, examination of temporal trends in drinking water treatment costs can provide useful 

background information. For example, absence of a temporal trend may indicate that loss of 

natural land has not occurred or has been inconsequential relative to its effect on drinking 

water treatment costs. Trends in drinking water treatment costs were examined without 

matching water quality data because such data were unavailable: water quality calibration 

data for SWAT were available from 2001 to 2012, while the MWTDS data were available 

from 2008 to 2017.

We used AR modeling to examine the time series of treatment chemical application rates. 

MWTDS provided monthly treatment chemical application rates for 2008–2017, including 

raw water volume processed, aluminum sulfate (alum), PAC, lime, and CO2. Alum is used 

as a coagulant to remove unwanted color and turbidity. PAC is used for taste and odor 

control. Lime is used to soften (and decarbonate) hard water by removing excess calcium 

and magnesium. The use of lime also brings many other benefits, including removal of 

natural organic material, bacteria, viruses, and suspended matter. CO2 is used to adjust 

pH after softening. Monthly data for alum were completed only for 2011–2017. There 

were 84 monthly observations for alum and 120 monthly observations for volume of raw 

water processed, PAC, lime, and CO2. Volume of raw water processed was measured in 

mega-gallons (Mgal; 1000,000 gallons) and treatment chemicals were measured as lbs/Mgal.

AR (regression against itself) models account for the serial autocorrelation that is common 

in temporal data. Such correlation leads to biased standard errors when ordinary least 

squares (OLS) regression is applied to model trends; AR models correct for serial 

correlation to produce unbiased estimates (SAS Institute Inc, 2018). The basic AR model 

(see Nash et al., 2014, p. 155) is:

yt = A0 + A1 × time + μt,

(1a)

μt = ∑
t = 1

k
ρiμt − 1 + εt,

(1b)
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εt ∼ IN(0, σ2) .

(1c)

The fitted AR Equation (1a), like OLS, includes an intercept (A0), slope (A1), and error term 

μt. The model for the error term (1b) estimates the error term's serial correlation (ρi) over 

k lags, with the remaining error (1c) having a mean of 0 and a variance σ2. AR models 

were implemented with backward selection of between 12 and 18 lags. A minimum of 

12 lags was used because we assumed the treatment application rate for a given month 

was correlated with the application rate for the same month of the previous year. In some 

cases, 18 lags were needed to include all possible lags with significant correlation and to 

obtain the correct statistical test of the significance of model parameters. The backward 

selection procedure removed lags that were not significant. The AR models were inspected 

for non-constant error variance (heteroscedasticity) and trend unit roots (SAS Institute Inc, 

2018). Neither was found.

Risk management is an inherent aspect of the production of potable water (Crawford-Brown 

& Crawford-Brown, 2011; Hrudey et al., 2006). To improve potable water quality and 

minimize risk of contamination, MWTDS shifted the objective of its chemical treatment 

processes from cost efficiency to water quality (Kraynick, 2020 personal communication). 

Average before (2008–2014) and after (2015–2017) values (lbs/Mgal) were 206.7 and 290.5 

for alum, 71.7 and 91.5 for lime, 1301.5 and 1401.7 for carbon, and 228.7 and 299.6 for 

CO2. We included a dummy variable (before = 0; after = 1) in the AR models (Jebb et ah, 

2015) to help to disentangle influences of management from trends in chemical application 

rates.

3 ∣ RESULTS

3.1 ∣ Land cover change

3.1.1 ∣ 2001–2011—A total of 3.5% of the MHW experienced land cover change from 

2001 to 2011 (Table A6). This excludes transitions between similar classes (e.g., deciduous 

forest to evergreen forest or developed low density to developed high density). Most 

land cover classes experienced both growth and decline. The greatest net gains were by 

developed land (200 km2) and grassland (183 km2), while the greatest net losses were 

pasture (295 km2) and forest (266 km2).

Developed land was unique in experiencing no losses. Urbanization primarily displaced 

cropland and pasture (and to a lesser extent, forest and wetlands) due to growth in the 

Minneapolis/St. Paul and St. Cloud metropolitan areas. Cropland expansion occurred, 

although most is attributable to transition from pasture (234 km2 of 290 km2 gross 

expansion). This transition mostly occurred in the North and South Fork Crow River 

watersheds (southwest MHW). Cropland also displaced 44 km2 of wetlands. Most forest 

loss was converted to shrubland and grassland.
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3.1.2 ∣ 2011–2050—Land cover change was projected to be greatest in the A scenarios 

(Figure 2). Projected land cover changes for A2 and A2f scenarios were 4.5%–4.7% of the 

total watershed area and 5.3%–5.5% for the A1B and A1Bf scenarios. The A scenarios 

projected a net loss of over 1000 km2 of forest to cropland, pasture, and urban (developed). 

Wetland loss to cropland and pasture also occurred. The greatest gain was attributed to urban 

development (replacing cropland and pasture), further expanding the footprint of major 

metropolitan areas. This amounts to a loss of about 9% of the total forest in the A scenarios, 

covering 2.7% of the MHW. With the addition of forest regrowth in the f scenarios, forest 

loss was mitigated to about 8% of the total forested area (2.4% of the MHW). Urban growth 

is greater in the A1B scenarios (1.7% of total watershed area) versus A2 (1.1%). Finally, 

cropland and pasture growth were about 0.5%–1.5% of the total watershed area in the A 

scenarios. The greatest loss of forests and wetlands was projected in the A1B scenario, about 

1860 km2 (3.7%) of the MHW.

On average, B scenario net forest loss and a net urban gain changes were less than half 

of their A scenario counterparts. The magnitude of gross land cover changes for the B 

scenarios was smaller than the NLCD-based 3.5% gross land cover change between 2001 

and 2011. Relative to the A scenarios, cropland and pasture loss were a relatively significant 

component of overall B scenario change, especially in the B1f and B2f (forest regrowth) 

scenarios that offset much of the forest loss. All four B scenarios projected a loss of 

cropland, varying from 20 km2 (B2) to almost 220 km2 (B2f). About 3% of the existing 

forest was lost (less than 1% of the total watershed area). Overall, 397 km2 of forests and 

wetlands were lost in B1, the smallest area loss of any non-regrowth (f) scenario.

Change patterns were consistent across scenarios. Projected transitions from cropland and 

pasture to developed land occurred primarily in the southern half of the MHW, which 

is the location of major metropolitan areas and agricultural regions. This change pattern 

represents an outward growth of developed lands at the expense of rural agricultural land 

cover. Conversely, projected forest and wetland loss occurred primarily in the northern half 

of the watershed. Figures A2 through A4 in the Supporting Information demonstrate the 

differing change patterns in headwaters versus downstream subbasins.

3.2 ∣ Modeled water quality change

3.2.1 ∣ Water quality change 2001–2011—Land cover change between 2001 and 

2011 resulted in increases in sediment and TP loads, with little change in TN load at the 

MWTDS intake (Figure 3). Changes are presented as seasonal averages, starting with the 

beginning of the water year (October 1): October–November–December (OND), January–

February–March (JFM), April–May–June (AMJ), and July–August–September (JAS). The 

greatest changes are in AMJ, associated with early growing season agricultural operations. 

Across all simulations, the change was relatively small: the median (of the 95PPU) seasonal 

change in sediment was between +1.2% and +2.4%, between −0.4% and +0.4% in TN, and 

+1% to +2% in TP. Changes were greater in the headwaters, where the transition from forest 

to agriculture was dominant. For example, at USGS 05227500 (Figure 1), median seasonal 

changes were +2.3% to +6.7% (sediment), +3.5% to +4.5% (TN), and +4.8% to +6.3% (TP).
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3.2.2 ∣ Water quality change 2011–2050—Pollutant loads at the MWTDS intake 

reflect the watershed-scale changes in land cover and highlight uncertainty across scenarios. 

The magnitude of sediment, TN, and TP load changes from 2011 to 2050 is seasonal, with 

the greatest projected changes in AMJ and similar, smaller changes in other seasons (Figure 

3). The differences in AMJ versus other seasons coincide with the early growing season and 

highlight the influence of agriculture on water quality at the MWTDS. AMJ experiences 

declines in sediment load, where the decline is greatest among the forest regrowth scenarios. 

TN load increases are projected at the intake, except in the B1f and B2f scenarios, where 

cropland is replaced by forest regrowth and urbanization. TP load in AMJ varies by scenario 

(increase in A, decrease in B).

There is uncertainty in the direction of change (increase/decrease) across the suite of land 

cover change scenarios. The A scenarios project increases in TN and TP loads, while the 

B scenarios project decreases (Figure 3). With the inclusion of forest regrowth, A scenario 

changes in nutrient loads are moderated, while declines in sediment load are amplified. The 

B1f and B2f scenarios are the only scenarios that result in decreases in sediment, TN, and 

TP at the intake.

3.2.3 ∣ Upstream to downstream change (St. Cloud vs. Minneapolis intakes)
—Land cover change produced similar changes in sediment, TN, and TP loads at the 

St. Cloud drinking water intake (near USGS gage 05270700, Figure 1) and the MWTDS 

(Figure 4). From 2001 to 2011, median changes in seasonal sediment, TN, and TP loads 

were small: +1.1% to +2.7%, +0.3% to +1.2%, and +1.8% to +2.4%, respectively. From 

2011 to 2050, projected change was greatest in AMJ, like MWTDS. Differences between 

scenarios are also similar at the two intakes: the greatest increases in TN and TP loads were 

projected to occur in response to land cover change magnitudes and patterns in A1B and A2, 

with smaller increases (B1 and B2) or declines in loads (B1f, B2f) in B scenarios.

Despite the overall similarity in St. Cloud and Minneapolis sediment, TN, TP 2011–2050 

changes, there were notable differences. The magnitudes of change were more extreme at 

Minneapolis, either much higher or much lower depending on constituent (sediment, TN, 

TP) and scenario (note difference in y-axis scale ranges between Figures 3 and 4). More 

specifically, the magnitudes and pattern of sediment and TP change tended to be quite 

different between the two sites, whereas the magnitudes and pattern of TN change tended 

to be similar. For the A1B scenario, for example, the 2011–2050 projected land cover 

changes produced a median increase in sediment of 1250 Mg at St. Cloud and a median 

decline of a 2500 Mg at Minneapolis. These results reflect the influence of the overall 

pattern of forest-to-cropland change occurring predominantly upstream of St. Cloud, and 

the results also suggest the Mississippi River corridor between St. Cloud and Minneapolis 

may be acting as a sediment “trap.” The pattern also suggests the extant natural vegetation 

in the St. Cloud—Minneapolis corridor is an important component of the “trap,” especially 

during high-flow events. Changes in sediment, TN, and TP across change scenarios at 

all other calibration locations are presented in Figures A9 through A16 of the Supporting 

Information.
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3.3 ∣ Drinking water treatment trends

The temporal trend was significant for alum, lime, and carbon (Table 2; Figure 5). 

Management was not significant. Increases in alum, lime, and carbon attributable to 

management had no effect on the trend. These results suggest that declining source water 

quality required higher application rates to produce potable water and that the increased 

application rates would have been needed regardless of the shift in management philosophy. 

The converse was true for CO2; the temporal trend was not significant, but the management 

variable was strongly significant. Model results suggest that the trend was solely attributable 

to the change in management philosophy for CO2 (Figure A5). The trend in the volume 

of water processed appeared to decline slightly over time, but the temporal trend was not 

statistically significant (Figure A6).

4 ∣ DISCUSSION

4.1 ∣ Land cover change

The land cover change scenarios present eight possible snapshots of spatially explicit future 

land cover change. Spatial arrangement and magnitude of land cover change differed across 

scenarios. The primary spatial trends were as follows: (1) replacement of cropland by 

developed lands in the southern half of the watershed and (2) replacement of forest by 

cropland and pasture in the headwaters. The locations of the change, and the magnitude 

of the change projected to occur in those locations, were driving factors in both scenario 

differences in sediment, TN, and TP loads, and how those differences manifested spatially in 

the headwater rivers versus the MWTDS intake.

Land change models are inherently uncertain. Inter-model comparisons demonstrate large 

uncertainty in change projections to 2050 for the U.S., both in magnitude and pattern 

of change (Sohl et al., 2016). Scenario uncertainty within an individual model is smaller 

than variability across models (Sohl et al., 2016). Therefore, the introduction of more land 

change models into the watershed modeling process would introduce further uncertainty into 

projections of water quality change, beyond the scenario uncertainty.

Finally, these projections are steady-state when implemented within SWAT. That is, they are 

constant across a time slice, rather than dynamic, annually changing land cover. This allows 

for isolating land cover change without introducing the confounding effects of variable 

weather.

4.2 ∣ Water quality change

The signal of sediment, TN, and TP load changes at the MWTDS intake varies by scenario. 

This variability is representative of the differences in the underlying scenarios' spatially 

explicit differences in land cover change. There are three important factors: the magnitude 

of change, the class-by-class change, and how magnitude and class-by-class change are 

realized in a spatially explicit Land Use Land Cover (LULC) map. These factors, and how 

they influence water quality, are apparent in differences among future scenarios and in 

comparing NLCD 2001, 2006, and 2011 land cover maps.
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The location and type of change is particularly important when examining projections in 

constituent loads in the MHW headwaters versus the MWTDS intake. There are two primary 

types of change projected by the SRES scenarios: (1) agricultural land loss to developed 

land that occurs in the southern half of the watershed and (2) forest loss to cropland or 

pasture in the headwaters. Loss of agricultural land to urban development in the subbasins 

closest to the MWTDS intake results in projections of decreased sediment loads (and 

associated phosphorus). Cropland losses result in associated declines in erosion and land 

application of fertilizers. In the headwaters, forest loss to cropland and pasture (Figures A2 

and A3) results in an increase in sediment and nutrient loads (Figure A9). This varies with 

scenario; the B scenarios and all scenarios that allow for reforestation result in negligible 

sediment increases or sediment declines in headwater locations, related to the low magnitude 

of change and potential for cropland and pasture transition back to forest. The contrasting 

modes of land cover change, summarized by cropland losses to urbanization in the lower 

half of the watershed and cropland gains at the expense of forests compete for influence on 

sediment, TN, and TP loads at the MWTDS intake. The prevalence of lakes and wetlands in 

the northern half of MHW act as a buffer via retention of sediment and associated nutrients, 

likely protecting the MWTDS intake from some negative impacts of forest lost to cropland.

Seasonality was found to be important. Changes in water quality loads at the MWTDS 

were greatest in AMJ, coinciding with agricultural operations such as tilling, planting, 

and fertilizer application. One-third of the watershed's annual precipitation falls during 

AMJ, coupled with agricultural operations and saturated soils from winter precipitation 

and snowmelt, results in more runoff-associated sediment and nutrient transport than other 

seasons.

We can conclude (qualitatively) that the combined uncertainty of the watershed model and 

the LULC model is greater than the individual uncertainty of either model. As reflected 

in constituent loads at the MWTDS, the variability in A and B scenarios (and their forest 

regrowth counterparts) has the most influence. This is because the difference in these 

projections as reflected in water quality changes results in a change of direction of trend. For 

example, TN and TP are projected to increase in 2050 in all A scenarios but decline in the 

B1f and B2f scenarios.

These projections are not a complete picture of water quality in 2050. Rather, they only 

represent the potential influence of land cover change on water quality. Climate change 

will likely play a role in future water quality of the MHW. The Upper Midwest U.S. is 

projected to experience winter and spring precipitation increases, a decrease in proportion of 

winter precipitation falling as snow, and an increase in the frequency and intensity of heavy 

precipitation events (Hayhoe et al., 2018). These changes to the seasonality of precipitation 

and overall changes to the water balance have the potential to increase the magnitude of 

sediment erosion and nutrient transport, as well as their timing. As is apparent based on the 

land cover change and how it is reflected in water quality at the MWTDS intake, climate 

changes in the winter and spring, coinciding with the beginning of the growing season, will 

influence water quality.
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4.3 ∣ Drinking water treatment impacts

The temporal trends we report in per-unit use of treatment chemicals are consistent with 

previous empirical studies in other locations (Dearmont et al., 1998; Moore & McCarl, 

1987). We found a statistically significant increase in usage of three (alum, lime, and carbon) 

of the four treatment chemicals between 2008 and 2017 and an urbanizing watershed 

over a partly overlapping time period (2001–2011). In addition, the MHW has continued 

to urbanize through 2016 (Homer et al., 2020). Most studies that relate drinking water 

treatment costs to influent water quality and land cover are implicitly based on a space-for-

time assumption (Abildtrup et al., 2013; Fiquepron et al., 2013; Warziniack et al., 2017). 

Land cover, water quality, and treatment costs are measured across several different source 

supply watersheds and the covariance between either land cover and treatment costs or water 

quality and treatment costs is used as an inferential indicator of how treatment costs may 

trend for a single source supply watershed due to temporal changes in land cover or water 

quality. It was not feasible to relate land cover change to change in alum usage because 

it was not possible, and perhaps conceptually inappropriate, to compile land cover change 

information over very short temporal periods (e.g., monthly). Congruent temporal trends in 

treatment chemical usage and urbanization are suggestive of an association between land 

cover change and treatment costs.

Because of the scenario-based nature of our main objective and the data necessary to answer 

that question, it was also not feasible to examine elasticities—estimation of the magnitude 

of change of a dependent variable (e.g., cost) arising from a unit change in an independent 

variable (e.g., turbidity; % forest). Reported elasticities tend to be small (<<1) but also 

depend on how cost is defined (Price & Heberling, 2018). Cost could be treatment chemical 

expenses only, all operation and maintenance (O&M) expenses, O&M plus capital expenses, 

or the price of potable water paid by a household (Abildtrup et al., 2013; Fiquepron et 

al., 2013). We anticipate that elasticities for this study would have been <<1 if based 

on all O&M costs simply due to the scale of MWTDS, which operates conventional and 

ultrafiltration facilities, and somewhat larger if applied to the cost of treatment chemicals 

only.

Implicit but perhaps less considered in the calculation of elasticities specifically and the 

relationship between land cover and drinking water treatment more broadly is the value of 

the land cover–cost relationship to planning. For example, Elias et al. (2014) modeled the 

effect of forest loss on organic carbon to understand potential difficulties that plausible land 

cover change could impose on meeting U.S. Environmental Protection Agency (USEPA) 

phase II disinfection byproduct rule regulations. The long-term land-cover change scenarios 

were undertaken to aid the planning process. Plausible visions of future (2050) land 

cover composition and its effect on influent TN, TP, and sediment provide MWTDS with 

information that can be used to determine whether treatment processes may need to be 

adjusted in the future.

Elevated nitrogen concentrations in surface waters, a concern in Minnesota (MPCA, 2013), 

elsewhere in the Midwest (Hanson et al., 2016), and throughout the U.S. (Davidson 

et al., 2012), is one planning-related issue that MWTDS may face in the future. The 

SDWA Maximum Contaminant Level (MCL) for nitrate-N (NO3-N) is 10 mg/L (USEPA). 
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Emerging literature on a host of potential adverse health effects suggests a lower MCL 

may promote disease avoidance (Temkin et al., 2019). The MHW is free of nitrate-N 

concentrations above the established MCL, but long-term trends (since ~1975) have 

increased 100% or more (MPCA, 2013). Our results for the A1B and A2 scenarios suggest 

that land cover composition changes would contribute further to increases in nitrate and 

other forms of N to the water influent at the MWTDS intake. Current methods for removal 

of nitrate from drinking water are expensive, variable in efficiency, can produce byproducts 

that require removal, and do not include the conventional and ultrafiltration processes used 

by MWTDS (Xu et al., 2017). The combination of a reduction in the MCL for nitrate-N 

and a further increase in N loads over time has the potential to present challenges to the 

production of potable water in the future for MWTDS. Removal of N from source water is a 

widespread challenge across U.S. (Dubrovsky & Hamilton, 2010 ; Nolan & Hitt, 2006).

Harmful algal blooms represent a potential future event facing MWTDS and other water 

treatment distribution systems (Heisler et al., 2008). In lotic systems, they tend to occur in 

nutrient-rich waters in late summer when temperatures are warm and river volumes are low 

(Paerl et al., 2018). Agriculture and urban land cover are commonly cited as the sources 

of nutrient over-enrichment (Heisler et al., 2008; Paerl et al., 2018). Harmful algae blooms 

occurred at the mouth of the Maumee River in August 2015 (He et al., 2016) and along the 

Ohio River in 2015 and 2019. Removal of cyanobacteria cells and cyanotoxins, an important 

distinction, requires adjustments to conventional treatment process (He et al., 2016). A 

plausible interpretation of results for the A scenarios is that late summer harmful algal 

blooms are possible in the MWTDS watershed in the future, given the simulated increase in 

nutrients.

Although not directly addressed in our modeling, projected population growth in the 

watershed (MN State Demographic Center, 2019b) associated with urbanization brings 

other threats to the MWTDS that were not explicitly included in this study. As the MHW 

population grows, contaminants of emerging concern (CECs), such as pharmaceuticals 

and personal-care products, are more likely to enter the MWTDS source water in greater 

amounts. Some CECs survive wastewater treatment and are released as effluent discharge 

into surface and groundwater (Glassmeyer et al., 2017). Growth of population centers and 

subsequent increases of CECs in MWTDS source water may be a future reality (Fairbairn et 

al., 2016; James et al., 2016).

4.4 ∣ Applicability of modeling approach to other locations

Soil Water and Assessment Tool is a widely used water quality model Douglas-Mankin et 

al. (2010). The modeling undertaken here could be applied to a wide variety of locations 

across the U.S. and elsewhere, although model selection is dependent on the drinking water 

source. There is an ever-increasing breadth of forecasted land cover data (e.g., Hurt et al., 

2020) that can be downscaled, as demonstrated here, to existing land cover data (e.g., https://

worldcover2020.esa.int/). The work by Elias et al. (2014) is the only other effort known to 

the authors that models the effects of forecasted land cover change on source water quality. 

Water quality degradation due to increased sediment, phosphorus, and nitrogen is a global 

threat to source water watersheds (McDonald et al., 2016). It is likely that the forecasted 
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effects of land cover change reported here would inform planning in other source water 

watersheds.

5 ∣ CONCLUSIONS

Empirical relationships between land cover and influent water quality and their effect on 

drinking water treatment costs have been prevalent in the recent academic literature. The 

value of these relationships to planning has received less attention. The results reported 

herein indicate that the land use changes that take place over the next 30 years will 

influence the future plans of the MWTDS. Somewhat conversely, the scenario projections 

also suggest that the MWTDS has a vested stake in the land use decisions made throughout 

the watershed over the next 30 years to preserve pre-treatment source water quality. Land 

use change scenario outcomes reflecting sustainability and equity are likely to present 

fewer management challenges than scenario outcomes reflecting prioritization of economic 

growth.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

The research described in this paper has been funded by the U.S. Environmental Protection Agency. We thank the 
anonymous reviewers and Matt Heberling (USEPA) for their valuable comments on earlier versions of the paper. 
The paper has been subjected to Agency review and has been approved for publication. The views expressed in this 
journal article are those of the authors and do not necessarily reflect the views or policies of the USEPA. Mention of 
trade names or commercial products does not constitute endorsement or recommendation for use.

DATA AVAILABILITY STATEMENT

Data will be posted on USEPA's Environmental Dataset Gateway (https://edg.epa.gov/

EPADataCommons/Public/ORD/EnviroAtlas/UMRB_SourceWater_WaterQuality.zip).

REFERENCES

Abbaspour K. 2007. “User Manual for SWAT-CUP, SWAT Calibration and Uncertainty Analysis 
Programs.” Swiss Fed. Inst. Aquat. Sci. Technol. Eawag Duebendorf Switz 93. https://
swat.tamu.edu/media/114860/usermanual_swatcup.pdf.

Abbaspour KC, Rouholahnejad E, Vaghefi S, Srinivasan R, Yang H, and Kløve B. 2015. “A 
Continental-Scale Hydrology and Water Quality Model for Europe: Calibration and Uncertainty 
of a High-Resolution Large-Scale SWAT Model.” Journal of Hydrology 524: 733–52. 10.1016/
j.jhydrol.2015.03.027.

Abildtrup J, Garcia S, and Stenger A. 2013. “The Effect of Forest Land Use on the Cost of 
Drinking Water Supply: A Spatial Econometric Analysis.” Ecological Economics 92: 126–36. 
10.1016/j.ecolecon.2013.01.004.

Arnold JG, Kiniry JR, Srinivasan R, Williams JR, Haney EB, and Neitsch SL. 2012. Soil and Water 
Assessment Tool Input/Output Documentation Version 2012. College Station, TX: Texas Water 
Resources Institute. TR-439.

Arnold JG, Srinivasan R, Muttiah RS, and Williams JR. 1998. “Large Area Hydrologic Modeling and 
Assessment Part I: Model Development.” Journal of the American Water Resources Association 34: 
73–89. 10.1111/j.1752-1688.1998.tb05961.x.

Woznicki et al. Page 15

J Am Water Resour Assoc. Author manuscript; available in PMC 2025 January 02.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://edg.epa.gov/EPADataCommons/Public/ORD/EnviroAtlas/UMRB_SourceWater_WaterQuality.zip
https://edg.epa.gov/EPADataCommons/Public/ORD/EnviroAtlas/UMRB_SourceWater_WaterQuality.zip
https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf
https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf


Bierman PM, Rosen CJ, Venterea RT, and Lamb JA. 2012. “Survey of Nitrogen Fertilizer Use on Corn 
in Minnesota.” Agricultural Systems 109: 43–52. 10.1016/j.agsy.2012.02.004.

Colby SL, and Ortman JM. 2017. “Projections of the Size and Composition of the US Population: 
2014 to 2060: Population Estimates and Projections.” https://www.census.gov/content/dam/Census/
library/publications/2015/demo/p25-1143.pdf.

Crawford-Brown D, and Crawford-Brown S. 2011. “The Precautionary Principle in Environmental 
Regulations for Drinking Water.” Environmental Science & Policy 14: 379–87. 10.1016/
j.envsci.2011.02.002.

Davidson EA, David MB, Galloway JN, Goodale CL, Haeuber R, Harrison JA, Howarth RW, et al. . 
2012. “Excess Nitrogen in the U.S. Environment: Trends, Risks, and Solutions.” Issues in Ecology 
15. https://www.esa.org/wp-content/uploads/2013/03/issuesinecologyl5.pdf.

Dearmont D, McCarl BA, and Tolman DA. 1998. “Costs of Water Treatment Due to Diminished Water 
Quality: A Case Study in Texas.” Water Resources Research 34: 849–53. 10.1029/98WR00213.

Douglas-Mankin KR, Srinivasan R, and Arnold JG. 2010. “Soil and Water Assessment Tool (SWAT) 
Model: Current Developments and Applications.” Transactions of the American Society of 
Agricultural and Biological Engineers 53: 1423–31.

Dubrovsky NM, and Hamilton PA. 2010. Nutrients in the Nation’s Streams and Groundwater: National 
Findings and Implications. Reston, VA: U.S. Geological Survey Fact Sheet 2010-3078.

Elias E, Laband D, Dougherty M, Lockaby G, Srivastava P, and Rodriguez H. 2014. “The Public Water 
Supply Protection Value of Forests: A Watershed-Scale Ecosystem Services Analysis Based upon 
Total Organic Carbon.” Open Journal of Ecology 4: 517–31. 10.4236/oje.2014.49042.

Fairbairn DJ, Karpuzcu ME, Arnold WA, Barber BL, Kaufenberg EF, Koskinen WC, Novak PJ, Rice 
PJ, and Swackhamer DL. 2016. “Sources and Transport of Contaminants of Emerging Concern: 
A Two-Year Study of Occurrence and Spatiotemporal Variation in a Mixed Land Use Watershed.” 
Science of the Total Environment 551–552: 605–13. 10.1016/j.scitotenv.2016.02.056.

Fiquepron J, Garcia S, and Stenger A. 2013. “Land Use Impact on Water Quality: Valuing Forest 
Services in Terms of the Water Supply Sector.” Journal of Environmental Management 126: 113–
21. 10.1016/j.jenvman.2013.04.002. [PubMed: 23681358] 

Glassmeyer ST, Furlong ET, Kolpin DW, Batt AL, Benson R, Boone JS, Conerly O, et al. 2017. 
“Nationwide Reconnaissance of Contaminants of Emerging Concern in Source and Treated 
Drinking Waters of the United States.” Science of the Total Environment 581–582: 909–22. 
10.1016/j.scitotenv.2016.12.004.

Hanson MJ, Keller A, Boland MA, and Lazarus WF. 2016. “The Debate about Farm 
Nitrates and Drinking Water.” Choices 31: 1–7. https://www.choicesmagazine.org/UserFiles/file/
cmsarticle_485.pdf.

Harmel RD, Cooper RJ, Slade RM, Haney RL, and Arnold JG. 2006. “Cumulative Uncertainty 
in Measured Streamflow and Water Quality Data for Small Watersheds.” Transactions of the 
American Society of Agricultural and Biological Engineers 49: 689–701. 10.13031/2013.20488.

Hayhoe K, Wuebbles DJ, Easterling DR, Fahey DW, Doherty S, Kossin JP, Sweet WV, Vose RS, 
and Wehner MF. 2018. “Our Changing Climate.” In Impacts, Risks, and Adaptation in the 
United States: Fourth National Climate Assessment (Volume II), edited by Wuebbles DJ, 72–144. 
Washington, DC: U.S. Global Change Research Program. 10.7930/NCA4.2018.CH2.

He X, Liu YL, Conklin A, Westrick J, Weavers LK, Dionysiou DD, Lenhart JJ, Mouser PJ, Szlag 
D, and Walker HW. 2016. “Toxic Cyanobacteria and Drinking Water: Impacts, Detection, and 
Treatment.” Harmful Algae, Global Expansion of Harmful Cyanobacterial Blooms: Diversity, 
Ecology, Causes, and Controls 54: 174–93. 10.1016/j.hal.2016.01.001.

Heberling MT, Nietch CT, Thurston HW, Elovitz M, Birkenhauer KH, Panguluri S, Ramakrishnan 
B, Heiser E, and Neyer T. 2015. “Comparing Drinking Water Treatment Costs to Source 
Water Protection Costs Using Time Series Analysis.” Water Resources Research 51: 8741–56. 
10.1002/2014WR016422.

Heisler J, Gilbert PM, Burkholder JM, Anderson DM, Cochlan W, Dennison WC, Dortch Q, et 
al. 2008. “Eutrophication and Harmful Algal Blooms: A Scientific Consensus.” Harmful Algae, 
HABs and Eutrophication 8: 3–13. 10.1016/j.hal.2008.08.006.

Woznicki et al. Page 16

J Am Water Resour Assoc. Author manuscript; available in PMC 2025 January 02.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://www.census.gov/content/dam/Census/library/publications/2015/demo/p25-1143.pdf
https://www.census.gov/content/dam/Census/library/publications/2015/demo/p25-1143.pdf
https://www.esa.org/wp-content/uploads/2013/03/issuesinecologyl5.pdf
https://www.choicesmagazine.org/UserFiles/file/cmsarticle_485.pdf
https://www.choicesmagazine.org/UserFiles/file/cmsarticle_485.pdf


Homer C, Dewitz J, Jin S, Xian G, Costello C, Danielson P, Gass L, et al. 2020. “Conterminous United 
States Land Cover Change Patterns 2001–2016 from the 2016 National Land Cover Database.” 
ISPRS Journal of Photogrammetry and Remote Sensing 162: 184–99. [PubMed: 35746921] 

Homer C, Dewitz J, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold N, Wickham J, and 
Megown K. 2015. “Completion of the 2011 National Land Cover Database for the Conterminous 
United States–Representing a Decade of Land Cover Change Information.” Photogrammetric 
Engineering and Remote Sensing 81: 345–54. 10.14358/PERS.81.5.346.

Hrudey SE, Hrudey EJ, and Pollard SJT. 2006. “Risk Management for Assuring Safe Drinking Water.” 
Environment International 32: 948–57. 10.1016/j.envint.2006.06.004. [PubMed: 16839605] 

Hurt GC, Chini L, Sahajpal R, Frolking S, Bodirsky BL, Calvin K, Doelman JC, et al. 2020. 
“Harmonization of Global Land Use Change and Management for the Period 850–2100 for 
CMIP6.” Geoscientific Model Development 13: 5425–64. 10.5194/gmd-13-5425-2020.

James CA, Miller-Schulze JP, Ultican S, Gipe AD, and Baker JE. 2016. “Evaluating Contaminants of 
Emerging Concern as Tracers of Wastewater from Septic Systems.” Water Research 101: 241–51. 
10.1016/j.watres.2016.05.046. [PubMed: 27262552] 

Jebb AT, Tay L, Wang W, and Huang Q. 2015. “Time Series Analysis for Psychological Research: 
Examining and Forecasting Change.” Frontiers in Psychology 6: 727. 10.3389/fpsyg.2015.00727. 
[PubMed: 26106341] 

Lark TJ, Larson B, Schelly I, Batish S, and Gibbs HK. 2019. “Accelerated Conversion of 
Native Prairie to Cropland in Minnesota.” Environmental Conservation 46: 155–62. 10.1017/
S0376892918000437.

Lark TJ, Meghan Salmon J, and Gibbs HK. 2015. “Cropland Expansion Outpaces Agricultural 
and Biofuel Policies in the United States.” Environmental Research Letters 10: 044003. 
10.1088/1748-9326/10/4/044003.

Martinuzzi S, Radeloff VC, Joppa LN, Hamilton CM, Helmers DP, Plantinga AJ, and Lewis DJ. 
2015. “Scenarios of Future Land Use Change around United States' Protected Areas.” Biological 
Conservation 184: 446–55. 10.1016/j.biocon.2015.02.015.

McDonald RI, Weber KF, Padowski J, Boucher T, and Shemie D. 2016. “Estimating Watershed 
Degradation over the Last Century and its Impact on Water-Treatment Costs for the world's Large 
Cities.” Proceedings of the National Academy of Sciences of the United States of America 113: 
9117–22. 10.1073/pnas.1605354113. [PubMed: 27457941] 

Mladenoff DJ, Sahajpal R, Johnson CP, and Rothstein DE. 2016. “Recent Land Use Change to 
Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands.” 
PLoS One 11. 10.1371/journal.pone.0148566.

MN State Demographic Center. 2019a. “Population Data.” MN State Demogr. Cent. Our Estim https://
mn.gov/admin/demography/data-by-topic/population-data/our-estimates/.

MN State Demographic Center. 2019b. “Population Projections.” MN State Demogr. Cent. Popul. Proj 
https://mn.gov/admin/demography/data-by-topic/population-data/our-projections/.

Moore WB, and McCarl BA. 1987. “Off-Site Costs of Soil Erosion: A Case Study in the Willamette 
Valley.” Western Journal of Agricultural Economics 12: 42–49. https://ideas.repec.org/a/ags/
wjagec/32477.html.

Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, and Veith TL. 2007. “Model 
Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations.” 
Transactions of the American Society of Agricultural and Biological Engineers 50: 885–900.

MPCA. 2013. Nitrogen in Minnesota Surface Waters: Conditions, Trends, Sources, and 
Reduction (No. Wq-s6-26a). St. Paul, MN: Minnesota Pollution Control Agency, https://
www.pca.state.mn.us/sites/default/files/wq-s6-26a.pdf.

Nakicenovic N, Alcamo J, Davis G, Vries BD, Fenhann J, Gaffin S, Gregory K, et al. 2000. 
Special Report on Emissions Scenarios (SRES), a Special Report of Working Group III of the 
Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.

Nash MS, Bradford DF, Wickham JD, and Wade TG. 2014. “Detecting Change in Landscape 
Greenness over Large Areas: An Example for New Mexico, USA.” Remote Sensing of 
Environment 150: 152–62. 10.1016/j.rse.2014.04.023.

Woznicki et al. Page 17

J Am Water Resour Assoc. Author manuscript; available in PMC 2025 January 02.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://mn.gov/admin/demography/data-by-topic/population-data/our-estimates/
https://mn.gov/admin/demography/data-by-topic/population-data/our-estimates/
https://mn.gov/admin/demography/data-by-topic/population-data/our-projections/
https://ideas.repec.org/a/ags/wjagec/32477.html
https://ideas.repec.org/a/ags/wjagec/32477.html
https://www.pca.state.mn.us/sites/default/files/wq-s6-26a.pdf
https://www.pca.state.mn.us/sites/default/files/wq-s6-26a.pdf


Neitsch SL, Arnold JG, Kiniry JR, and Williams JR. 2011. Soil and Water Assessment Tool 
Theoretical Documentation Version 2009 (No. TR-406). College Station, TX: Texas Water 
Resources Institute, https://swat.tamu.edu/media/99192/swat2009-theory.pdf.

Nolan BT, and Hitt KJ. 2006. “Vulnerability of Shallow Groundwater and Drinking-Water Wells 
to Nitrate in the United States.” Environmental Science & Technology 40: 7834–40. 10.1021/
es060911u. [PubMed: 17256535] 

Paerl HW, Otten TG, and Kudela R. 2018. “Mitigating the Expansion of Harmful Algal Blooms 
across the Freshwater-to-Marine Continuum.” Environmental Science & Technology 52: 5519–29. 
10.1021/acs.est.7b05950. [PubMed: 29656639] 

Postel SL, and Thompson BH. 2005. “Watershed Protection: Capturing the Benefits of nature's Water 
Supply Services.” Natural Resources Forum 29: 98–108. 10.1111/j.1477-8947.2005.00119.x.

Price JI, and Heberling MT. 2018. “The Effects of Source Water Quality on Drinking Water Treatment 
Costs: A Review and Synthesis of Empirical Literature.” Ecological Economics 151: 195–209. 
10.1016/j.ecolecon.2018.04.014. [PubMed: 30008516] 

Runkel RL, Crawford CG, and Cohn TA. 2004. “Load Estimator (LOADEST): A FORTRAN Program 
for Estimating Constituent Loads in Streams and Rivers (No. 2328–7055).” 10.3133/tm4A5; 
https://pubs.er.usgs.gov/publication/tm4A5.

SAS Institute Inc. 2018. SAS/STAT® 15.1 User's Guide. Cary, NC: SAS Institute Inc. https://
support.sas.com/documentation/onlinedoc/stat/indexchapter.html.

Sleeter BM, Sohl TL, Bouchard MA, Reker RR, Soulard CE, Acevedo W, Griffith GE, et al. 2012. 
“Scenarios of Land Use and Land Cover Change in the Conterminous United States: Utilizing the 
Special Report on Emission Scenarios at Ecoregional Scales.” Global Environmental Change 22: 
896–914. 10.1016/j.gloenvcha.2012.03.008.

Sohl TL, Sayler KL, Bouchard MA, Reker RR, Friesz AM, Bennett SL, Sleeter BM, et al. 
2014. “Spatially Explicit Modeling of 1992–2100 Land Cover and Forest Stand Age for the 
Conterminous United States.” Ecological Applications 24:1015–36. 10.1890/13-1245.1. [PubMed: 
25154094] 

Sohl TL, Sayler KL, Drummond MA, and Loveland TR. 2007. “The FORE-SCE Model: A Practical 
Approach for Projecting Land Cover Change Using Scenario-Based Modeling.” Journal of Land 
Use Science 2: 103–26. 10.1080/17474230701218202.

Sohl TL, Wimberly MC, Radeloff VC, Theobald DM, and Sleeter BM. 2016. “Divergent Projections 
of Future Land Use in the United States Arising from Different Models and Scenarios.” Ecological 
Modelling 337: 281–97. 10.1016/j.ecolmodel.2016.07.016.

Strengers B, Leemans R, Eickhout B, de Vries B, and Bouwman L. 2004. “The Land-use Projections 
and Resulting Emissions in the IPCC SRES Scenarios Scenarios as Simulated by the IMAGE 2.2 
Model.” GeoJournal 61: 381–393. 10.1007/s10708-004-5054-8.

Temkin A, Evans S, Manidis T, Campbell C, and Naidenko OV. 2019. “Exposure-Based Assessment 
and Economic Valuation of Adverse Birth Outcomes and Cancer Risk Due to Nitrate in United 
States Drinking Water.” Environmental Research 176: 108442. 10.1016/j.envres.2019.04.009. 
[PubMed: 31196558] 

Tiemann M. 2017. Safe Drinking Water Act (SDWA): A Summary of the Act 
and its Major Requirements. Washington, DC: Congressional Research Service. https://
www.everycrsreport.com/reports/RL31243.html.

USDA. 2010. Field Crops: Usual Planting and Harvesting Dates (No. Agricultural Handbook Number 
628). United States Department of Agriculture, National Agricultural Statistics Service. https://
www.nass.usda.gov/Publications/Todays_Reports/reports/fcdate10.pdf.

van Vuuren DP, Lucas PL, and Hilderink H. 2007. “Downscaling Drivers of Global Environmental 
Change: Enabling Use of Global SRES Scenarios at the National and Grid Levels.” Global 
Environmental Change 17: 114–30. 10.1016/j.gloenvcha.2006.04.004.

van Vuuren DP, Smith SJ, and Riahi K. 2010. “Downscaling Socioeconomic and Emissions Scenarios 
for Global Environmental Change Research: A Review.” WIREs Climate Change 1: 393–404. 
10.1002/wcc.50.

Ward M, Jones R, Brender J, de Kok T, Weyer P, Nolan B, Villanueva C, and van Breda S. 
2018. “Drinking Water Nitrate and Human Health: An Updated Review.” International Journal 

Woznicki et al. Page 18

J Am Water Resour Assoc. Author manuscript; available in PMC 2025 January 02.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://swat.tamu.edu/media/99192/swat2009-theory.pdf
https://pubs.er.usgs.gov/publication/tm4A5
https://support.sas.com/documentation/onlinedoc/stat/indexchapter.html
https://support.sas.com/documentation/onlinedoc/stat/indexchapter.html
https://www.everycrsreport.com/reports/RL31243.html
https://www.everycrsreport.com/reports/RL31243.html
https://www.nass.usda.gov/Publications/Todays_Reports/reports/fcdate10.pdf
https://www.nass.usda.gov/Publications/Todays_Reports/reports/fcdate10.pdf


of Environmental Research and Public Health 15:1557. 10.3390/ijerph15071557. [PubMed: 
30041450] 

Warziniack T, Sham CH, Morgan R, and Feferholtz Y. 2017. “Effect of Forest Cover on Water 
Treatment Costs.” Water Economics and Policy 3: 1750006. 10.1142/S2382624X17500060.

Weidner E, and Todd A. 2011. From the Forest to the Faucet: Drinking Water and Forests 
in the US. Washington, DC: Methods Papaper. USDA Forest Service. https://www.fs.fed.us/
ecosystemservices/pdf/forests2faucets/F2F_Methods_Final.pdf.

Wickham JD,Wade TG, and Riitters KH. 2011. “An Environmental Assessment of United States 
Drinking Water Watersheds.” Landscape Ecology 26: 605–16. 10.1007/s10980-011-9591-5.

Xu J, Pu Y, Qi WK, Yang XJ, Tang Y, Wan P, and Fisher A. 2017. “Chemical Removal 
of Nitrate from Water by Aluminum-Iron Alloys.” Chemosphere 166: 197–202. 10.1016/
j.chemosphere.2016.09.102. [PubMed: 27697708] 

Woznicki et al. Page 19

J Am Water Resour Assoc. Author manuscript; available in PMC 2025 January 02.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://www.fs.fed.us/ecosystemservices/pdf/forests2faucets/F2F_Methods_Final.pdf
https://www.fs.fed.us/ecosystemservices/pdf/forests2faucets/F2F_Methods_Final.pdf


Research Impact Statement

Future urbanization and cropland expansion in the Mississippi headwaters watershed may 

present planning challenges for potable water production in Minneapolis due to projected 

N and P increases.

Woznicki et al. Page 20

J Am Water Resour Assoc. Author manuscript; available in PMC 2025 January 02.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



FIGURE 1. 
Mississippi Headwaters Watershed (MHW) study watershed (hydrologic unit code 0701), 

National Land Cover Database (NLCD) 2011 (Homer et al., 2015), United States Geological 

Survey (USGS) gaging stations used in Soil Water and Assessment Tool (SWAT) calibration, 

and the Minneapolis Water Treatment Distribution Service (MWTDS) drinking water intake 

(approximately co-located with USGS gage 05288500).
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FIGURE 2. 
(a) Inter-class land cover changes from 2011 to 2050 by scenario, where colors represent 

the new land cover class in 2050. (b) Net land cover changes by scenario. CROP, cropland; 

DEV, developed; FRST, forest; PAST, pasture; WETL, wetland. Labels above bars in panel b 

represent percentage of total watershed area that changed.
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FIGURE 3. 
Average seasonal loading differences between NLCD 2011 (modeled) and 2050 scenarios 

(plus NLCD 2001) at the MWTDS intake for sediment (a), total nitrogen (TN) (b), and 

total phosphorus (TP) (c). AMJ, April–May–June; JAS, July–August–September; JFM, 

January–February–March; OND, October–November–December. Boxplots represent model 

uncertainty constructed from n = 74 behavioral simulations that represent the 95PPU 

parameter uncertainty from SWAT. Boxplots represent median, first and third quartiles 

(lower and upper hinge, respectively), and values within 1.5 × interquartile range are 

represented by whiskers. Dots represent outlying values beyond the 1.5 × interquartile range.
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FIGURE 4. 
Average seasonal loading differences between NLCD 2011 (modeled) and 2050 scenarios 

(plus NLCD 2001) near the St.Cloud drinking water intake, USGS 05270700, for sediment 

(a), TN (b), and TP (c). AMJ, April–May–June; JAS, July–August–September; JFM, 

January–February–March; OND, October–November–December. Boxplots represent model 

uncertainty, constructed from n = 74 behavioral simulations that represent the 95PPU 

parameter uncertainty from SWAT. Boxplots represent median, first and third quartiles 

(lower and upper hinge, respectively), and values within 1.5 × interquartile range are 

represented by whiskers. Dots represent outlying values beyond the 1.5 × interquartile range.
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FIGURE 5. 
Monthly trends for alum, carbon, and lime (observed (•); modeled (blue line); trend (red 

line). Slope estimate based on Julian dates (1 = 2008-01-01). Trend slope was significant (p 
< 0.05) for all. Monthly data for alum were incomplete before 2011.
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TABLE 1

Land cover scenarios implemented in SWAT, and descriptions of their change characteristics in the MHW.

Year Land cover Scenario Description

2001 NLCD Baseline Land cover circa 2001

2006 NLCD Baseline Land cover circa 2006

2011 NLCD Baseline Land cover circa 2011; used to compare with 2050 scenarios

2050 FORE-SCE A1B Forest and wetland losses; developed gain equal to combined cropland and pasture gains. No forest 
regrowth

2050 FORE-SCE AlBf Forest and wetland losses; developed gain equal to combined cropland and pasture gains. Forest regrowth

2050 FORE-SCE A2 Forest and wetland losses; cropland and pasture gain exceed developed gain. No forest regrowth

2050 FORE-SCE A2f Forest and wetland losses; cropland and pasture gain exceed developed gain. Forest regrowth

2050 FORE-SCE B1 Relatively minor forest and cropland losses; developed gain. No forest regrowth

2050 FORE-SCE Bit Relatively minor forest and cropland losses; developed gain. Forest regrowth

2050 FORE-SCE B2 Relatively minor forest loss; minor developed and pasture gains. No forest regrowth

2050 FORE-SCE B2f Cropland and pasture losses. Forest loss and regrowth balanced-little change in total amount of forest

Abbreviation: FORE-SCE, FOREcasting Scenarios of Land-use Change.
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TABLE 2

Autoregressive model (A) results and (B) parameters. Significant (p < 0.05) parameters are printed in bold 

typeface. The column tR2 (total R-square) is the goodness-of-fit for the full model (B), that is, how well the 

blue line “fits” the black dots in Figure 5.

Treatment Obs Intercept Time Management tR2

(A)

Aluma 84 −955.5 0.0602 0.73

Limea 120 270.3 0.0548 0.48

Carbona 120 −93.4 0.0088 0.51

CO2 120 288.1 −0.0031 72.04 0.50

Watera 120 2302.0 −0.0300 0.79

Alum Lime Carbon CO2

(B)

Intercept = −955.0 Intercept = 270.3 Intercept = −93.4 Intercept = 288.1

Time = 0.0602 Time = 0.0548 Time = 0.0088 Management = 72.0

Lag1 = −0.6204 Lag1 = −0.4645 Lag1 = −0.5558 Lag1 = −0.0418

Lag2 =0.2068 Lag12 = −0.2925 Lag2 = 0.2463

Lag6 = 0.2578 Lag14 = 0.2067 Lag6 = 0.1998

Lag10 = 0.2704

Lag11 = −0.4106

a
Results for single variable models (y = time).
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