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The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is
expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor
emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different
events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident
immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which
upregulate cell adhesionmolecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion
of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism
of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects
depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide
early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection
by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for
adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke.

1. Introduction

Ischemic stroke is the second leading cause of death in
major industrialized countries, with a mortality rate of
around 30%, and the major cause of long-lasting disabilities
[1]. Ischemic stroke results from a transient or permanent
reduction in cerebral blood flow which is, in most cases,
caused by the occlusion of a major brain artery, either by
an embolus or by local thrombosis. Currently, there is no
promising pharmacotherapy for acute ischemic stroke aside
from intravenous or intra-arterial thrombolysis. Yet, because
of the narrow therapeutic time-window involved, throm-
bolytic application is very restricted in clinical settings [2].
Neuroprotective drugs such as glutamate receptor antagonists
have shown therapeutic potential in animal stroke trials but
have failed to be efficacious during clinical trials [3, 4].

Death-signaling proteins involved in the progression from
N-methyl-D-aspartic acid (NMDA) receptor stimulation to
excitotoxic neuronal death emerged as possible novel targets
for neuroprotection. In particular, inhibition of activation
of transcription factors and related proteins, including p38,
JNK, and SREBP1, is neuroprotective in animal models of
stroke [5]. On the other hand, ischemia is a multifacto-
rial pathology characterized by different events evolving
in the time. After ischemia the early massive increase of
extracellular glutamate is followed by activation of resident
immune cells, that is, microglia, and production or activation
of inflammation mediators [6]. Proinflammatory cytokines,
which upregulate cell adhesionmolecules, exert an important
role in promoting neutrophil infiltration and accumulation in
brain parenchyma [7, 8]. Although after ischemia precocious
activation of immune cells may be neuroprotective and
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supportive for regeneration, protracted neuroinflammation is
now recognized as the predominantmechanism of secondary
brain injury progression.

The extracellular adenosine concentration increases dra-
matically during in vivo ischemia as demonstrated first by the
cortical cup technique [9, 10] and later on by themicrodialysis
technique [11–15]. The increase of adenosine extracellular
level is attributable to different reasons. Early after ischemia,
the increase of adenosine is mainly attributable to extracellu-
larly releasedATP [16] that is hydrolysed by ectonucleotidases
(NTPDases 1, 2, and 3 that convert ATP to ADP and AMP)
and ecto-5-nucleotidase that converts AMP to adenosine
[17, 18]. Thereafter adenosine per se is mainly released
from cells likely by the equilibrative nucleoside transporter
(ENT) 2 [16]. Inhibition of adenosine-uptake processes due
to downregulation of concentrative nucleoside transporters
(CNT) 2 and 3 and of the ENT1 also contributes to the
extracellular adenosine increase after stroke [19].

Numerous authors have indicated adenosine and its
receptors as a target for therapeutic implementation in the
treatment of stroke. Extracellular adenosine acts through
multiple 𝐺-protein coupled receptors (adenosine receptor
subtypes A

1
,A
2A,A2B, andA3) to exert a variety of physiolog-

ical effects [20]. Adenosine receptors are expressed at signifi-
cant levels in neurons and glial cells and in inflammatory cells
(such as lymphocytes and granulocytes) [21–26] (Figure 1).
The wide distribution is consistent with the multifaceted
neurochemical and molecular effects of adenosine receptor
activation and suggests that the role of adenosine in ischemia
is the consequence of an interplay among different receptor
activation in neuronal, glial, and inflammatory cells, which
changes depending on the time-related development of the
pathological condition.

During ischemia, adenosine has long been known to
act predominantly as a neuroprotectant endogenous agent
[27–32]. Adenosine infusion into the ischemic striatum has
been shown to significantly ameliorate neurological outcome
and reduce infarct volume after transient focal cerebral
ischemia [33]. Protective effects are greatly attributed to A

1

receptor activation due to reduced Ca2+ influx, thus lowering
presynaptic release of excitatory neurotransmitters [33–38]
and in particular of glutamate which exerts an excitotoxic
effect during ischemia mainly by overstimulation of NMDA
receptors [39]. In addition, by directly increasing the K+
and Cl− ion conductances, adenosine stabilises the neuronal
membrane potentials, thus reducing neuronal excitability
[39]. Consequent reduction in cellular metabolism and
energy consumption [40] and moderate lowering of the
body/brain temperature [41] protect against ischemia.

Although data demonstrate a neuroprotective effect of
adenosine through A

1
receptors during ischemia, the use

of selective A
1
agonists is hampered by undesirable effects

such as sedation, bradycardia, and hypotension [42, 43].More
recently adenosine A

2A receptors emerged as an interesting
target in ischemia.

We largely limit our overview to the A
2A adenosine

receptor subtype in brain whose new insights are into con-
trol of excitotoxicity and neuroinflammation phenomena in

ischemia. In this paper, we summarize recent developments
that have contributed to the understanding of how this
adenosine receptor subtypemodulates tissue damage in brain
ischemia models. A list of A

2A receptor ligands used in
different “in vitro” and “in vivo” hypoxia/ischemia models is
provided in Table 1.

2. Adenosine A2A Receptor Antagonists Protect
against Primary Ischemic Injury

2.1. A2A Receptor Antagonists Are Protective against Ischemic
Damage. Gao and Phillis [50] demonstrated for the first
time that the nonselective A

2A receptor antagonist, 9-chlo-
ro-2-(2-furanyl)-[1,2,4] triazolo[1,5-c]quinazolin-5-amine
(CGS15943), reduced cerebral ischemic injury in the ger-
bil following global forebrain ischemia. Thereafter many
reports have confirmed the neuroprotective role of A

2A
receptor antagonists in different models of ischemia. The
selective A

2A receptor antagonist, 8-(3-chlorostyryl) caffeine
(CSC), as well as the less selective antagonists, CGS15943
and 4-amino [1,2,4] triazolo [4,3a] quinoxalines (CP66713),
both administered before ischemia, protected against hip-
pocampal cell injury during global forebrain ischemia in
gerbils [49, 52]. The selective A

2A receptor antagonist, 4-
(2-[7-amino-2-(2-furyl) [1,2,4] triazolo[2,3-a][1,3,5] triazin-
5-yl-amino]ethyl) phenol (ZM241385), administered before
ischemia, reduced hippocampal injury and improved per-
formance in the Morris water maze in hyperglycemic four-
vessel occluded rats [54]. In all the mentioned studies,
adenosineA

2A receptor antagonists were administered before
ischemia. Relevantly to a possible clinical use of drugs
in stroke, in subsequent studies, A

2A antagonists were
administered after ischemia. The selective A

2A receptor
antagonist, 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-
[4,3-e]-1,2,4,triazolo[1,5-c]pyrimidine (SCH58261), acutely
administered after hypoxia/ischemia in neonatal rats [57] and
soon after focal ischemia in adult rats [58, 59] reduced brain
damage 24 hours thereafter. The same antagonist, adminis-
tered subchronically, was protective against brain damage,
neurological deficit [60, 61, 67], and disorganization ofmyelin
[61] 24 hours after focal cerebral ischemia in the adult rat.
In the model of global ischemia (i.e., 7min asphyxic cardiac
arrest) in newborn piglets, posttreatment with SCH58261,
infused soon after resuscitation and for 6 hours, improved
neurologic recovery and protected striatopallidal neurons
after 4 days from ischemia [63]. SCH58261 behaves as a
significant protective agent at a dose (0.01mg/kg) that does
not have cardiovascular effects. This low dose does not affect
motor activity in naive animals but decreases contralateral
turning behaviour after monolateral middle cerebral artery
occlusion (MCAo) induced by the monofilament technique
[59, 60]. At a higher dose, in the range that is effective in
different models of Parkinson’s Disease (PD), the same drug
significantly increases motility and rearing in the rat [68]. A
noxious role of A

2A receptors during ischemia is supported by
the observation that A

2A receptor knock-out (KO)mice show
significantly decreased infarct volumes after focal cerebral
ischemia when compared with their wild-type littermates
[69, 70].



Mediators of Inflammation 3

Oligodendrocyte

Postsynaptic neuron

Microglia

Astrocyte

Blood 
vessel

ATP

AMP

NT
NTPDase

Presynaptic neuron

Immune blood cell

ATP
ADPAMP

AC

ADP

A2A

A2A

A2A receptor

E5-NT

↑ ADO

↑ cAMP

↑ ADO

↑

↑

Gs

Gs

↑

Figure 1: Schematic drawing of adenosine A
2A receptor localization on different cell types. Adenosine A

2A receptors are expressed at
central level on presynaptic and postsynaptic neurons, on astrocytes, on microglia, and on oligodendrocytes. A

2A receptors are present
also at peripheral level on leukocytes and vasculature. After cerebral ischemia, leukocytes infiltrate into ischemic tissue due to increased
permeability of blood-brain barrier (BBB). During ischemia, extracellular adenosine level increases mainly due to (i) extracellular ATP
degradation by NTPDases; (ii) release of adenosine per se from cells likely by the equilibrative nucleoside transporter (ENT); (iii) inhibition
of adenosine-uptake processes due to downregulation of concentrative nucleoside transporters (CNT) 2 and 3 and of ENT. AC: adenylate
cyclase; ADO: adenosine; ADP: adenosine diphosphate; AMP: adenosine monophosphate; ATP: adenosine triphosphate; cAMP: cyclic
adenosine monophosphate; E5-NT: ecto-5-nucleotidase; NT: nucleoside transporter; Gs: stimulatory𝐺-protein; NTDPase: ecto-nucleoside
triphosphate diphosphohydrolases. The proportions of the various components of the nervous tissue have not been kept.

Most recently, the question has been raised if A
2A

receptor continuous blockade over an extended time-window
after ischemia is protective. CSC continuously administered
over 72 hours, using subcutaneously implanted osmotic
minipumps, after permanentMCAo in spontaneously hyper-
tensive rats, did not decrease brain infarct volume deter-
mined by magnetic resonance imaging 3 days after induction
of ischemia [53]. Authors attributed the lack of protection to
high hepatic metabolism and elimination of CSC [53]. Con-
sistently, Melani and coworkers (unpublished observation)
found a lack of protection on infarct volume by SCH58261
administered subchronically (three times in the first day) or
chronically (twice/day for 7 days) 7 days after 1 hour transient
MCAo.

2.2. A2A Receptor Antagonism Protects from the Increase of
Glutamate Extracellular Concentrations and NMDA Receptor
Function. A

2A receptors are expressed on neurons at high
levels in the striatum [71] and at lower levels in all other brain
regions as detected by autoradiography [72] and real time
PCR [73]. A

2A receptors in the striatum are mostly present

onGABA-enkephalin neurons [74] but are also located presy-
naptically [25, 75, 76] on glutamatergic terminals [77] where
they can directly regulate glutamate outflow under normoxic
[78, 79] and ischemic conditions [65, 66]. Adenosine, by
A
2A receptor stimulation, promotes glutamate release under

normoxic and ischemic conditions in vivo [44, 51, 80–82].
Consistently, A

2A receptors play an important modulation
of synaptic transmission [83, 84] as mostly demonstrated in
the hippocampus [85–87]. In the CA1 area of the rat hip-
pocampus, which is themost sensitive region to ischemia, the
selective A

2A receptor agonist, CGS21680, clearly reduces the
depression of synaptic activity brought about by OGD [47].
FollowingA

2A receptor stimulation the increase of extracellu-
lar glutamate concentration counteracts depression brought
about by adenosine A

1
receptors. In agreement, the selective

A
2A receptor antagonists, ZM241385 and SCH58261, delay the

appearance of anoxic depolarization (AD), a phenomenon
strictly related to cell damage and death [88], protect from
the synaptic activity depression brought about by a severe
(7min) OGD period, and protect CA1 neuron and astrocyte
from injury [55]. Same effects of ZM241385 were observed
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Table 1: Adenosine A2A receptor ligands used in brain ischemia “in vivo” and “in vitro” models.

Brain ischemia model References
Adenosine A2A receptor agonists

CGS21680

Global ischemia in rat [44]
Global ischemia in gerbil [45]
Focal ischemia in rat [46]
OGD hippocampal slices [47, 48]

APEC Global ischemia in gerbil [49]
Adenosine A2A receptor antagonists

CGS15943 Global ischemia in gerbil [50]
Global ischemia in rat [51]

CSC Global ischemia in gerbil [49, 52]
Focal ischemia in hypertensive rat [53]

CP66713 Global ischemia in gerbil [52]

ZM241385 Global ischemia in rat [54]
OGD hippocampal slices [55, 56]

SCH58261

Hypoxia/ischemia in neonatal rat [57]
Focal ischemia in rat [58–62]
Global ischemia in newborn piglet [63]
OGD hippocampal slices [55, 64]
OGD cerebrocortical slices [65, 66]

DMPX OGD hippocampal slices [48]
APEC: 2-[(2-aminoethylamino)-carbonylethylphenylethylamino]-5-N-ethylcarboxoamidoadenosine; CGS15943: 9-chloro-2-(2-furanyl)-[1,2,4]triazolo[1,5-
c]quinazolin-5-amine; CGS21680: 2-p-(2-Carboxyethyl)phenethylamino-5-N-ethylcarboxamidoadenosine; CP66713: 4-amino[1,2,4]triazolo[4,3a]quin-
oxalines; CSC: 8-(3-chlorostyryl)caffeine; DMPX: 3,7-dimethyl-1-propargylxanthine; OGD: oxygen and glucose deprivation; SCH58261: 7-(2-phenylethyl)-
5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-[1,2,4]triazolo[1,5-c]pyrimidine; ZM241385: 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino]
ethyl)phenol.

after a severe 9min OGD period in the gyrus dentatus of the
hippocampus [56].The time-window of the protective effects
of the A

2A receptor antagonists in the hippocampus overlaps
with the delay obtained by treating the slices with glutamate
receptor antagonists [89, 90], indicating that their effects are
attributable to reduced glutamate excitotoxicity.

Several mechanisms contribute to the A
2A receptor

regulation of extracellular glutamate concentrations. A
2A

receptor stimulation might regulate extracellular glutamate
not only by reducing release from glutamatergic terminals
but also by modulation of glutamate uptake transporter. In
the brain, adenosine A

2A receptors are expressed on both
neurons and glia [21, 71]. In particular, A

2A receptors located
on astrocytes mediate inhibition of glutamate uptake by
glutamate transporter-1 (GLT-1) [91–93]. Recent data show
that while acute exposure to the selective A

2A receptor
agonist, CGS21680, reduces glutamate uptake, prolonged
exposure to the same agonist inhibits GLT-1 and glutamate-
aspartate transporter mRNA and protein levels from astro-
cytes [94]. Such inhibition is exerted through modulation
of Na+/K+-ATPase [95]. An imbalance of A

1
/A
2A receptor

expression might also contribute to inhibition of excitatory
synaptic transmission under ischemia. Short periods of
global ischemia decrease A

1
adenosine receptor density in

the brain likely due to an internalization of A
1
adenosine

receptors in nerve terminals [96]. Moreover tight A
1
/A
2A

receptor interaction exists. In hippocampal and cortical nerve
terminals A

2A receptors might increase glutamate outflow

by a protein kinase C-mediated decrease of the affinity of
A
1
receptors [97]. A heteromerization of adenosines A

1

and A
2A receptors in striatal glutamatergic nerve terminals

might allow adenosine to exert a fine-tuning modulation
of glutamatergic neurotransmission. A main biochemical
characteristic of the A

1
/A
2
receptor heteromer is the ability

of A
2A receptor activation to reduce the affinity of the A

1

receptor for agonists with an ultimate switch mechanism by
which low and high concentrations of adenosine inhibit and
stimulate, respectively, glutamate release [98].

Adenosine acting on A
2A receptors is such an important

modulatory substance by controlling synaptic transmission
and also by regulating AMPA [99] and NMDA receptor
function [100]. In striatal membranes, the NMDA-mediated
excitation, leading to a depolarized plateau potential and
spike firing, is regulated by dopamine and adenosine acting at
D
2
and A

2A receptor heteromers that regulate Ca++ channel
activity through mechanisms relying upon specific protein-
protein interactions [101]. A

2A receptor chronic blockade
by treatment with SCH58261 induces a remodeling of NR1
and NR2A/NR2B subunit expression of NMDA receptors in
the striatum of Huntington transgenic mice [102]. Moreover,
given that mGlu5 receptors “set the tone” of NMDA receptor-
mediated neurotransmission [103], it appears important that
mGlu5 receptors are under the tight control of A

2A recep-
tors [100]. In the hippocampus A

2A and mGlu5 receptors
are colocated and A

2A receptors play a permissive role in
mGlu5 receptor-mediated potentiation of NMDA effects
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[104]. Such modulations by A
2A receptors might be relevant

in pathological conditions such as ischemia. By the use of
SCH58261, it was demonstrated that A

2A receptors support
the expression and recruitment of calcium-permeable AMPA
receptors during LTP induced by OGD in rat hippocampal
slices [64]. In a model of global ischemia in newborn piglets
(7min Asphyxic Cardiac Arrest), inhibition of phospho-
rylation of NMDA receptor NR1 subunit and inhibition
of Na+/K+-ATPase and of cAMP-regulated phosphoprotein
32 kDa (DARPP32) might also account for protective effect
of the selective A

2A receptor antagonist SCH58261 [63]. The
ability of adenosine A

2A receptors in controlling glutamate
receptor functions might represent an attractive mechanism
in protecting against acute excitoxicity after ischemia. In fact,
in a number of in vitro and in vivo experimental models
of ischemia, glutamate receptor antagonists, acting either
on NMDA receptor or on group I metabotropic receptors,
are effective neuroprotective agents; none of the glutamate
receptor antagonists tested in clinical trials showed positive
results or had an acceptable benefit/side effects ratio [105].

In vivo, a definite overexpression of A
2A receptors was

found in neurons of the striatum and cortex 24 hours
after focal ischemia [106] and, in in vivo experiments, the
low dose of SCH58261 that protects against tissue damage
induced byMCAo or quinolinic acid (QA) excitotoxicity also
reduces glutamate extracellular concentrations estimated by
microdialysis [59, 107].This supports that protective effects of
lowdoses of A

2A receptor antagonists administered early after
brain ischemia are largely due to reduced excitotoxicity and to
the ensuing excitotoxic cascade attributable to stimulation of
NMDA receptors [59].The robust protection by A

2A receptor
antagonism is consistent with the observation that adenosine
A
2A receptor KOmice are protected from an excess of striatal

glutamate outflow and damage induced by transient MCAo
[69, 70].

A further protective effect of A
2A receptor antagonism

may be attributed to the capability of increasing GABA
outflow during ischemia. The major part of excitatory glu-
tamatergic innervation is modulated by inhibitory GABA-
releasing interneurons. Potentiation of GABAergic synaptic
transmission has neuroprotective effects in several experi-
mental models of cerebral ischemia [108]. GABA is strongly
increased in the cortex and striatumduring ischemia [15, 109]
and evidence shows that selective A

2A receptor stimulation
decreases ischemia-evoked GABA outflow [109, 110] and
enhancesGABA transport into nerve terminals by restraining
PKC inhibition of GAT-1 [111].

The neuroprotective properties of A
2A receptor antag-

onists largely reside in effects mediated by A
2A receptors

located on brain cells, in particular in control of excitotoxicity
as demonstrated by the observation that the A

2A recep-
tor selective antagonist, ZM241385, injected peripherally or
directly intra-hippocampus is protective against excitotox-
icity induced by kainate [48] and by the combinations of
quinolinic acid and IL-1𝛽 [112].

2.3. A2A Receptor Antagonists Protect from Ischemia–Induced
Activation of Mitogen-Activated Protein Kinases (MAPKs)

and c-fos Expression. Several data indicate that regulation
of proteins involved in transcriptional or post-translational
mechanisms plays an important role in the neuroprotective
effect of A

2A receptor antagonism in ischemia.
All members of the MAPKs family are activated up

to 24 hours after ischemia [113, 114]. p38 and ERK1/2 are
activated in neurons and in microglia [60, 113, 115, 116]. A
definite overexpression of A

2A receptors was found not only
in neurons but also on microglia of the ischemic tissue 24
hours after focal ischemia [106]. Subchronic administration
of the A

2A receptor antagonist, SCH58261, reduced phospho-
p38 inmicrogliawhile it did not affect ERK1/2 activation [60].
It is known that soon after excitotoxic phenomena, resident
microglial cells initiate a rapid change in their phenotype
that is referred to as microglial cell activation [117] and,
by producing cytotoxic substances and cytokines, start an
inflammatory response that exacerbate brain damage [6].
Since inhibition of p38 activation has direct neuroprotec-
tive effects in hippocampal brain slices after OGD [118], a
control of p38 activation by A

2A receptor antagonism [60]
might account for protection after ischemia. Such results
are in agreement with the result that intracerebroventricular
injection of SCH58261 prevents the recruitment of activated
microglial cells and the increase in IL-1𝛽 evaluated 4 hours
after intraperitoneal administration of lipopolysaccharide
(LPS) [119]. It is also important to consider that A

2A receptor
antagonists are effective in preventing neurotoxicity in iso-
lated glia. A

2A receptor stimulation is known in fact to cause
activation of microglia [120] and A

2A receptor antagonists
have been shown to suppress microglia activation in murine
N9 microglial cells exposed to an inflammatory stimulus
such as LPS [121]. A

2A receptor antagonist suppresses the
CGS21680-induced potentiation of LPS-induced NO release
frommixed glial cultures aswell [122].Overall results indicate
that A

2A receptors present on microglial cells are pivotal in
mediating a secondary damage consisting in neuroinflamma-
tion (see later in the paper) after ischemia.

Twenty-four hours after MCAo, subchronic administra-
tion of the A

2A receptor antagonist, SCH58261, also reduces
phospho-JNK, that is expressed in few neurons, but mainly
in mature oligodendrocytes and in oligodendrocyte precur-
sors (OPCs) (stained by Olig2 and NG2 antibodies) [61,
123]. Phospho-JNK is a factor involved in oligodendrocyte
death [124, 125]. Interestingly activation of JNK has been
described in oligodendrocytes in multiple sclerosis lesions
where oligodendrocytes are major targets of the disease
[126]. A specific peptide inhibitor of JNK protects against
cell death induced by OGD in vitro [127] and by MCAo
in vivo [127, 128]. JNK2/3 KO mice are protected from
damage following cerebral ischemia [129, 130]. Therefore we
must assume that JNK activation in oligodendrocytes and
neurons represents a noxious event after ischemia that can
damage oligodendrocytes bringing to myelin damage and
disorganization [61]. A

2A receptor antagonism also reduces
Olig2 [61] that is a transcription factor expressed mostly
by OPC while mature oligodendrocytes are characterized
by lower levels of Olig2 [131]. Data have suggested that
A
2A antagonism stimulates OPC differentiation to mature

cells after ischemia. In agreement we have recently reported
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that, in primary OPC culture, selective stimulation of A
2A

receptors by CGS21680 inhibits maturation of OPC in the
firsts 10 days of in vitro differentiation [132]. The drug also
inhibits K+ “delayed rectifier” channels (KDR) [132] that are
known to inhibit proliferation and differentiation of OPC to
mature oligodendrocytes, thus preventing myelin deposition
[133, 134].

Besides a direct effect of the A
2A receptor antagonists

on A
2A receptors located on oligodendrocytes or microglia,

we must consider that the reduced MAPK activation by
SCH58261, in the initial hours after in vivo ischemia, is
secondary, to overall reduction in the excitotoxic cascade that
in turn primesMAPKactivation [59]. In fact, oligodendroglia
are extremely sensitive to glutamate receptor overactivation
and ensuing oxidative stress [135–137] as well as to cytokines
[138] and p38 activation is definitely induced by NMDA
receptor stimulation in cerebellar granule cells [139] and in
spinal cord cultures [140].

It is of note that, twenty-four hours after permanent
MCAo, the A

2A antagonist, SCH58261, also reduces gene c-
fos expression in glial cells [62]. Products of the Fos family
are players in inducing inflammatory gene expression in glial
cells [141].

3. Adenosine A2A Receptor Agonists Protect
against Secondary Injury

3.1. A2A Receptor Agonists Are Protective against Ischemic
Damage. While many data support that A

2A receptor antag-
onists protect against central excitotoxicity, the protective
effect of A

2A receptor agonists appears attributable to dif-
ferent mechanisms. The A

2A receptor antagonist ZM241385
administered repeatedly (1mg/kg i.p.) in the 12 hours after
traumatic brain injury was protective 15min after trauma
when cerebro spinal fluid (CSF) glutamate concentration
rose; conversely, the A

2A receptor agonist, CGS21680, admin-
istered repeatedly (0.1mg/kg i.p.) in the 12 hours after trauma
was protective 3 hours after trauma when CSF glutamate
concentrations were down [142].

A protective role of adenosine A
2A receptor in hypoxia/

ischemia was demonstrated in newborn rodents. A
2A recep-

tor KO neonatal mice show aggravated hypoxic/ischemic
injury in comparison to wild-type mice [143] and, in
immature brain forebrain slices, it was demonstrated that
cannabinoids induce robust neuroprotection through both
CB(2) and A

2A adenosine receptors [144]. Most recently
it was demonstrated that A

2A receptor KO mice subjected
to chronic cerebral hypoperfusion by permanent stenosis
of bilateral common carotid artery show impairment in
working memory, increased demyelination, proliferation of
glia, and increased levels of proinflammatory cytokines [145].
In adult gerbil, a protective effect of adenosine A

2A receptor
agonists was reported by Von Lubitz et al. [49] who demon-
strated that the A

2A receptor agonist, APEC, administered
systemically before a global 10min ischemia, ameliorated
recovery of blood flow and animal and neuron survival.
Moreover Sheardown and Knutsen [45] demonstrated that
a high dose of the selective A

2A receptor agonist, CGS21680

(10mg/kg i.p.), administered after 5min of global ischemia
in gerbil, exhibited highly significant protection against
neuronal loss, but was inactive at 3mg/kg. In these two
works in adult gerbils, adenosine agonists were administered
before ischemia or at a high dose. In considering translation
to clinic, a main problem of A

2A receptor agonists is their
cardiovascular effect: adenosine A

2A receptors located on
vase smooth muscle and endotelial cells exert a vasodila-
tory effect [146]. Consistently A

2A receptor agonists might
induce hypotension and increase hearth rate. Schindler and
coworkers [147, 148] reported that the decrease of blood
pressure induced by 0.5mg/kg i.p. CGS21680 in conscious
rats is most probably mediated in the periphery, while
the increase of heart rate is mediated at central level. We
recently demonstrated that the selective A

2A receptor agonist,
CGS21680, at dose of 0.1mg/kg i.p., increased heart rate
only in the first hour after administration, but no effect on
blood pressure or on heart rate was observed at the lower
dose of 0.01mg/kg [46]. Relevantly our recent experiments
have demonstrated that the A

2A receptor agonist, CGS21680,
administered twice/day for 7 days (chronic protocol) at dose
of 0.01 and 0.1mg/kg, starting 4 hours after transient (1
hour) MCAo, induced protection from neurological deficit,
weight loss, cortical infarct volume, myelin disorganization
and glial activation [46]. Protective effect is exerted only
when CGS21680 is chronically administered. In fact the A

2A
receptor agonist administered at the same dose (0.1mg/kg)
but in a shorter therapeutic window (4 and 20 hours after
induction of MCAo, subchronic protocol) has not reduced
the infarct volume 24 hours after permanent MCAo nor 7
days after transient MCAo (unpublished data; see Table 2).
The protective effects of chronic administration of CGS21680
at dose of 0.01 and 0.1mg/kg neither can be attributed to
changes in the cardiovascular parameters either at peripheral
or central level nor can be attributed to direct effects on
motility because CGS21680 at these low doses does not affect
motor behavior of rats [149].

Several mechanisms might account for protection by A
2A

receptor stimulation by direct effects on brain cells. In a
rat model of intracerebral hemorrhage, CGS21680 admin-
istered directly into the striatum immediately prior to the
induction of intracerebral hemorrhage reduces parenchymal
neutrophile infiltration and tissue damage: an effect that
might be mediated by inhibition of TNF-𝛼 expression [150].
Moreover, activation of central A

2A receptors is known to
increase expression and release of neurotrophic factors [151]
as NGF in microglia [152], BDNF in mice hippocampus
[153], in rat cortical neurons [154], and in primary cultures
of microglia [121], and GDNF in striatal neurons [155].
Consistently it was recently demonstrated that in vivo chronic
oral administration of the A

2A receptor antagonist, KW-
6002, decreases both mRNA and protein levels of BDNF
receptor (TrkB-FL) and its signaling in the hippocampal CA1
area [156]. The increase in neurotrophic factor expression
by adenosine A

2A receptor stimulation may contribute to
restore neurological functions and cerebral damage after
brain ischemia. We must also remember that adenosine is
implicated in cerebral blood flow regulation as a vasodilator
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Table 2: Effect of A2A receptor agonist, CGS21680, in acute and delayed phase of stroke.

Drug
24 h after pMCAo 7 days after tMCAo

Infarct volume (mm3) Treatment Infarct volume (mm3)
Cortex Striatum Cortex Striatum

Vehicle 69.43 ± 1.87 46.03 ± 2.7 Subchronic 75.1 ± 5.1 28.4 ± 2.2
Chronic 76.2 ± 4.3 31.3 ± 2.6

CGS21680 61.37 ± 8.26 45.68 ± 2.6
Subchronic 0.1 62.7 ± 5.8 30.5 ± 2.5
Chronic 0.1 48.6 ± 9.5# 27.3 ± 1.7
Chronic 0.01 51.9 ± 10.4# 20.9 ± 3.8

Data are the mean ± S.E.M. of 𝑛 = 6–8 animals. In the model of permanent MCAo (pMCAo), CGS21680 was administered at the dose of 0.1mg/kg (i.p.) after
4 h and 20 h from ischemia induction. The infarct volume was evaluated 24 h thereafter.
In the model of transient MCAo (tMCAo), CGS21680 was administered in subchronic protocol 4 h and 20 h after ischemia at the dose of 0.1mg/kg (i.p.) and in
chronic protocol starting 4 h after ischemia, at the dose of 0.01 or 0.1mg/kg (i.p.), twice/day for 7 days. The infarct volume was evaluated 7 days after MCAo.
One-way ANOVA: #𝑃 < 0.05 versus chronic vehicle-treated rats.
Effects of CGS21680 chronically administered are published [46].

agent acting on A
2A receptors on endothelial cells of brain

vessels, thus favouring brain perfusion [146].
Several lines of evidence in excitotoxicity and spinal

cord trauma in vivo models do not support, however,
that protection by A

2A receptor agonists is exerted at A
2A

receptors located on CNS cells. Jones and coworkers [157]
showed that peripheral administration of the A

2A recep-
tor agonist, CGS21680, protected the hippocampus against
kainate-induced excitotoxicity while the direct injection of
CGS21680 into the hippocampus failed to afford protection
[157]. Similar results were obtained after spinal cord trauma
where CGS21680 protected from damage when injected
systemically but not when centrally injected into the injured
spinal cord [158].

3.2. A
2A Receptor and Neuroinflammation. Minutes to hours

after onset of cerebral ischemia, a cascade of inflammatory
events is initiated through activation of resident cells [159].
The early massive increase in extracellular glutamate after
ischemia has a main role in activating resident immune cells
and producingmediators of inflammation [6]. Immunity and
inflammation are key elements of the pathology of stroke.
Recent developments have revealed that stroke engaged
both innate and adaptative immunity. Molecules generated
by cerebral ischemic tissue activate components of innate
immunity, promote inflammatory signaling, and contribute
to tissue damage. The A

2A adenosine receptors are expressed
both on cells of innate (microglia, macrophages, mast cells,
monocytes, dendritic cells, and neutrophils) and on cells of
adaptive (lymphocytes) immunity [160, 161]. Soon after exci-
totoxic phenomena, microglial cells initiate a rapid change in
their phenotype [60, 119] that is referred to as microglial cell
activation [117]. Microglia typically respond with prolifera-
tion, migration, and production of inflammatory substances
to viral or bacterial stimuli or to cell damage anddegeneration
[121, 162] and, by producing cytotoxic substances, cytokines
(TNF-𝛼, IL-1𝛽) [119, 120, 163], and chemokines, contribute
to the inflammatory response that follows ischemic insult,
further exacerbating brain damage [6]. Proinflammatory
mediators and oxidative stress contribute to the endothelial
expression of cellular adhesion molecules [7, 8] and to

an altered permeability of the blood-brain barrier (BBB)
that promotes the infiltration of leukocytes (neutrophils,
lymphocytes, and monocytes) [164] in the brain ischemic
tissue.

In amodel of transient focal cerebral ischemia induced by
MCAo, definite microglial activation is present after 12 hours
[165]. After ischemia, although reperfusion is necessary for
tissue survival, it also contributes to additional tissue damage.
Under reperfusion, there is an initial increase of BBB perme-
ability (see [166]) followed by a biphasic increase at 5 and 72
hours [167]. Changes in BBB permeability are responsible for
cell infiltration.The nature of BBB permeability is dependent
on the duration of ischemia, the degree of reperfusion,
and the animal stroke model. Studies in the human brain
after ischemic stroke confirm that neutrophils intensively
accumulate in the regions of cerebral infarction [6, 168].
Selective immunostaining for granulocytes, by anti-HIS-48
antibody, shows numerous infiltrated cells in ischemic striatal
and cortical core two days after tMCAo, while seven days
thereafter infiltrated blood cells were not anymore observed
[46].Three days after tMCAo themajority of immune cells are
neutrophils and at less extent lymphocytes [165, 169]. After
tMCAo, a peak of neutrophil infiltration occurs at 6 and
48 hours thereafter [169]. Infiltrated neutrophils expressing
cytokines and chemotactic factors promote expansion of the
inflammatory response in ischemic tissue [160]. Correlations
among neutrophil accumulation, severity of brain tissue
damage, and neurological outcome have been reported by
Akopov et al. [168]. Neuroinflammation is now recognized as
a predominant mechanism of secondary progression of brain
injury after ischemia.

Two days after MCAo, chronic treatment with the A
2A

adenosine receptor agonist, CGS21680, has definitely reduced
the number of infiltrated blood cells in the ischemic areas
[46]. These results are in agreement with previous observa-
tions that A

2A receptor agonists systemically administered
after spinal cord injury in mice protect from neurological
and tissue damage, reduce inflammation parameters and
blood cell infiltration [170–172]. An unequivocal role of A

2A
receptor in controlling blood cell infiltration was demon-
strated also in a model of autoimmune encephalomyelitis:
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A
2A receptor KOmice displayed increased inflammatory cell

infiltration, higher neurological deficit scores and increase of
different neuroinflammation parameters [173].

A bulk of evidence indicate that bone marrow-derived
cells (BMDCs) are targets of A

2A receptor agonist protective
effects. Li et al. [174] demonstrated that the protective effect
against motor deficits of A

2A receptor agonists, systemically
administered after spinal trauma, is lost in mice lacking
A
2A receptors on BMDCs, but is restored in A

2A receptor
KO mice reconstituted with A

2A receptors on BMDCs.
Many studies have reported that selective activation of
A
2A receptors directly on blood cells, including platelets,

monocytes, somemast cells, neutrophils, and T cells, inhibits
proinflammatory responses [175–177], reduces production
of adhesion cell factors, and reduces neutrophil activa-
tion, thereby exerting antioxidant and anti-inflammatory
effects [178]. A

2A receptor activation is known to reduce
ischemia-induced rolling, adhesion, and transmigration of
various peripheral inflammatory cells (such as lymphocytes,
neutrophils) [160]. Overall results suggest that protection
due to A

2A receptor agonists systemically and repeatedly
administered after brain ischemia is strongly exerted at
peripheral BMDCs resulting ultimately in reduced leukocyte
infiltration and reduced inflammatory cascade at the central
level. Consistentwith its anti-inflammatory and immunosup-
pressive role, the protective effect of adenosine A

2A recep-
tor stimulation has been observed in different pathologies
where inflammatory process has an important role in tissue
damage [124, 172, 179, 180] such as ischemia/reperfusion
liver injury [181], spinal cord trauma [158], rheumatoid
arthritis (RA) [182], acute lung inflammation [183], intestine
ischemia/reperfusion injury [184], and experimental autoim-
mune encephalomyelitis [185].

By controlling brain neuroinflammation and BDNF sig-
nalling [186, 187], A

2A receptors might also have a poten-
tial for synaptic plasticity and neurogenetic processes after
ischemia. Neuroinflammation in fact is known to result in
inhibition of adult neurogenesis [188].

The notion that A
2A receptors on BMDCs are the target

of the protective effects of A
2A receptor agonists should be

reconciled with the information that selective inactivation
of A
2A receptors on BMDCs (wild-type mice transplanted

withA
2A receptor KObonemarrow cells) attenuates ischemic

brain injury, inhibits inflammatory cytokines production,
and increases the expression of anti-inflammatory cytokines
in the ischemic brain 22 hours after 2 hours of focal ischemia
induced by MCAo. This neuroprotection however cannot be
explained by altered infiltration of the major inflammatory
cells, neutrophils and microglial cells, in the ischemic brain
and remains to be clarified [189].

4. Caffeine Consumption and Stroke Incidence

It has been reported that acute coffee consumption is
associated with increased risk of ischemic stroke in the
subsequent hour in infrequent coffee drinkers (<1 cup)
[190]. The increased risk might be related within hours after
consumption to acute deleterious effects of the unselective

A
1
/A
2A receptor antagonist, caffeine, that increases circulat-

ing norepinephrine [191], rises mean blood pressure [192],
increases arterial stiffness [193], and impairs endothelium-
dependent vasodilation [194].

More studies have instead investigated the effect of
habitual consumption of caffeine on the risk of stroke.
Controversial results, mainly in relation to the dose intake,
were obtained [195]. A study showed that the long-termmod-
erate consumption of coffee can provide protective effects
(reducing the risk of both coronary heart disease and stroke
by 10%–20%) in healthy individuals yet detrimental effects
when intakewas high [196]. In agreement, Larsson andOrsini
[197] reported that it is the moderate coffee consumption
(3-4 cups/day) that reduces the risk of stroke. Additionally,
one study showed that coffee consumption (more than 4
cups/day) in men was not associated with increased risk of
stroke [198] while studies performed in Swedish and USA
women have indicated that habitual intake of coffee (from
1 to 5 or more cups/day) was associated with a statistically
significant lower risk of total stroke [199], cerebral infarction,
and subarachnoid hemorrhage but not intracerebral hemor-
rhage [200]. In contrast, an epidemiological study showed
that neither the high (more than 4 cups/day) nor the low
doses (less than 2 cups/day) have the most dangerous effect
but it is the intermediate consumption (2–4 cups/day) of
coffee which can be the most harmful [201]. Thus the effect
of different consumption of caffeine in reducing the risk of
ischemic stroke still demand further study.

5. A2A Receptor Based Therapies in
Cerebral Ischemia

Evidence reported up to now indicate that antagonism or
stimulation of A

2A receptors might be a protective strategy
secondary to the time-related development of phenomena
typical of ischemia. After ischemia, extracellular glutamate
concentrations remain elevated at least up to 4 hours after
permanent MCAo [15, 59] and up to 12 hours after brain
trauma [142]. The massive increase of glutamate excitotoxi-
city triggers acute tissue injury and the start of an inflamma-
tory cascade that is stressed by blood cell infiltration. While
central A

2A receptors in the first hours after ischemia are
critical in increasing glutamate extracellular concentrations,
A
2A receptors on blood cells are critical hours and days after

ischemia in decreasing activation, adhesion, and infiltration
of blood cells in brain parenchyma. Altogether, evidence
suggests that A

2A receptor antagonists provide protection
centrally by reducing excitotoxicity, while A

2A receptor ago-
nists provide protection by acting on blood cells controlling
massive infiltration and neuroinflammation in the hours after
brain ischemia. In agreement the lack of detecting a protec-
tion by A

2A receptor antagonism at later time after stroke [53,
our unpublished observation] might be attributable to the
fact that protection is overwhelmed by subsequent damage
brought about by blood cell infiltration that starts 6 hours
after ischemia and peaks at 2 days thereafter [46, 165, 169].

These observations highlight that a therapeutic strategy
with adenosine A

2A receptor antagonists/agonists should be
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carefully evaluated in terms of time after ischemia. When
considering use of adenosine A

2A receptor active drugs to
protect against brain ischemia, attention should be given to
administration time after injury and to the dose used. In fact
A
2A receptors located on endothelial cells mediate important

effect on systemic blood pressure and heart frequency. How-
ever both A

2A receptor antagonists [58, 59, 61] and agonists
[46] are protective in ischemia models at doses that do not
modify blood pressure nor the heart frequency.

The design and development of new adenosine A
2A

receptor ligands is an area of intense research activity [202,
203].

6. Conclusions

Under neurodegenerative conditions involving ischemia,
excitotoxicity is a first phenomenon.Thereafter, the interplay
of resident glial cells with infiltrating peripheral BMDCs
produces neuroinflammation. On the light that the role of
adenosine A

2A receptors in ischemia is not univocal, it is
important to clarify the windows in which A

2A receptors
play a noxious or protective role after ischemia. This will
be important to devise a correct therapeutic strategy with
antagonists and/or agonists at this receptor. Considering
translation to clinical practice, a very short time-window
of minutes/few hours would be available for A

2A receptor
antagonists after stroke, while a focus on inflammatory
responses to stroke provides a wide therapeutic time-window
of hours and even days after stroke for adenosineA

2A receptor
agonists. A novel therapeutic strategy could involve, when
possible, early treatment with A

2A receptor antagonists to
reduce excitotoxicity followed by adenosine A

2A receptor
agonist treatment for the control of later secondary injury.
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[143] U. Ådén, L. Halldner, H. Lagercrantz, I. Dalmau, C. Ledent,
and B. B. Fredholm, “Aggravated brain damage after hypoxic
ischemia in immature adenosine A

2A knockout mice,” Stroke,
vol. 34, no. 3, pp. 739–744, 2003.

[144] A. Castillo, M. R. Tolón, J. Fernández-Ruiz, J. Romero, and J.
Martinez-Orgado, “The neuroprotective effect of cannabidiol
in an in vitro model of newborn hypoxic-ischemic brain
damage in mice is mediated by CB

2
and adenosine receptors,”

Neurobiology of Disease, vol. 37, no. 2, pp. 434–440, 2010.
[145] W. Duan, L. Gui, Z. Zhou et al., “Adenosine A

2A receptor defi-
ciency exacerbates white matter lesions and cognitive deficits
induced by chronic cerebral hypoperfusion in mice,” Journal of
the Neurological Sciences, vol. 285, no. 1-2, pp. 39–45, 2009.

[146] J. W. Phillis, “Adenosine and adenine nucleotides as regulators
of cerebral blood flow: roles of acidosis, cell swelling, and KATP
channels,” Critical Reviews in Neurobiology, vol. 16, no. 4, pp.
237–270, 2004.

[147] C.W. Schindler, M. Karcz-Kubicha, E. B.Thorndike et al., “Lack
of adenosine A

1
and dopamine D

2
receptor-mediated modula-

tion of the cardiovascular effects of the adenosine A
2A receptor

agonist CGS 21680,” European Journal of Pharmacology, vol.
484, no. 2-3, pp. 269–275, 2004.

[148] C. W. Schindler, M. Karcz-Kubicha, E. B. Thorndike et al.,
“Role of central and peripheral adenosine receptors in the
cardiovascular responses to intraperitoneal injections of adeno-
sine A

1
and A

2A subtype receptor agonists,” British Journal of
Pharmacology, vol. 144, no. 5, pp. 642–650, 2005.

[149] J. Wardas, J. Konieczny, and M. Pietraszek, “Influence of CGS
21680, a selective adenosine A

2A agonist, on the phencyclidine-
induced sensorimotor gating deficit and motor behaviour in
rats,” Psychopharmacology, vol. 168, no. 3, pp. 299–306, 2003.

[150] M. Mayne, J. Fotheringham, H. J. Yan et al., “Adenosine
A
2A receptor activation reduces proinflammatory events and

decreases cell death following intracerebral hemorrhage,”
Annals of Neurology, vol. 49, no. 6, pp. 727–735, 2001.

[151] A. M. Sebastião and J. A. Ribeiro, “Triggering neurotrophic fac-
tor actions through adenosine A

2A receptor activation: implica-
tions for neuroprotection,” British Journal of Pharmacology, vol.
158, no. 1, pp. 15–22, 2009.

[152] K. Heese, B. L. Fiebich, J. Bauer, and U. Otten, “Nerve growth
factor (NGF) expression in rat microglia is induced by adeno-
sine A

2A-receptors,”Neuroscience Letters, vol. 231, no. 2, pp. 83–
86, 1997.

[153] M. T. Tebano, A. Martire, R. L. Potenza et al., “Adenosine A
2A

receptors are required for normal BDNF levels and BDNF-
induced potentiation of synaptic transmission in the mouse
hippocampus,” Journal of Neurochemistry, vol. 104, no. 1, pp.
279–286, 2008.

[154] S. J. Jeon, S. Y. Rhee, J. H. Ryu et al., “Activation of adenosineA
2A

receptor up-regulates BDNF expression in rat primary cortical
neurons,” Neurochemical Research, vol. 36, no. 12, pp. 2259–
2269, 2011.

[155] C. A. R. V. Gomes, S. H. Vaz, J. A. Ribeiro, and A. M. Sebastião,
“Glial cell line-derived neurotrophic factor (GDNF) enhances
dopamine release from striatal nerve endings in an adenosine
A
2A receptor-dependent manner,” Brain Research, vol. 1113, no.

1, pp. 129–136, 2006.
[156] A. Jerónimo-Santos, V. L. Batalha, C. E. Müller et al., “Impact

of in vivo chronic blockade of adenosine A
2A receptors on the

BDNF-mediated facilitation of LTP,” Neuropharmacology, vol.
83, pp. 99–106, 2014.

[157] P. A. Jones, R. A. Smith, and T. W. Stone, “Protection against
hippocampal kainate excitotoxicity by intracerebral administra-
tion of an adenosine A

2A receptor antagonist,” Brain Research,
vol. 800, no. 2, pp. 328–335, 1998.

[158] I. Paterniti, A. Melani, S. Cipriani et al., “Selective adenosine
A
2A receptor agonists and antagonists protect against spinal

cord injury through peripheral and central effects,” Journal of
Neuroinflammation, vol. 8, article 31, 2011.

[159] R. Macrez, C. Ali, O. Toutirais et al., “Stroke and the immune
system: from pathophysiology to new therapeutic strategies,”
The Lancet Neurology, vol. 10, no. 5, pp. 471–480, 2011.
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[180] A. Choukèr, M. Thiel, D. Lukashev et al., “Critical role of
hypoxia and A

2A adenosine receptors in liver tissue-protecting
physiological anti-inflammatory pathway,”Molecular Medicine,
vol. 14, no. 3-4, pp. 116–123, 2008.

[181] Y. J. Day, M. A. Marshall, L. Huang, M. J. McDuffie, M. D.
Okusa, and J. Linden, “Protection from ischemic liver injury
by activation of A

2A adenosine receptors during reperfusion:
inhibition of chemokine induction,” The American Journal of
Physiology—Gastrointestinal and Liver Physiology, vol. 286, no.
2, pp. G285–G293, 2004.

[182] E. Mazzon, E. Esposito, D. Impellizzeri et al., “CGS 21680, an
Agonist of theAdenosine (A

2A) receptor, reduces progression of
murine type II collagen-induced arthritis,” Journal of Rheuma-
tology, vol. 38, no. 10, pp. 2119–2129, 2011.

[183] D. Impellizzeri, R. di Paola, E. Esposito et al., “CGS 21680, an
agonist of the adenosine (A

2A) receptor, decreases acute lung
inflammation,” European Journal of Pharmacology, vol. 668, no.
1-2, pp. 305–316, 2011.

[184] R. Di Paola, A. Melani, E. Esposito et al., “Adenosine
A
2A receptor-selective stimulation reduces signaling pathways

involved in the development of intestine ischemia and reperfu-
sion injury,” Shock, vol. 33, no. 5, pp. 541–551, 2010.

[185] J. Xu, S. Guo, Z. Jia, S. Ma, Z. Li, and R. Xue, “Additive
effect of prostaglandin E

2
and adenosine in mouse experimen-

tal autoimmune encephalomyelitis,” Prostaglandins and Other
Lipid Mediators, vol. 100-101, no. 1, pp. 30–35, 2013.
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