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Abstract: Many tobacco stalks, dust, and fines are discharged in the tobacco industry, rich in inorganic
minerals ions and nicotine salts. The high salinity and nicotine salts are challenging to be addressed
by traditional treatment and are a severe threat that ought to be overcome. Thus, proper techniques
can regenerate the tobacco stalks into reconstituted tobacco flakes used as cigarette filler. The electro-
dialysis process has been a viable approach to removing the inorganic ingredients in wastewater. We
studied concentration, pH, and co-related influences with the nicotine and sugar/nicotine contents
on the desalination performance. The results show that the inorganic ions such as Cl−, K+, Ca2+,
and Mg2+ ions were successfully removed. When the feed concentration ranges from 3 to 15%, the
removal ratio of the K+ ions is higher than Ca2+ and Mg2+ ions. As we reported previously, the K+

and Ca2+ ions are unfavorable for the total particulate matter emission but beneficial to decreasing
the HCN delivery in mainstream cigarette smoke. Selective ED is a robust technology to reduce the
harmful component delivery in cigarette smoke.

Keywords: reconstituted tobacco extract; nicotine; electrodialysis; ion exchange membranes

1. Introduction

Many tobacco stems, dust, and fines are produced as waste in the tobacco industry,
nearly one-third of the raw materials [1]. The papermaking process reconstitutes tobacco
product that contains tobacco stems and fines as primary raw materials and is produced
using papermaking technology. The principal procedure is as follows: (i) place tobacco raw
material into the water to isolate soluble and insoluble; (ii) the insoluble will depart via
the refining process and paper machine for fiber sheet while the soluble extracts will be
sized back to the base sheet after being concentrated. The sized sheet will be dried and
ultimately assembled into PM recon. Analogized to natural tobacco, tobacco produced
from reconstituted tobacco has several advantages in structural stability, combustion per-
formance, and tar delivery [2]. The low chemical concentration and rapid combustion of
PRT when compared to natural tobacco can reduce the inhaled nicotine and lower the puff
number of cigarettes [3]. It is reported that the PRT comprises 20–25% of the tobacco raw
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materials for several high-grade cigarettes such as Marlboro, Kent, Winston, and Camel [4].
In contrast to natural tobacco leaf, papermaking tobacco has inorganic constituents such as
K+, Cl−, SO4

2−, and NO3
−. Multiple investigations have revealed that the ionic elements

significantly impact the sensory taste of the cigars and the thermal behavior in cigarette
smoke [5]. Generally, Cl− and NO3

− ions are considered undesirable components that
affect cigarettes’ moisture absorption and combustion value and harmful carbonyl com-
pounds delivery in mainstream smoke [6,7]. In contrast, divalent or multivalent alkaline
metal ions are usually considered desirable components that have catalytic roles in the
thermal degradation and char formation of biomass [8]. Therefore, it is necessary to control
the ionic components of the tobacco extract manually [9,10].

For the removal of undesired inorganic matter, several separation technologies such as
multistage continuous extraction [11], solvent extraction, condensation, ion exchange [12],
and absorption were applied [13]. Generally, these techniques revealed unsatisfying per-
formances on selective removal of inorganic ions and have drawbacks such as extensive
consumption of chemicals, high operating cost, and being the specific cause of secondary
pollution. Contrary to the separation technologies, electrodialysis (ED) does not suffer
from major flaws such as costly chemicals, production of large amounts of waste, and short
lifetimes of absorbents. Therefore, ED has been deemed an environmentally acceptable tech-
nology, which has found many applications in water desalination, cleaning production or
separation, resources recycling, and power generation [14–18]. Bazinet and co-authors [19]
used the ED process for the electromigration of polyphenols in tobacco extract, with an
overall demineralization of 77%. In another study [20], the authors further enhanced the
separation performances of polyphenols from tobacco by extending the experimental time.
Similarly, our previous studies have proven the feasibility of ED for withdrawing inorganic
ions and lowering the harmful ingredient in cigarette smoke [21–23].

In these studies, ED was used to dispose of Cl− and NO3
− ions and selectively re-

vise the monovalent and divalent inorganic ion composition. During the combustion of
cigarettes, the primary toxic volatile compounds such as CO, NH3, HCN, phenol, and cro-
tonaldehyde are discharged from the pyrolysis of carbohydrates. Our earlier studies [22,23]
have demonstrated that ED helps reduce the harmful components of cigarette smoke.
The reconstituted tobacco extract with ED treatment showed improved performance on
the taste and delivery of toxic mainstream tobacco smoke compared to that without the
ED treatment. However, in the industrial application of ED on tobacco sheet extract, the
stability of membranes is the foremost important thing to be considered [24–26]. The com-
positions of tobacco extract are very complicated, including thousands of kinds of matter
such as minerals, sugars, organic acids, amino acids, carbohydrates, polyphenols, esters,
alcohols, pigments, etc. [27–29]. However, infrequent analyses of the reconstituted tobacco
extract characteristics, such as the concentration, pH, current density, voltage variation,
sugar/nicotine, and sugar/nicotine for treating tobacco sheet extract from a practical pro-
duction line, have never been analyzed in detail. Herein, we developed readily adaptable
methods to monitor the desalination of reconstituted tobacco extract and elucidated the evo-
lution of the ED process based on ion-selective membranes. Therefore, the main objectives
of this research were to investigate the stability of the ED process for desalting reconstituted
tobacco extract and shed light on the application of ED for industrial application.

2. Experimental Section
2.1. Chemical and Materials

Reconstituted tobacco extract of different concentrations used in this investigation
was supplied by China Tobacco Anhui Industrial CO., Ltd., Hefei, Anhui Province, China.
The tobacco extract was centrifuged at 3 k rpm for five min to clear the undissolved solids.
Two ion exchange membranes, i.e., CJ-MA-2 and CJ-MC-2 (supplied by Hefei ChemJoy
Polymers Co., Ltd., Hefei, Anhui, China), and their detailed properties are given in Table 1.
All the chemicals used in this work were of analytical grade.
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Table 1. The characteristics of the membranes used in the experiments.

Membranes Thickness (mm) IECs (mmol g−1) WU (%) RM (Ω·cm2) Transfer Number Break Stress (MPa)

CJ-MC-2 0.200 1.50 35 1.5 0.98 >3.5

CJ-MA-2 0.145 1.25 32 1.2 0.99 >3.5

2.2. Electrodialysis Experiment

An elaborate schematic diagram of the ED setup is shown in Figure 1. The ED setup
comprised: (1) a cathode and an anode clinched on organic glass plates on both sides; the
electrodes were assembled from iridium-tantalum with a thickness of 1.5 mm. A DC power
supply (WYL1703, Hangzhou Siling Electrical Instrument Ltd.) was attached to the two
electrodes. The voltage drop across the stacks was directly recorded from the power supply
screen. (2) We set eleven pieces of cation exchange membranes (CEMs) and ten pieces of
anion exchange membranes (AEMs) with an effective area of each membrane (189 cm2)
alternatively. (3) Sealing spacers of PE with a thickness of 0.75 mm were fixed to separate the
membranes; (4) and beakers to maintain the feed volume of 500 mL. Each beaker was linked
with a submersible pump (AP1000, Zhongshan Zhenghua Electronics Co., Ltd., China,
with a flow rate of 22 L h−1). Our experimentations assigned an electrode, concentrate,
and diluted chamber, established in this ED stack. A 400 mL Na2SO4 solution (0.3 mol/L)
was supplied to the electrode chambers as an electrolyte solution. A total of 400 mL
of reconstituted tobacco extract and tap water was fed into the diluted and concentrate
chambers, respectively. Each chamber was bathed for 30 min before the experiment to
eliminate visible bubbles.
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Figure 1. Schematic diagram for the experimental stack and the main principle of the ED process.

2.3. Analytical Methods

We measured the conductivity of the diluted chamber by a conductivity meter (DDS 307,
Shanghai INESA Scientific Instrument Co., Ltd., Shanghai, China). The concentration of
inorganic ions was determined by ion chromatography (ICS3000 multifunctional ion chro-
matography and ED electrochemical detector, DIONEX Company, Sunnyvale, CA, USA).
HPLC was used to measure the concentration of sugar and nicotine (Acquity H-Class UPLC,
Waters Corp., Milford, MA, USA; 4000Q Trap, AB Sciex, Redwood City, CA, USA).

2.4. Physiochemical Properties of IEMs

The water uptake (WU) was measured by saturating the membranes with water for
one day and denoting them as W2. The wet membranes were dried at 60 ◦C for 6 h,
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and reweighed as W1. The WU of the membranes was calculated using the following
Equation (1):

WU =
(W2 − W1)

W1
× 100 (1)

W1 (g) and W2 (g) represent weight of the dried and wet membrane, respectively.
The membranes’ anion exchange capacity (AEC) and cation exchange capacity (CEC)

were measured by immersing the membranes in a Na2SO4 (0.5 mol L−1) solution for 24 h
to convert the membrane into the SO4

2− form. Finally, the amount of Cl− ions was titrated
with a AgNO3 (0.1 mol L−1) aqueous solution using K2CrO4 as an indicator. The AEC
values were determined by the amount of AgNO3 consumed in the titration and the mass
of the dry membrane (Equation (2)). Similarly, the CEC of CEM (H+ form) was measured by
titrating the amount of H+ ions released with the standardized NaOH solution (0.1 mol L−1)
using phenolphthalein as an acid-base indicator (Equation (3)).

AEC =
CAgNO3

VAgNO3

WDry
(2)

CEC =
CNaOHVNaOH

WDry
(3)

The transport number of the counter ion was measured by using potential difference
across the membrane. Next, 0.05 mol L−1 NaCl and 0.01 mol L−1 NaCl solutions were used
in a two-compartment cell. The potential difference between the two reference electrodes
was measured. The transport number was calculated by Equation (4) [30];

Em =
RT
F
(2t+ − 1) ln

C1

C2
(4)

where Em is the electrode potential difference; R the universal gas constant; F the Faraday’s
constant; T is the absolute temperature; t+ is the transport number; C1 and C2 are the molar
concentrations in both dilute and concentrated cell chambers, respectively.

The membrane area resistance was measured using a custom-made, four-compartment,
module-lab-made equipment. The membranes under examination were placed in the
center compartment, and two identical commercial CEMs were used on either side of
the electrolyte. Here, 0.3 mol L−1 Na2SO4 solution was used to rinse the electrodes and
0.5 mol L−1 NaCl solution was supplied to the intermediate chamber [31]. The voltage
drop across an IEM was measured with a multimeter attached with a pair of Ag-AgCl
electrodes placed near the surface of the membrane. The membrane area resistance (RM)
was given by [32];

Rm =
V − V0

I
A (5)

In Equation (5), Rm is the membrane’s area resistance (Ω·cm2); V and V0 are potentials
(volts) with and without the membrane; I is the current and A is the effective area of
the membrane.

3. Results and Discussion

In this ED experiment, to avoid concentration polarization, the membrane’s voltage
was kept below 10 V. The composition of reconstituted tobacco liquid is complicated and
challenging, so its concentration has a remarkable impact on the ED process; the higher
the concentration, the higher the viscosity of the reconstituted tobacco extract; it has poor
fluidity and influences the pretreatment process and desalination [22]. So, we examined
the consequence of different feed concentrations on the ED process. Figure 2 illustrates
the current and voltage changes concerning feed concentration for 3, 5, 7, 10, and 15 wt%
tobacco extract in the ED stack. As shown in Figure 2, at different concentrations of tobacco
liquid, the voltage of the membrane stake slowly increases at the beginning phase. When it
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arrives at the maximum value, it begins to maintain a constant voltage. The current of the
membrane stake declines gradually over time. From the variation of voltage and current
with time, it can be noticed that the resistance of the membrane stakes increases gradually
with the ED process. This shows that the ion concentration in the diluted chamber is
decreasing. The pH of different concentrations of tobacco extract varied during the ED
process, whereas the pH value decreased with the increased concentration of tobacco refined
liquor. It may be because with the increase of concentration of the tobacco extract solution,
the concentration of inorganic salt ions in the solution also increases, and the concentration
polarization reaction under the same membrane pair voltage decreases gradually. Therefore,
the concentration polarization phenomenon can be reduced by increasing the concentration
of refined liquor of tobacco. At the same time, the concentration of tobacco refined liquor
greatly influences ion migration. When the concentration increases, the viscosity of feed
liquid increases, and the ion migration rate slows down. Therefore, the desalination
efficiency of tobacco liquid with low concentration is higher. The conductivities of tobacco
extract with lower concentrations are slightly lower and require less time to desalinate than
the higher concentration. It is rational since the desalination rate is proportionate to the
initial concentration. The experiments were halted when the conductivities in the feed
solution were not decreased anymore.
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3.1. The Nicotine Content in Different Tobacco Liquids

During the ED process, changes in nicotine content and total sugar/nicotine in tobacco
liquid were also examined. As shown in Figure 3, the nicotine loss rate increased with time.
The ratio of total sugar to nicotine ranged from 10 to 65. The sugar/nicotine ratio trend is
consistent with total sugar. The loss of nicotine decreases when increasing the concentration.
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According to these characteristics, ED can control tobacco liquid’s sugar/nicotine ratio and
improve the quality.
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3.2. Ions Concentration of Tobacco Extract

According to ion chromatography, the change of ion concentration in the desalination
and concentrated chambers of tobacco liquor with different concentrations is shown in
Figure 4. It has been noted that the removal rates of K+ and Cl− of the feed reached the
maximum and increased in the concentration compartment with the changes in concen-
tration. Similarly, the removal rates of divalent cations (Mg2+ and Ca2+) showed lower
reduction due to the membrane selectivity for these divalent ions. Usually, the removal
ratio of monovalent ions is higher than that of the divalent ions due to having smaller
hydration radii and lower charge density. We can conclude from the ED results that the
inorganic salts in tobacco liquor can be removed and collected in the concentrated chamber
via the ED process.

3.3. ED Analysis at Different pH Values

According to the results of the ED of different concentrations of feed liquid, the pH
has a great influence on the removal of inorganic salts and nicotine. In Figure 5, at different
pH, the voltage of the membrane stakes gradually increases to the maximum value, and
the constant voltage begins to be active. The current of the membrane stakes rises first with
time and gradually decreases after reaching the ultimate value, which is due to the start
of NaOH or HCl in adjusting the pH value so that the initial conductivity rises. At the
same time, the change range of pH was minute during the whole ED process, and the ion
removal was reduced compared with the tobacco liquid without adjusting the pH value.
Nicotine can be changed into an ionic state under the influence of pH value. By adjusting
the pH value, nicotine can be removed from the concentrated chamber so that inorganic
salts and nicotine can be simultaneously augmented in the concentrated chamber.

3.4. Total Sugar/Nicotine and Reducing Sugar/Nicotine at Different pH Values

At the same time, we also investigated the changes in nicotine content and total
sugar/nicotine in tobacco liquid under different pH values, as shown in Figure 6. It was
found that nicotine loss rate was directly linked to pH value. The ratio of total sugar to
nicotine decreased with increasing the pH value. It indicates that pH greatly impacts the
molecular state of nicotine during the ED analysis. We can prevent the loss of nicotine by
adjusting the pH value. The ratio of sugar to nicotine would give a balance of opposing
effects and thus serve as a good smoking quality indicator. A high percentage may indicate
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mildness and smoothness, while a meagre ratio may indicate harsh, irritating smoke. If
the ratio is too high, it may mean that the tobacco is too mild to be pleasing to the smoker.
High sugar content agreeing with nicotine level is the most desirable quality for smoking.
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3.5. The Influence of pH on the Ion’s Removal

In energy-efficient ED desalination procedures, salt ions are transported through
IEMs from high salinity to low salinity. Besides salt ions, organic micropollutants can also
be transported from wastewater containing high organics to low organics. The passage
mechanisms of organic micropollutants via IEMs are complicated phenomena, and pH
influences them enormously. Since pH variations in the ED are common, it is crucial to
investigate their impact on these mechanisms. From Figure 7, it can be observed that the
concentration was higher for K+ and Cl−, which revealed high transport for monovalent
ions, while for divalent cations such as Ca2+ and Mg2+, the effect was minor. Similarly, the
ED can also cause pH changes during desalination, resulting in salt precipitation of Mg2+

and Ca2+ and consequently affecting the process’s desalination performance and long-term
stability. The solution pH affects the ED separation of ions in multiple ways: (a) solution
pH will decide the ionic species’ charge that influences the rate and permselectivity of ion
migration across the IEM; (b) a higher pH may result in the precipitation of divalent ions,
lowering their availability; (c) at very low pH, the excess H+ can carry the charges across
the membrane, impeding the transport of other ions; (d) acidic pH is advantageous for the
leaching of inorganic ions in pretreatment techniques.
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