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A B S T R A C T   

Background: Traditional Chinese Medicine (TCM) offers individualized treatment for Polycystic 
Ovary Syndrome (PCOS) through pattern differentiation, but the subjectivity of TCM diagnoses 
can lead to inconsistent outcomes. Integrating machine learning (ML) offers an objective basis to 
support TCM diagnoses. This study aims to evaluate various feature selection techniques and 
multi-label ML algorithms to develop an effective predictive model for classifying TCM patterns in 
PCOS patients, thereby enhancing diagnostic standardization and treatment personalization. 
Methods: The study utilized a dataset comprising 432 patients with PCOS, exhibiting one or more 
of five TCM patterns. Feature selection began with Variance Thresholding (VT), followed by a 
comparison of five advanced techniques: Statistical Analysis Test, Recursive Feature Elimination 
with Cross-Validation (RFECV), Least Absolute Shrinkage and Selection Operator Regression, 
BorutaShap, and ReliefF. To ascertain the most effective model for predicting PCOS TCM patterns, 
four ML algorithms—Support Vector Machine, Logistic Regression, Extreme Gradient Boosting 
(XGBoost), and Artificial Neural Networks—were evaluated against the identified feature set. 
Results: VT reduced the feature count from 224 to 174. RFECV emerged as the most effective 
feature selection method, identifying 67 key features. XGBoost emerged as the top-performing 
model, demonstrating superior testing accuracy (0.7870), F1 score (0.9519), and Hamming loss 
(0.0481) with RFECV-optimized features. 
Conclusions: The RFECV-XGBoost model proved effective for classifying TCM patterns in PCOS. It 
emphasizes the necessity of precise feature selection and the significant capabilities of ML in 
advancing TCM pattern diagnostics, marking a significant step toward enhancing precise and 
personalized healthcare in biomedical studies.   
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1. Introduction 

Polycystic Ovary Syndrome (PCOS) is a prevalent endocrine disorder affecting adolescents and women of reproductive age, with a 
global prevalence estimated to be between 8 and 13 % [1]. The diagnosis and treatment of PCOS have long been challenging and 
remain central focal points in clinical research due to its varied hormonal imbalances and metabolic issues, which manifest in diverse 
and often overlapping symptoms with other conditions [2]. 

The practice of Traditional Chinese Medicine (TCM) offers unique advantages through its holistic approach. Central to TCM 
diagnosis is the concept of pattern differentiation (also known as syndrome differentiation), a principle that recognizes the unique 
constellation of symptoms and underlying imbalances in each individual [3,4]. This enables TCM practitioners to tailor treatment 
plans to the specific needs of each patient, thereby addressing not just the symptoms but the root cause of the condition [5]. TCM 
utilizes personalized treatments like herbal formulas, acupuncture, and dietary and lifestyle adjustments to improve health outcomes 
and maintain long-term well-being [6]. Thus, TCM offers a valuable and complementary perspective to contemporary PCOS healthcare 
by prioritizing individualized and proactive treatment strategies [7]. 

However, the inherent subjectivity of traditional pattern differentiation presents considerable challenges in consistently diagnosing 
and treating patients. Despite the keen observational skills of TCM practitioners, diagnostic conclusions can differ, leading to potential 
variations in treatment effectiveness and clinical outcomes [8]. Addressing this subjectivity is essential to ensure a higher standard of 
care for PCOS patients within the field of TCM. 

Machine learning (ML) offers a powerful solution to this issue, providing a quantitative and empirical approach to TCM pattern 
identification [9]. Through ML algorithms, the complex task of TCM pattern differentiation can become more standardized and 
replicable, thereby enhancing consistency in patient care [10–12]. 

Recent studies have applied ML to identify PCOS using hybrid algorithms and commonly known diseases like obesity, diabetes, 
high blood pressure, and heart disease [13–15], Fractional Factorial Design has been employed to identify crucial parameters for PCOS 
diagnosis [16]. Although ML studies using TCM features are still limited, they show promising results. For instance, Wang et al. used 
the Least Absolute Shrinkage and Selection Operator (LASSO) regression for feature selection and a Support Vector Machine (SVM) 
model for PCOS identification based on tongue and pulse parameters [17]. Our team’s previous studies have shown that the utility of 
Voting and Long Short-Term Memory models was competitive in predicting PCOS based on specific pulse parameters [18], while SVM 

Fig. 1. Workflow of the study for predicting TCM patterns in PCOS patients.  
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aided with Recursive Feature Elimination with Cross-Validation (RFECV) obtained high performance based on pulse parameters and 
TCM clinical indices [19]. These studies underscore the contribution of ML to the field of TCM for PCOS, however, there is still a lack of 
comprehensive investigations into the optimal ML models for predicting TCM patterns in PCOS patients. Our research seeks to bridge 
this gap by focusing on the identification of five specific TCM patterns that PCOS may manifest as, which could be present individually 
or in combination, to enhance the personalization of PCOS treatment. These patterns will be discussed in a subsequent section. 

It is also important to note that the objectification of TCM diagnostic methods provides a broad range of complex and diverse data 
[20]. The data encompasses a wide spectrum of patient information, from physical symptoms, and tongue and pulse readings to 
environmental factors and emotional states, reflecting the interconnectedness of various health determinants in TCM philosophy [12]. 
Thus, effective feature selection is crucial in simplifying this complex data and improving ML models’ predictive capabilities [21]. 
There are studies demonstrating how feature selection methods can effectively capture the diagnostic essence of the TCM patterns in 
various diseases [22–24], but comparisons between different feature selection methods specific to TCM pattern classification are 
lacking. 

This study evaluated various feature selection techniques and multi-label ML models to accurately classify TCM patterns specific to 
PCOS patients. The feature selection process commenced with an initial reduction through variance thresholding. Subsequently, five 
advanced feature selection techniques were applied in parallel to pinpoint the most predictive feature set, and then we assessed the 
performance of four ML algorithms. The overall workflow of the proposed study is illustrated in Fig. 1. 

Our objective is to identify the most effective feature selection and multi-label ML model combinations for TCM pattern prediction 
in PCOS patients. By determining optimal methodologies for predictive accuracy, the study endeavors to support the advancement of 
personalized medicine for PCOS patients and to improve the standardization of TCM diagnostics, thereby integrating traditional 
medical knowledge with modern computational strategies. 

2. Methods 

2.1. Subjects 

The study involved a cohort of 432 female subjects, all diagnosed with PCOS. These participants were recruited from the Shanghai 
Municipal Hospital of Traditional Chinese Medicine and Shuguang Hospital affiliated with the Shanghai University of Traditional 
Chinese Medicine (SHUTCM). The recruitment phase spanned from August 2018 to January 2024. All experimental protocols were 
reviewed and approved by the institutional review board of SHUTCM, under the approval number 2024-1-16-05. All research methods 
were conducted in strict adherence to relevant guidelines and regulations. Informed consent was obtained from all participants. 

2.2. Inclusion, exclusion, and diagnostic criteria 

The inclusion criteria for the study stipulate that participants must be female, aged between 18 and 40 years, diagnosed with PCOS, 
and have provided signed informed consent forms. The exclusion criteria include (1) failure to meet the above inclusion criteria; (2) 
use of hormonal drugs (including contraceptives, ovulation stimulators, and glucocorticoid drugs) within the last month; (3) inability 
to cooperate fully with the research plan due to pregnancy, history of infectious diseases, mental illness, or other conditions; (4) 
patients with incomplete TCM clinical data or unstable pulse wave diagrams, which could compromise the reliability of the data. 

Diagnosis of PCOS is based on the Rotterdam European Society of Human Reproduction and Embryology (ESHRE) and the 
American Society for Reproductive Medicine (ASRM) consensus (revised 2003) [25], which requires the presence of at least two of the 
following three criteria for a PCOS diagnosis: (1) Oligo- and/or anovulation; (2) Clinical and/or biochemical signs of hyper
androgenism; (3) Ovarian polycystic changes, evidenced by ultrasound revealing ≥12 follicles with a diameter of 2–9 mm in one 
section, and/or ovarian volume ≥10 mL. 

The TCM patterns diagnostic criteria for PCOS were established by referencing authoritative texts in the field, including “Gyne
cology of Traditional Chinese Medicine” [26], “Diagnostic of Traditional Chinese Medicine” [27], and “Guidelines for Diagnosis and 
Treatment of Common Diseases in Gynecology of Traditional Chinese Medicine” [28]. According to these guidelines, PCOS can 
manifest in one or more of the following five TCM patterns: Kidney Yin Deficiency, Kidney Yang Deficiency, Phlegm-Dampness, Blood 
Stasis, and Qi Stagnation. The specific diagnostic criteria for each pattern are based on TCM symptoms and are comprehensively 
detailed in Appendix A. The classification into five patterns facilitates targeted treatment strategies aimed at correcting the underlying 
imbalances. 

2.3. Data collection 

Data collection involved gathering clinical data and pulse wave parameters to provide a comprehensive overview of participants’ 
health status from a TCM perspective. 

The TCM clinical data were collected using a form designed for the four diagnostic methods of TCM related to menstrual diseases, 
developed earlier by our group (Copyright registration number: 2021-A-00037274). The form encompasses three main sections: 
recording the patient’s demographics, gynecology specialized consultation (including menstrual cycle, menstrual period, menstrual 
flow, color of menstruation, and symptoms of menstrual discomfort), general consultation (covering responses to cold and heat, 
perspiration, general body symptoms, diet, bowel and urination habits, sleep, etc.), and observations of the patient’s facial complexion 
and the diagnostic information on the tongue and pulse. 
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To collect pulse wave parameters from participants, we used the Z-BOX pulse meter, developed by the SHUTCM. This device 
captured essential cardiovascular data from both the left and right wrists, identified as "_L″ and "_R″ respectively. The parameters 
collected include amplitude ratios (As/Ad_L and As/Ad_R), height ratios (H2/H1_L, H4/H1_L, H5/H1_L, H2/H1_R, H4/H1_R, and H5/ 
H1_R), time ratios (T1/T_L, T4/T_L, T1/T4_L, T5/T4_L, T1/T_R, T4/T_R, T1/T4_R, and T5/T4_R), and width ratios (W1/T_L and W1/ 
T_R). These measurements provided a comprehensive overview of the cardiac ejection activity and the dynamics of the pulse wave 
along the vascular tree. The detailed collection procedure, the pulse map, the pulse wave parameters, and their implications were 
further detailed in Appendix B, offering a basis for the cardiovascular examination of PCOS from a TCM perspective [29]. 

2.4. Data preprocessing 

The dataset includes various data types: numerical (discrete counts like pregnancies and continuous measures like age, BMI, and 
pulse wave parameters), categorical (nominal groups like blood type and marital status), and binary (yes/no options for symptoms). To 
prepare categorical data for ML models, all categorical variables were transformed into dummy/binary variables using one-hot 
encoding. 

Handling missing values in a dataset is essential to ensure its completeness and reliability for analysis. The steps were as followed: 
(1) Missing values in pulse wave parameters were filled using the K-Nearest Neighbors (KNN) imputation method, which calculates 
missing values based on the mean of the nearest neighbors, k (in this study, k = 5). This approach was particularly useful for preserving 
the overall distribution and relationships within the data [30]. (2) Median imputation was used for missing values of numerical 
variables in TCM clinical data to provide a robust measure for central tendency without being skewed by outliers. (3) Missing values in 
categorical data were filled with the mode, or the most common category, to maintain the distribution. (4) Missing values in binary 
data were assumed to be "no" and are thus filled with 0. This assumes a negative response where no information is provided. 

In this study, the Z-Score was used to standardize numerical features [31,32]. The Z-Score is calculated using the formula: 

Z=
(X − μ)

s
(1)  

where X is the value of the data point, μ is the mean of the samples, and s is the standard deviation of the samples. This standardization 
process, implemented using the StandardScaler from Scikit-Learn, normalized the numerical features to have a mean of zero and a 
standard deviation of one. For each feature in the dataset, the Z-Score was calculated to standardize the values, enabling comparison 
across different scales and distributions. This scaling ensured all numerical variables contribute equally to the analysis, preventing 
features with larger scales from skewing results. This improved model performance by aiding faster convergence and enhancing 
predictive accuracy. Standardized features allowed easier interpretation of model coefficients and improve the feature selection and 
ML process. 

After completing the preprocessing steps, the final dataset contained 224 features (the features were detailed in Appendix C) and 
432 instances. The target variables were the five TCM patterns. 

Table 1 
Comparison of the different advanced feature selection methods.  

Method Description Implementation Details 

SAT Uses statistical tests to find features related to TCM patterns. With SciPy package, T-test or Kruskal-Wallis was applied for continuous 
data depending on the normality of data distribution; Chi-Square for 
binary data. P-value <0.05 is considered significant. 

RFECV Recursive feature elimination method integrated with cross-validation 
[35]. A process that iteratively removes features to find the optimal 
subset of features that maximizes model performance. 

With Scikit-learn package, XGBoost estimator was used with a 0.1 
learning rate, max depth of 1, and 200 estimators. RFECV with 5-fold 
cross-validation and "f1_micro" scoring metric. 

LASSO A regularization method that performs automatic feature selection 
during model fitting. It penalizes the absolute size of the coefficients, 
which effectively sets those of lesser importance to zero [36,37]. 

With Scikit-learn package, the LassoCV was employed to determine the 
optimal regularization strength with ‘alphas = None’ and ‘cv = 5’, 
allowing it to automatically choose a range of alpha values via 5-fold 
cross-validation. Additionally, ‘n_alphas = 100’, ‘eps = 0.001’, and 
‘selection = cyclic’ were set. Features with non-zero coefficients were 
retained, iteratively refining a set of key features predictive of the TCM 
patterns. 

BorutaShap A feature selection method that combines the strengths of the Boruta 
algorithm with SHapley Additive exPlanations (SHAP) values [38]. It 
identifies relevant features by creating shadow features for comparison 
and applies a tree-based model and SHAP values for evaluation [39]. 
Features are accepted, rejected, or tentative based on statistical testing 
against shadow features. 

With BorutaShap package, XGBoost was used as feature selector with 
0.1 learning rate, max depth of 1, and 200 estimators for 100 trials. 
Accepted features were identified for each target and a set of unique 
features were retained. 

ReliefF An advanced feature selection algorithm that enhances the original 
Relief algorithm [40,41]. It evaluates features based on how well they 
differentiate between instance classes, is designed for handling 
multi-class problems, and can effectively deal with noisy and 
incomplete data [42]. 

With Scikit-rebate package, specified ‘n_neighbors = 10’, importance 
scores of features were assigned. Thresholds (0.015, 0.02, 0.025, 0.03, 
0.035) of importance scores were tested to refine the features set. Each 
feature set trained a logistic regression model; the best-performing 
model dictated the optimal feature set. The process was repeated for 
each target.  
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3. Feature selection 

The process of feature selection involved two steps: an initial reduction phase followed by a detailed comparison of five distinct 
feature selection methods. These steps were integral to finding out the most relevant and informative features. All computations were 
performed using Python. 

3.1. Variance thresholding 

We employed Variance Thresholding (VT) as our initial feature selection technique [33,34]. It is designed to remove features with 
low variance, under the assumption that variables with little variation do not contribute significantly to the predictive power of the 
model. The VT operation was independent of the data’s distribution and the correlation between features and target variables, making 
it a universally applicable method for initial feature reduction across different types of data, including both numerical and binary 
variables. Utilizing the ‘VarianceThreshold’ function from the Scikit-Learn library, we set a threshold of 0.01, features with variance 
below this threshold were removed. This simplification ensures more targeted and effective subsequent feature selection. 

3.2. Advanced feature selection methods 

Following the initial reduction via VT, we explored five advanced feature selection methods to refine the feature set further, 
including the filter-based Statistical Analysis Test (SAT), the wrapper-based RFECV, embedded-based LASSO, the ensemble-based 
BorutaShap, and the hybrid-based ReliefF. Table 1 summarizes the advanced feature selection methods. 

4. Machine learning models and evaluation metrics 

Upon determining the best feature selection method and the optimal feature set, the multi-label ML model training process began 
with an iterative train-test split, at a 75 %–25 % ratio, where the larger portion was used for training the model and the smaller for 
testing its performance. This division ensured that the model could be evaluated on unseen data, providing insights into its gener
alization capabilities. 

To optimize model performance, GridSearchCV was employed to systematically explore a range of hyperparameters. The process 
incorporated 10-fold cross-validation to ensure robustness, whereby the training set is split into ten parts. The model trained on nine 
parts and validated on one, rotating through all parts for validation. This approach thoroughly evaluated model performance and 
averaged results to reduce variance. 

Four supervised learning models were used. Models from the Scikit-Learn library were adeptly instantiated within a OneVsRest
Classifier framework (except for ANN), a strategy crucial for multi-label scenarios. This approach created a separate classifier for each 
class, treating the problem as multiple binary classification tasks, thereby enabling detailed analysis and handling of each class 
independently. 

The models used were (1) SVM, which was particularly effective for classification tasks by finding the hyperplane that best 
separated different classes in the feature space [43]. The model’s complexity and margin were controlled by hyperparameters like C 
(penalty parameter), gamma, and kernel type, which were optimized using grid search and cross-validation. (2) LR, though simpler, 
excels in binary classification problems by estimating probabilities, there was literature showing LR was as good as other ML models in 
predicting the risk of major chronic diseases [44]. The hyperparameter tuning concentrated on optimizing the regularization strength 
‘C’ and selecting the appropriate solver from ‘liblinear’ and ‘saga’ which are compatible with the ‘l1’ penalty. (3) XGBoost, short for 
eXtreme Gradient Boosting, was an implementation of gradient-boosted decision trees [45], which offered excellent performance and 
speed and had been widely adopted. To optimize the XGBoost model, a comprehensive grid search was conducted over a predefined 
range of hyperparameters, including the number of estimators, learning rate, and maximum depth. (4) ANN, particularly the deep 
learning model, leveraged the Keras library to construct a sequential architecture tailored for classification. The model’s architecture 
and parameters like layers, neurons per layer, activation functions, learning rate, epochs, and batch size were optimized. The model 
was adept at capturing complex patterns in large datasets but required careful tuning of the architecture and parameters. 

For multi-label classification tasks, where each instance may belong to multiple classes simultaneously, choosing the right eval
uation metric is more complex due to the need to accurately capture model performance across several labels. In this context, the key 
metrics used are:  

1. Hamming Loss: Calculates the proportion of incorrectly predicted labels to the total number of labels, offering an overall error 
rate. This metric is valuable for its direct measurement of performance across an entire label set, highlighting the model’s predictive 
accuracy on a granular level. The range of Hamming Loss is between 0 and 1, where 0 indicates perfect prediction with no incorrect 
labels, and 1 means all predictions are incorrect.  

2. Subset Accuracy (Exact Match): This strict metric demands a complete match between the predicted and actual label sets for an 
instance to be considered correct. Although this method is thorough, it offers a precise measure of model accuracy but may not fully 
account for partially correct predictions. For simplicity, we refer to it as “accuracy.”  

3. F1 Score: As the harmonic mean of precision and recall, the F1 score merges these metrics into a singular measure to balance their 
contribution, especially useful for comparing models with varying trade-offs. Precision is defined as the ratio of true positives to the 
sum of true and false positives, precision quantifies the model’s ability to accurately predict positive labels, emphasizing the 
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importance of relevancy in the predictions. Recall measures the proportion of actual positives that have been correctly identified, 
calculated as the ratio of true positives to the sum of true positives and false negatives. Recall is crucial for scenarios where missing 
a positive instance carries significant consequences.  

4. Area Under the Receiver Operating Characteristic (ROC) Curve (AUC): AUC evaluates a model’s capacity to differentiate 
between classes across all thresholds. By plotting the true positive rate against the false positive rate (ROC), it assesses separability 
and predictive reliability. AUC value, ranging from 0 to 1, with higher values representing better classification performance. 

5. Results 

All experiments for this research were conducted on a MacBook Air equipped with an Apple M2 chip and 16 GB of memory, running 
macOS Sonoma version 14.1.2. Python version 3.9.16 was used for all computational tasks. 

The PCOS dataset includes 432 subjects categorized into 5 TCM patterns, showcasing considerable variation in their distribution. 
Specifically, the Kidney Yin Deficiency pattern was observed in 230 subjects, the Kidney Yang Deficiency pattern in 259 subjects, the 
Phlegm-Dampness pattern in 286 subjects, the Blood Stasis pattern in 156 subjects, and the Qi Stagnation pattern in 154 subjects. This 
distribution indicated a diverse representation of TCM patterns within the dataset. 

5.1. Feature selection results 

The number of features reduced by each method is indicated in Table 2. The details of the features selected by each method were 
stated in Appendix D. The initial feature reduction technique, VT, reduced the number of features from 224 to 174, indicating that 50 
features with low variance were excluded. This established a baseline for further analysis using the refined dataset of 174 features, 
upon which five advanced feature selection methods were simultaneously applied and compared. 

The SAT was conducted to assess the significance of features in the dataset. The Kruskal-Wallis test was used for the 21 continuous 
features, identifying 6 as statistically significant (P < 0.05). For the 203 binary and categorical features, chi-squared tests found 89 
significantly associated with the target variables (P < 0.05). Ultimately, 95 features showing statistical significance were retained for 
predicting the target variables. 

The RFECV procedure determined that the optimal number of features for the dataset was 67. Fig. 2 shows the relationship between 
the number of features selected and the mean test score of RFECV. The plot demonstrates how the mean test score evolves as more 

Fig. 2. Relationship between the number of selected features and mean test scores of RFECV. The dashed red line indicates the optimal number of 
features, determined to be 67. As the number of features increases, the mean test score stabilizes around 0.9346, with a standard deviation of 
0.0234, suggesting the point of optimal feature selection. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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features are included in the model. 
The LASSO feature selection method was employed across the five patterns, resulting in the identification of 106 unique features. 

Each pattern exhibited varying numbers of selected features: Kidney Yin Deficiency had 47 features, Kidney Yang Deficiency had 15 
features, Phlegm-Dampness had 16 features, Blood Stasis had 12 features, and Qi Stagnation had 11 features, highlighting the diverse 
set of indicators associated with different TCM patterns. 

The BorutaShap feature selection method resulted in the retention of 52 unique features for the dataset. Fig. 3 displays the accepted 
features (those deemed significantly predictive of the target variables) determined by BorutaShap, providing insights into the selected 
features for each target. 

Results of the ReliefF method showed the Kidney Yin Deficiency pattern with 13 features at 90.74 % accuracy (threshold: 0.02), the 
Kidney Yang Deficiency with 16 features at 87.96 % (threshold: 0.02), and the Phlegm-Dampness pattern with 11 features at 81.48 % 
(threshold: 0.035). The Qi Stagnation pattern reaches 99.07 % accuracy with 18 features (threshold: 0.03), and the Blood Stasis pattern 
achieves 96.30 % with 36 features (threshold: 0.015). Overall, the combined ReliefF selection across all patterns resulted in 62 unique 
features being selected. 

5.2. Comparison of feature selection methods 

In comparing the five feature selection methods, VT as the initial reduction was the baseline of comparison. Table 2 summarizes the 
Hamming loss achieved by each feature selection method across SVM, LR, XGBoost, and ANN classifiers. The average Hamming loss for 
each method is also provided, lower Hamming loss indicates a lower rate of incorrect predictions. 

The SAT method showed a marked improvement in performance over the VT baseline, notably reducing the Hamming loss in SVM 

Fig. 3. Feature selection results of BorutaShap. This figure presents a comprehensive visualization of the importance of accepted features across five 
distinct patterns in TCM diagnosis: Kidney Yin Deficiency (13 features), Kidney Yang Deficiency (15 features), Phlegm-Dampness (16 features), 
Blood Stasis (12 features), and Qi Stagnation (11 features). The accepted features are represented with green boxplots. 
Abbreviations: BTDM, Breast tenderness during menstruation; DBMB, Dark brown menstrual blood; ECCDWPD, Exposure to cold or cold diet 
worsens perimenstrual disorders; EDWPD, Emotional distress worsens perimenstrual disorders; FSPS, Feverish sensations in palms and soles; FWPD, 
Fatigue worsens perimenstrual disorders; IAVD, Increased amount of vaginal discharge; MCDM, Mood changes during menstruation; SDF, Stomach 
distension and fullness; SIMV, Significantly increased menstrual volume; TEP, Tongue with ecchymosis/petechiae; TWDDMD, Thirst without desire 
to drink or minimal drinking. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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(from 0.1722 to 0.1352) and ANN (from 0.2222 to 0.1667). However, it does not outperform all other methods. 
The RFECV emerged as the most effective method, offering the most substantial improvement in Hamming loss across LR, XGboost, 

and ANN when compared to VT. This method achieved the lowest average Hamming loss among the methods evaluated (0.0787), 
highlighting its robustness in selecting highly relevant features for a variety of models. 

LASSO provided a moderate improvement in average Hamming loss relative to VT, with its performance being somewhat mixed 
across different classifiers. LASSO demonstrated its ability to effectively reduce the feature count while maintaining (LR) or slightly 
improving (SVM and ANN) model performance, indicating a balanced approach to feature reduction. Despite the general effectiveness, 
LASSO did not outperform the VT when applied to the XGBoost classifier. 

BorutaShap emerged as another top performer, particularly in lowering the Hamming loss for SVM and ANN, and significantly 
outperforming VT. Remarkably, it managed to select the fewest number of features (48) while achieving the second lowest average 
Hamming loss among the methods compared. This efficiency in identifying the most impactful features across different classifiers 
positions BorutaShap as an excellent choice for feature selection, especially in scenarios requiring a stringent feature reduction without 
compromising model performance. 

ReliefF improved upon the VT baseline only in SVM and ANN, but its benefits were not consistently observed across all models. 
Despite this, it succeeded in reducing the average Hamming loss compared to VT, underscoring its potential utility in specific contexts 
or with certain types of classifiers. 

Fig. 4 shows a radar chart visualizing the performance (measured by Hamming loss) of different ML classifiers across several feature 
selection methods. In summary, both RFECV and BorutaShap were highly effective feature selection methods. However, in our study 
aimed at identifying TCM patterns in PCOS patients, RFECV was chosen as the final feature selection method due to its better 

Table 2 
Comparison of Hamming loss across different feature selection methods for various classifiers.   

VT SAT RFECV LASSO BorutaShap ReliefF 

No. of features 174 95 67 106 48 62 
SVM 0.1722 0.1352 0.0944 0.1389 0.0852 0.1130 
LR 0.0759 0.0759 0.0704 0.0759 0.0778 0.0870 
XGBoost 0.0556 0.0537 0.0481 0.0630 0.0537 0.0759 
ANN 0.2222 0.1667 0.1019 0.1519 0.1037 0.1426 
Average 0.1315 0.1079 0.0787 0.1074 0.0801 0.1046  

Fig. 4. Performance comparison of ML classifiers across feature selection methods. The plot visualizes the comparative analysis of how each 
classifier performs with each feature selection method, with the Hamming loss values plotted on the radar chart. 
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performance in minimizing Hamming loss and its enhanced versatility and robustness across various classifiers. Although RFECV 
selected more features than BorutaShap, its ability to ensure optimal and generalizable feature selection, which is crucial for the 
complex nature of TCM pattern identification, made it the preferred choice. 

5.3. RFECV-optimized model performance 

Utilizing RFECV across different ML models yielded varied impacts on their performance metrics, including accuracy, F1 scores, 
and Hamming loss. Table 3 presents the comprehensive comparison of performance metrics across four ML models: SVM, LR, XGBoost, 
and ANN. Fig. 5 visualizes the comparison of Hamming loss across various classification models. Fig. 6 illustrates the efficacy of 
RFECV-optimized models, contrasting training and testing outcomes through boxplots and line plots for F1 scores and accuracy. The 
details of the models’ classifiers and their hyperparameters are stated in Appendix E. 

SVM showed moderate training accuracy (0.5777 ± 0.0866) and a high F1 score (0.8922 ± 0.0264), with an improvement in 
testing accuracy (0.6296) and a relatively low Hamming loss (0.0944), indicating good generalization. LR outperformed SVM in both 
training and testing phases, achieving higher accuracy (0.7530 ± 0.0660, 0.7130) and F1 scores (0.9453 ± 0.0151, 0.9294) with a 
notably lower Hamming loss (0.0704), showcasing its efficiency and predictive performance. XGBoost emerged as the standout model, 
delivering the highest accuracy (0.7811 ± 0.1088, 0.7870) and F1 scores (0.9525 ± 0.0220, 0.9519) in both training and testing, 
alongside the lowest Hamming loss (0.0481), highlighting its robustness and generalizability. Conversely, ANN had the lowest per
formance, with training and testing accuracies of 0.5188 ± 0.1029 and 0.5833, respectively, and F1 scores of 0.8653 ± 0.0310 and 
0.8980, it also showed the highest Hamming loss at 0.1019. The model exhibited challenges in learning from the training dataset. 

Overall, the RFECV feature selection method proved to enhance model performance significantly, with XGBoost as the most 
effective model for TCM pattern classification requiring high accuracy and predictive efficiency. The AUC plot in Fig. 7 visually 
represents the performance of the XGBoost model trained to classify TCM patterns. The plot illustrates the model’s strong predictive 
ability to distinguish between the patterns. 

6. Discussion 

Our study initiated a thorough investigation to assess the impact of various feature selection techniques on the predictive per
formance of multi-label ML models, specifically in identifying TCM patterns in PCOS patients by utilizing a dataset that richly rep
resents five distinct TCM patterns and diverse data types. 

Existing studies had used tongue and pulse parameters for PCOS identification [17–19] and TCM symptoms for pattern classifi
cation [24,46], such as Xie et al., who selected 42 features out of 200 for rheumatoid arthritis patients [24]. Building on this, this study 
used pulse parameters and TCM clinical data (mostly TCM symptoms), selecting 67 features through a comprehensive comparison of 
multiple feature selection techniques. 

In the initial phase, VT was employed to streamline the feature space, resulting in a significant reduction of features. This step 
eliminated features with minimal variance, setting the stage for more refined and efficient feature selection processes to follow. 

Among the advanced feature selection methods evaluated, RFECV emerged as the premier method, surpassing SAT, LASSO, 
BorutaShap, and ReliefF. It achieved an optimal balance between feature reduction and predictive performance enhancement, evi
denced by the lowest average Hamming loss, particularly with the XGBoost model. The success of RFECV lies in its iterative refinement 
and validation of the feature set, retaining only the most impactful features. This process ensures the model’s robustness and 
adaptability across various classifiers, solidifying RFECV’s position as the most effective strategy for our study’s objective. 

BorutaShap demonstrated outstanding capability by significantly lowering the number of features while improving model per
formance (LR being the exception), showcasing its efficiency in feature selection. For instance, Silva et al. successfully presented the 
BorutaShap-Random Forest algorithm to enhance the PCOS diagnosis by identifying the most relevant clinical and laboratory variables 
[47]. Although SAT, LASSO, and ReliefF showed improvements over the baseline, their effectiveness varied depending on the classifier 
used. This variation emphasizes the importance of matching the feature selection technique with the specific characteristics of the 
classifier. 

In ML model evaluations using RFECV refined features, XGBoost emerged as a top performer by demonstrating superior accuracy, 
F1 scores, and the lowest Hamming loss, highlighting its robustness and effectiveness in classifying TCM patterns. This finding aligns 
with existing literature that highlights XGBoost’s effectiveness in handling complex classification problems using TCM features [48]. 
This makes it a valuable asset for healthcare practitioners looking to incorporate data-driven insights into diagnostic practices. Its 
achievement in obtaining the lowest Hamming loss demonstrates its precision in reducing incorrect predictions across all classes, a 

Table 3 
Performance metrics of ML models with RFECV feature selection.  

Model Training results (Mean ± SD) Testing results 

Accuracy F1 score Accuracy F1 score Hamming loss 

SVM 0.5777 ± 0.0866 0.8922 ± 0.0264 0.6296 0.9057 0.0944 
LR 0.7530 ± 0.0660 0.9453 ± 0.0151 0.7130 0.9294 0.0704 
XGBoost 0.7811 ± 0.1088 0.9525 ± 0.0220 0.7870 0.9519 0.0481 
ANN 0.5188 ± 0.1029 0.8653 ± 0.0310 0.5833 0.8980 0.1019  
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vital aspect in medical diagnostics where accuracy is paramount. 
Following closely, LR demonstrated superior performance over the SVM, marking it as the second-best algorithm. This highlights 

LR’s robust predictive performance and efficiency [49], making it a strong candidate for ML model selection, particularly when 
interpretability and computational efficiency are crucial. Meanwhile, SVM displayed moderate generalization abilities and perfor
mance compared to XGBoost and LR. Conversely, the ANN exhibited the lowest performance across the board. These outcomes may 
reflect ANN’s sensitivity to the dataset’s complexity, suggesting a need for optimization or architectural refinement to discern TCM 
patterns in PCOS patients more effectively. While ANN possessed significant potential for TCM pattern recognition for dysmenorrhea 
[50] and lung cancer [51] diagnosis, customizing its structure to better accommodate the complex nature of TCM diagnostic criteria for 
PCOS could unlock its full capabilities in this domain. 

In summary, the RFECV-XGBoost algorithm proved to be highly effective for identifying TCM patterns in patients with PCOS. This 
outcome underscores the substantial promise of applying ML techniques within TCM diagnostics. Our study represents a significant 
advancement in applying ML to TCM diagnostics compared to existing research. While previous research often focused on single 
feature selection algorithm [24,46] or conventional ML methods [52], our investigation evaluates a comprehensive array of feature 
selection techniques to assess their impact on the predictive performance of multi-label ML models, particularly in the context of TCM 
pattern identification for PCOS patients. This broader spectrum approach allowed us to identify the RFECV-XGBoost combination as 
notably superior in enhancing diagnostic accuracy. By conducting such detailed analyses, our study not only advances the method
ological framework for TCM diagnostics but also sets a precedent for future research to explore more sophisticated ML strategies. 

The RFECV-XGBoost algorithm can significantly enhance clinical practice by promoting intelligent pattern differentiation apps in 

Fig. 5. Hamming loss comparison between models optimized with RFECV. Lower Hamming loss indicates a lower rate of incorrect predictions, and 
XGBoost emerged as the top performer. 

Fig. 6. Model performance (F1 score and accuracy) with RFECV optimization. The left panel focuses on F1 scores, comparing training distributions 
to testing results, while the right panel does the same for accuracy. This visualization highlights each model’s training variability and testing 
performance, aiding in the evaluation of their generalization to unseen data. 
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TCM, advancing personalized medicine. It facilitates the accurate identification of TCM patterns, crucial for tailoring effective 
treatment plans, and contributes to the standardization of diagnostic practices, ensuring more consistent and reliable patient care. 
Furthermore, this approach integrates traditional knowledge with modern data analytics, making TCM diagnostics and treatments 
more evidence-based and data-driven. This methodological advancement marks a significant step forward in merging modern 
computational techniques with traditional medical practices, paving the way for more precise, reliable, and personalized TCM 
diagnostics. 

While our study provides valuable insights into the application of ML for TCM pattern classification, it has its limitations. Firstly, 
the study’s reliance on a dataset comprising only 432 subjects representing five distinct TCM patterns of PCOS may not encompass the 
full spectrum of variability seen in clinical practice, potentially limiting the generalizability of our findings. The relatively small 
dataset size could limit the model’s learning capacity and may not adequately represent the broader patient population. Future studies 
should aim to include a larger and more diverse sample to validate and extend our findings. Additionally, the performance of ANN 
highlighted the challenges of model complexity and the need for further optimization, which may not have been fully addressed within 
the scope of this study. Furthermore, the comparative analysis of feature selection methods, though extensive, was conducted within a 
specific context, and results may vary with different datasets or medical conditions. Acknowledging these limitations is crucial for 
interpreting our findings and guiding future research efforts. 

7. Conclusions 

This study demonstrated that feature selection is crucial for simplifying TCM data and boosting predictive performance in diag
nosing TCM patterns in PCOS. Among the various methods evaluated, the RFECV feature selection method excelled in identifying key 
predictive features, and the XGBoost model showed superior performance. The combined RFECV-XGBoost formed the most effective 
algorithm for predicting TCM patterns in PCOS patients, achieving the highest accuracy, F1 scores, and the lowest Hamming loss, 
underscoring its robustness and precision. Our findings highlight the potential of integrating advanced data analytics into TCM, paving 
the way for more effective and personalized healthcare solutions. This study can also promote the research and development of 
objectifying and standardizing TCM diagnostics, providing a more reliable and precise approach to diagnosing and treating PCOS. 
Future research should continue to refine these computational methods and explore their applicability across a broader spectrum of 
medical conditions, further enhancing diagnostic precision and personalized treatment strategies in TCM. 
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[47] I.S. Silva, C.N. Ferreira, L.B.X. Costa, M.O. Sóter, L.M.L. Carvalho, J. de, M.F. Sales, A.L. Candido, F.M. Reis, A.A. Veloso, K.B. Gomes, Polycystic ovary 

syndrome: clinical and laboratory variables related to new phenotypes using machine-learning models, J. Endocrinol. Invest. 45 (2022) 497–505, https://doi. 
org/10.1007/S40618-021-01672-8/FIGURES/3. 

[48] J. Zheng, Z. Zhang, J. Wang, R. Zhao, S. Liu, G. Yang, Z. Liu, Z. Deng, Metabolic syndrome prediction model using Bayesian optimization and XGBoost based on 
traditional Chinese medicine features, Heliyon 9 (2023) e22727, https://doi.org/10.1016/j.heliyon.2023.e22727. 

[49] E. Christodoulou, J. Ma, G.S. Collins, E.W. Steyerberg, J.Y. Verbakel, B. Van Calster, A systematic review shows no performance benefit of machine learning over 
logistic regression for clinical prediction models, J. Clin. Epidemiol. 110 (2019) 12–22, https://doi.org/10.1016/J.JCLINEPI.2019.02.004. 

[50] Z. Huang, J. Miao, J. Chen, Y. Zhong, S. Yang, Y. Ma, C. Wen, A traditional Chinese medicine syndrome classification model based on cross-feature generation by 
convolution neural network: model development and validation, JMIR Med Inform 10 (4) (2022) E29290, https://doi.org/10.2196/29290. Medinform.Jmir. 
Org/2022/4/E29290 10 (2022) e29290. 

[51] Z. Liu, H. He, S. Yan, Y. Wang, T. Yang, G.Z. Li, End-to-End models to imitate traditional Chinese medicine syndrome differentiation in lung cancer diagnosis: 
model development and validation, JMIR Med Inform 8 (6) (2020) E17821, https://doi.org/10.2196/17821. Medinform.Jmir.Org/2020/6/E17821 8 (2020) 
e17821. 

[52] C. Zhao, G.Z. Li, C. Wang, J. Niu, Advances in patient classification for traditional Chinese medicine: a machine learning perspective, Evid Based Complement 
Alternat Med 2015 (2015), https://doi.org/10.1155/2015/376716. 

J. Lim et al.                                                                                                                                                                                                             

https://doi.org/10.1145/3136625
https://doi.org/10.1016/J.CMPB.2009.03.004
https://doi.org/10.1007/S11655-016-2264-0/METRICS
https://doi.org/10.1016/J.EUJIM.2020.101059
https://doi.org/10.1093/HUMREP/DEH098
http://refhub.elsevier.com/S2405-8440(24)11314-X/sref26
http://refhub.elsevier.com/S2405-8440(24)11314-X/sref27
http://refhub.elsevier.com/S2405-8440(24)11314-X/sref28
http://refhub.elsevier.com/S2405-8440(24)11314-X/sref28
http://refhub.elsevier.com/S2405-8440(24)11314-X/sref29
https://doi.org/10.1080/08839514.2019.1637138
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://doi.org/10.1109/ICMCSI61536.2024.00042
https://doi.org/10.1109/ICMCSI61536.2024.00042
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html
https://doi.org/10.3389/FNINS.2023.1157858/BIBTEX
https://doi.org/10.3389/FNINS.2023.1157858/BIBTEX
https://doi.org/10.1109/ACCESS.2022.3218118
https://doi.org/10.1111/J.2517-6161.1996.TB02080.X
https://doi.org/10.1111/J.2517-6161.1996.TB02080.X
https://doi.org/10.1002/BJS.10895
https://pypi.org/project/BorutaShap/
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1016/B978-1-55860-247-2.50037-1
http://refhub.elsevier.com/S2405-8440(24)11314-X/sref41
http://refhub.elsevier.com/S2405-8440(24)11314-X/sref41
https://doi.org/10.1007/3-540-57868-4_57/COVER
https://doi.org/10.1016/B978-0-12-815739-8.00006-7
https://doi.org/10.1016/B978-0-12-815739-8.00006-7
https://doi.org/10.1016/J.JCLINEPI.2020.03.002
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1002/CPE.4634
https://doi.org/10.1002/CPE.4634
https://doi.org/10.1007/S40618-021-01672-8/FIGURES/3
https://doi.org/10.1007/S40618-021-01672-8/FIGURES/3
https://doi.org/10.1016/j.heliyon.2023.e22727
https://doi.org/10.1016/J.JCLINEPI.2019.02.004
https://doi.org/10.2196/29290
https://doi.org/10.2196/17821
https://doi.org/10.1155/2015/376716

	Predicting TCM patterns in PCOS patients: An exploration of feature selection methods and multi-label machine learning models
	1 Introduction
	2 Methods
	2.1 Subjects
	2.2 Inclusion, exclusion, and diagnostic criteria
	2.3 Data collection
	2.4 Data preprocessing

	3 Feature selection
	3.1 Variance thresholding
	3.2 Advanced feature selection methods

	4 Machine learning models and evaluation metrics
	5 Results
	5.1 Feature selection results
	5.2 Comparison of feature selection methods
	5.3 RFECV-optimized model performance

	6 Discussion
	7 Conclusions
	Funding
	Data availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Supplementary data
	References


