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Sodium valproate (VPA) is a broad-spectrum anticonvulsant that is e�ective

both in adults and children su�ering from epilepsy, but it causes psychiatric and

behavioral side e�ects in patientswith epilepsy. In addition, 30%of patientswith

epilepsy develop resistance to VPA. At present, regular physical exercise has

shown many benefits and has become an e�ective complementary therapy

for various brain diseases, including epilepsy. Therefore, wewonderedwhether

VPA combined with exercise would be more e�ective in the treatment of

seizures and associated co-morbidities. Here, we used a mouse model with

kainic acid (KA)-induced epilepsy to compare the seizure status and the

levels of related co-morbidities, such as cognition, depression, anxiety, and

movement disorders, in each group using animal behavioral experiment and

local field potential recordings. Subsequently, we investigated the mechanism

behind this phenomenon by immunological means. Our results showed that

low-intensity exercise combined with VPA reduced seizures and associated

co-morbidities. This phenomenon seems to be related to the Toll-like

receptor 4, activation of the nuclear factor kappa B (NF-κB), and release

of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), and IL-6. In brief,

low-intensity exercise combined with VPA enhanced the downregulation of

NF-κB-related inflammatory response, thereby alleviating the seizures, and

associated co-morbidities.
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seizures, low-intensity exercise, sodium valproate, co-morbidities, TLR4/NF-κB
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Introduction

Epilepsy is a brain disorder that affects over 70 million

people worldwide. This disorder is characterized by the

abnormal discharge of neurons (1, 2). Currently, antiepileptic

drugs, such as sodium valproate (VPA), are the most common

form of treatment. After more than a century from its discovery,

as a result of its anticonvulsant effects, VPA is still a drug of

choice for epilepsy in children and adults with either general or

focal seizures (3). However, antiepileptic drugs cause psychiatric

and behavioral side effects (4, 5) and drug resistance in∼ 30% of

patients with epilepsy (6). Therefore, it is urgent to find a non-

pharmacological intervention that can reduce the development

rate of drug-resistant epilepsy and the side effects associated

with antiepileptic drugs. Noteworthily, physical exercise is a

complementary therapy with beneficial effects for epilepsy

(7–9). The beneficial effects of low-intensity physical exercise

on the brain have been demonstrated in mouse models of

disorders like Alzheimer’s disease (AD), stroke, and depression

(10–13). Clinical studies have found that more than half of

the patients never experience a seizure during or after physical

exercise, including 10% of patients who have frequent seizures

(14); therefore, physical exercise seems to reduce the severity

of seizures. Therefore, we evaluated whether low-intensity

physical exercise combined with VPA (LE-VPA) would be more

effective for treating seizures and other epilepsy-associated co-

morbidities in mice.

Epilepsy pathogenesis is complex, but evidence suggests an

increased number of microglial cells in the Cornu Ammonis

1 (CA1) and Cornu Ammonis 3 (CA3) layers of the

hippocampus in patients with epilepsy (15–17). Therefore,

microglial-mediated neuroinflammation may be involved in

its pathogenesis (18, 19). Microglial cells are brain-resident

immune cells that regulate mechanisms essential for cognitive

functions. A variety of receptors are distributed on the surface

or in the cytoplasm of microglial cells (20, 21), including

Toll-like receptor 4 (TLR4). TLR4 belongs to one of the

subfamilies of pattern recognition receptors that recognize

invading pathogens and endogenous harmful stimuli, thus,

activating the transcription factor nuclear factor κB (NF)-κB

pathway (22), and releasing large amounts of inflammatory

proteins (e.g., interleukin 1-β [IL-1β], interleukin 6 [IL-6],

tumor necrosis factor α [TNF-α], and chemokines) (23–25).

VPA induces epigenetic signaling that involves NF-κB-related

inflammatory responses in the frontal cortex and hippocampus

(26, 27). Meanwhile, it has been reported that physical exercise

alleviates inflammatory lung injury (28) and osteoarthritis (29)

by inhibiting NF-κB signaling. Therefore, we studied whether

LE-VPA alleviates seizures and associated co-morbidities by

inhibiting TLR4/NF-κB-related inflammatory responses.

In this study, we aimed to examine whether LE-VPA

exerted an ameliorative effect in a kainic acid (KA) mouse

model for seizures and associated co-morbidities (i.e., cognitive

dysfunction, motor impairment, depression, and anxiety). In

addition, we hypothesized that the positive effects of LE-VPA

were associated with the inhibition of TLR4/ NF-κB and lower

expression levels of IL-1β, TNF-α, and IL-6.

Materials and methods

Animals

Eighty male, 2-month-old C57BL/6 mice (Jiesijie Laboratory

Animal, Shanghai, China), weighing 20–25 g, were used. Except

for a control group of eight mice, epilepsy was induced in the

remaining mice by intraperitoneal injection of kainic acid (KA;

30 mg/kg) according to body weight. The symptoms of injected

mice were judged according to the Racine scale, and the mice

that were successfully modeled were divided into four groups

(30), with eight mice in each group: model group, drug group,

runner group, and running combined with drug treatment

group (combination group). In our experiment, out of the 60

mice that received KA injection, 32 survived, with a death rate of

around 50% due to KA. All animal experiments were performed

according to the National Institutes of Health (NIH) Guide for

the Care and Use of Laboratory Animals (NIH Publication No.

80–23, revised 1996) and were approved by the Institutional

Animal Care and Use Committee of Shanghai University of

Traditional Chinese Medicine.

Treatment program

In this study, the mice performed low-intensity physical

exercise on treadmills (SANS, SA 101). It has been proven

that the average maximal speed of young mice is 70 cm/s (42

m/min), and low-intensity exercise is defined as around 35–40%

(14.7 m/min−16.8 m/min) of the maximal capacity (31). In

addition, we observed that the mice ran at 15 m/min without

any discomfort. Therefore, the maximal intensity of the mouse

treadmill was set to 15 m/min. Runners were assigned to run

5 m/min for 10min on the first day, and the running speed

was gradually increased to 15 m/min for 20min from second to

seventh day and 15 m/min for 60min from eighth to 28th day.

The treadmill exercise was performed 5 days per week.

The drug group and the combination group received an

intraperitoneal injection of VPA (Sigma, St Louis, MO, USA)

dissolved in 0.9% NaCl, at 30 mg/kg per day, for 28 days. The

model group were injected with the same volume of normal

saline daily for 4 weeks (Table 1).

Video monitoring

Cameras were used to monitor the mice moving freely

in an observation bucket. Each mouse was placed in a
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TABLE 1 Exercise and treatment program.

Group Pretreatment Exercise VPA (ip) Saline (ip) Duration (day)

Control - - - + 28

Model group KA, ip - - + 28

Drug group KA, ip - + - 28

Runner group KA, ip + - - 28

Combination group KA, ip + + - 28

transparent observation bucket equipped with a surveillance

camera (Shanghai JiLian Web Tech Ltd., Shanghai, China) for

9 h for continuous observation. Using the Racine scale, the

duration and frequency of epileptic seizures in each mouse

during this period were analyzed and recorded.

Morris water maze

TheMorris water maze (MWM) (32) is a circular pool with a

diameter of 120 cm and a height of 60 cm, a water level of 35 cm,

and a temperature of 22–24 ◦C. The mice were trained on the

MWM with one trial per day for 6 days. A platform was hidden

1 cm below the surface of the water, which was made opaque

with white non-toxic paint. Each trial lasted until the mouse

found the platform or for a maximum of 60 s. At the end of each

trial, mice were allowed to rest on the platform for 60 s. The

time to reach the platform (latency), length of the swim path,

and swim speed were recorded semi-automatically using a video

tracking system (Shanghai JiLian Web Tech Ltd.).

Y maze

The Y maze (Shanghai JiLian Web Tech Ltd.) has three

arms in total, with a 120◦ angle between the two arms (33).

An infrared camera tracking system was installed above the

maze to record the process, using supporting software. In the

experiment, the mice were placed toward the center of the Y

maze from the end of one arm and were allowed to explore

freely for 10min. In the spontaneous alternation reaction,

the complete entry of the body of the mouse into the arm

was recorded as a standard entry, and the continuous entry

of the animal into the three different arms was defined as

successful exploration.

Alternation rate (%) = correct entry time / (total entry

times-2)× 100.

Open-field testing

The open-field test is used to measure anxiety-like behavior

in animals. This test used a camera to measure the movement of

the test animal in the peripheral and central zones (20 × 20 ×

20 cm) of a 42 × 42 × 42 cm polyvinyl chloride box for 10min.

A video tracking program (Stoelting Co., Wood Dale, IL, USA)

was used to record and measure the total distance traveled, the

time spent in the center of the open-field arena, and the distance

moved in the center of the open-field arena in each trial. The

time spent in the center and distance traveled in the center of the

arena were used as measures of anxiety-like behavior (34, 35).

Catwalk gait analysis

The Catwalk System (Catwalk XT, Noldus Information

Technology, Wageningen, Netherlands) consists of an

enclosed walkway (glass plate) illuminated by fluorescent light.

The system was equipped with a high-speed color camera

connected to a computer using appropriate detection software

(CatwalkXT9.1). Animals were individually placed on the

walkway, and each animal was allowed to move freely in both

directions. To detect all parameters used in the experiments, the

camera gain was set to 20, and the detection threshold was set

to 0.1. All runs with a run duration between 0.50 and 5.00 s for

a complete walkway and a maximum allowed speed variation

of 60% were considered as successful runs. For each animal,

three compliant runs were performed per trial. Compliant runs

were classified for all limbs and were statistically analyzed. The

software can detect several dynamic parameters of an animal’s

walk (36): we focused on swing speed (average stride time),

body speed (distance traveled/time), print area (measurements

of complete paw prints), and mean intensity (average pressure

applied by single-paw contact with the floor).

Local field potential

Mice were deeply anesthetized and placed in a stereotaxic

frame (Narishige, Tokyo, Japan). Multi-channel electrodes were

inserted into the hippocampus of mice based on a mouse brain

map (anteroposterior: −2.0mm posterior to bregma, ventral:

1.5mm ventral to the dura surface, and lateral: 1.5mm lateral

to the skull midline). After the mice woke up from anesthesia

and moved freely, the local field potential (LFP) recordings were

obtained. Data were collected using an in vivo multi-channel
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recording system, amplified 1,000 times by a preamplifier, with

a wave amplitude range of −2 to +2V and a filtering range

of 1.6–100Hz. The LFP recording frequency was 1,000Hz, and

the recording time was not <30min. LFP was exported in Pl2

format, and the Offline Sorter V4 software was used for visual

previews. The LFP analysis selected the same channel using

MATLAB (MathWorks, Natick, MO, USA) to export data. Five

different frequencies of circadian rhythms were decomposed:

δ (0.4–4Hz), θ (4–8Hz), α (8–15Hz), β (15–30Hz), and γ

(> 30Hz). The Welch Hamming window and fast Fourier

transformmethods were used to calculate the frequency domain

information of the LFP. The power spectral density (PSD) was

calculated as follows:

∫ +∞

−∞
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Immunofluorescence and
immunohistochemistry

After acute anesthesia with chloral hydrate, mice were

transcardially perfused with ice-cold 4% paraformaldehyde

(PFA). The dissected brains were post-fixed overnight in 4%

PFA and were then transferred to 30% sucrose buffer for

48 h. Subsequently, the brains were frozen in Tissue-Tek OCT

compound (Sakura Finetek, Torrance, CA, USA) and sliced at

20µm using a cryostat (Leica Biosystems, Nußloch, Germany).

The sections were washed with phosphate-buffered saline (PBS,

pH 7.4), incubated with 0.3% Triton in PBS at room temperature

for 0.5 h, and incubated with blocking solution (Beyotime

Biotech, Shanghai, China) at room temperature for 1 h. Then,

the sections were treated with appropriate primary antibodies

at a suitable concentration in blocking solution at 4◦C for

overnight. After washing with PBS three times, the sections

were incubated with secondary antibody at 37◦C for 1 h. After

washing again with PBS three times, the sections were incubated

with DAPI (Beyotime, 1:1) at room temperature for 10min. The

sections were then washed, mounted, and covered with a lid.

The images were analyzed using Image-Pro Plus 6.0 software

(Media Cybernetics).

The steps of immunohistochemical procedure on

the first day of experiment were equivalent to those

of immunofluorescence. On the next day, the steps of

immunohistochemical procedure were different. First,

brain slices were incubated with secondary antibodies

and stained with 3, 3’-diaminobenzidine (DAB) using the

SABC and DAB staining kit (Wellbio, Shanghai, China),

according to the instructions. Then, hematoxylin was used for

counterstaining. The differentiation solution was terminated.

Finally, dehydration, transparency, sealing, and observation

were performed. A light microscope (ECLIPSE E600; Nikon,

Tokyo, Japan) was used to observe the sections, and at least five

panoramic images of the hippocampus were taken from each

group. Image-pro Plus 6.0 software was used to analyze the

intensity of staining areas in each group (Media Cybernetics,

MD, USA).

The primary antibodies used in this study were rabbit

anti-IL-1β antibody (Abcam, Cambridge, MA, USA;

EPR23851-127; 1:100), rabbit anti-TNF-α (Abcam, EPR20972;

1:100), mouse anti-iba1 (Abcam, EPR16589; 1:100), rabbit

anti-IL-6 (Abmart, Shanghai, China; P05231; 1:100), rabbit

anti-NLRP3 (Affinity, Shanghai, China; DF7438; 1:100), rabbit

anti-TLR4 (Affinity, Shanghai, China; AF7017; 1:100), and

rabbit anti-NF-Kb-p65 (Affinity, Shanghai, China; AF5006;

1:100). The secondary antibodies used were Alexa Fluor 488

goat anti-mouse (Abcam, 1:200) and Alexa Fluor 647 goat

anti-rabbit (Abcam,1:200).

Enzyme-linked immunosorbent assay

The mouse brains were dissected, and hippocampal tissues

were quickly removed on ice. Blood was washed away with pre-

cooled fresh PBS. Hippocampal tissues were homogenized in

PBS and centrifuged at 45,000 × g for 30min at 4◦C. We used

enzyme-linked immunosorbent assay (ELISA) kits to measure

cytokines including IL-1β, TNF-α, and IL-6, according to the

manufacturer’s protocols. The results were obtained using a

multifunction microplate meter.

Statistical analysis

Data were expressed as mean ± standard error of

the mean. Statistical differences were analyzed using two-

way analysis of variance or three-way analysis of variance

(followed by Tukey’s multiple comparison test). For multiple

comparisons, we selected “simple effect within row“ or ”main

column effect,” respectively, depending on the purpose, and

compared each column mean with every other column mean.

Data were considered significant at P < 0.05. Statistical

analyses were performed using GraphPad Prism (version 6.07,

GraphPad, San Diego, USA), Excel 2016 (Microsoft, WA),

and Adobe Photoshop CC 2018 (Adobe Systems, San José,

CA, USA).

Results

Experimental design

Mice were assigned to five groups (n = 8) according to

the experimental protocol. The animals were maintained under
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FIGURE 1

Flowchart of the experiment.

their respective experimental conditions for 28 days. Mice

were tested in behavioral experiments, and LFP recordings

were made between days 29 and 37. After sacrificing the

mice, we collected brain tissue for immunological experiments

(Figure 1).

LE-VPA provided better control of mild
seizures

Mice were intraperitoneally injected with KA and presented

with status epilepticus (SE) 15–30min later. After a latency of

14–21 days, mice presented with spontaneous epilepsy (37).

We used video cameras to track the number of seizures and

the latency of tonic–clonic seizures in each group for the

continuous 9-h video monitoring (Figure 2A). In the statistics,

the number of mild seizures (stages 2–3) (Figure 2B) in the three

treated groups showed different degrees of improvement (drug:

P < 0.001, runner: P < 0.01, combination: P < 0.001, n = 8),

and LE-VPA had greater advantages than VPA alone (P < 0.05).

The number of severe seizures (stages 4–5) (Figure 2C) showed

remission in only two groups that are treated with VPA

(drug: P < 0.001, combination: P < 0.001), and the effect of

running appeared to be modest (P > 0.05). The statistics of

seizure latency (Figure 2D) also showed a significant difference

among VPA-treated groups (drug: P < 0.001, combination:

P < 0.001), but there was no significant difference between

LE-VPA and VPA alone group (P > 0.05). Taken together,

LE-VPA therapy significantly reduced the number of mild

seizures in KA mice.

LE-VPA improved epilepsy and associated
co-morbidities like cognitive impairment,
depression, and anxiety

We also evaluated whether LE-VPA could alleviate the

cognitive impairment, depression, and anxiety that are

associated with epilepsy.

Mice in each group received the corresponding treatment

for 28 days, followed by MWM that was conducted for 6 days

(Figure 3A). During the first 5 days of the training period, the

software recorded the latency for each mouse which provided

evidence for spatial learning. The 6th day was the test period,

and the time to find the platform for the first time was recorded

as the latency on day 6. The time spent in the correct quadrant

represented memory retention. The latency of healthy mice

shortened over training, indicating that mice had a normal

spatial learning ability, while the latency ofmice in the KAmodel

group remained unchanged or was not significantly shortened,

indicating that epileptic mice had a spatial learning ability

disorder (Figure 3B). After 5 days of training, the experimental

performance of each group of mice on the last day was as

follows: The time to find the platform was approximately 20 s

shorter in the drug group than in the model group (P < 0.05,

n = 6), while that in the LE-VPA group was about 30 s shorter

(P < 0.001, n= 6). The difference between the drug and LE-

VPA groups was also significant (P < 0.05). We then compared

the duration that each group spent in the correct quadrant on

day 6 (Figure 3C). The model mice spent a shorter time in

the quadrant as compared to control mice, indicating memory

dysfunction (P < 0.001, n = 6). This could be improved by 5
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FIGURE 2

Seizure status of mice in each group. (A) A monitoring camera for continuous observation for 9 h. (B,C) The number of stages 2–3 and stages

4–5 seizures. (D) Latent period of tonic–clonic seizure in each group. Data were shown as mean ± SEM. ns > 0.05, *P < 0.05, ##
P < 0.01,

###
P < 0.001, comparison of the model group with each treated group (two-way ANOVA).

% after drug therapy alone (P < 0.05, n= 6). The improvement

effect of the LE-VPA therapy was more obvious: The time was

increased by 20% (P < 0.001). The effect of LE-VPA also differed

significantly from that of VPA alone in this respect (P < 0.05).

In the Y-maze task (Figure 3D), based on the mouse’s

movements, the software automatically calculated the rate

of alternation for each group, which represents the mouse’s

working memory (Figure 3E). Compared to control mice,

the spontaneous alternation rate was lower in the model

group (P < 0.001, n= 6). With drug alone and running alone

therapy, mice showed a 10% (both P < 0.05, n = 6)

increase in spontaneous alternation rates, respectively, whereas

combination group seemed to have a better effect (P < 0.001).

In addition, there was no significant difference between LE-VPA

and VPA alone (P > 0.05).

Next, the mice were subjected to an open-field test

(Figure 3F). Compared with control mice, KA mice moved

significantly less distance (P < 0.05, n = 8) and had depression-

like behavior (Figure 3G). After different ways of treatment, this

condition has been alleviated in runner and combination groups

(both P < 0.001, n= 8), showing LE-VPA is more effective than

VPA therapy alone (P< 0.05, n= 8).We counted the movement

time and distance of each group in the central area. We found

that themovement time (P< 0.00) and distance (P< 0.01) in the

center of themodel group were significantly shorter than healthy

mice, indicating that epilepsy could cause anxiety-like behavior

in mice (Figures 3H,I). After different treatments, the time

(runner: P < 0.01, combination: P < 0.001, n =7) and distance

(drug: P < 0.05, runner: P < 0.001, combination: P < 0.001,

n=7) of movement in the center of each group increased

significantly. There were significant differences between the

LE-VPA group and VPA group in center distance (P < 0.05).

In conclusion, compared with drug alone treatment, LE-

VPA was more effective in improving the learning ability and
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FIGURE 3

Cognitive impairment, anxiety, and depression in mice of each group. (A) Schematic of the Morris water maze task. (B,C) The 6-day latency of

each group and time spent in the current quadrant on day 6. (D) Schematic of the Y-maze test task. (E) The spontaneous alternation in behavior

of each group. (F–I) The open-field test was performed to record the total distance traveled throughout the open-field arena, entries into the

center zone, duration spent within the center zone, and distance traveled within the center zone. Data were shown as mean ± SEM. ns > 0.05,

*P < 0.05, **P < 0.01, ***P < 0.001; #P < 0.05, ##
P < 0.01, ###

P < 0.001, comparison of the model group with each treated group (B:

three-way ANOVA or two-way ANOVA was used for the rest of the data).

memory retention as well as ameliorating epileptic-induced

depression and anxiety-like behavior in KA mice.

Dyskinesia of epilepsy was ameliorated
by LE-VPA

Motor skill deficits are nearly universal to all

neurodevelopmental disorders, and epilepsy is no exception

(38). To assess these deficits, mice were exposed to Catwalk

analysis. After habituation to the new surroundings, the

animals had to perform a minimum of three non-stop runs

that qualified for Catwalk XT R© analysis. The same calibration

parameters were used for each experimental group. To

improve data quality, automated footprint recognition was

manually reviewed. Catwalk XT R© software separately analyzed

a combination of 24 dynamic and static parameters for each

paw. In addition, the print positions of the left and right paws,

as well as the base of the support of the front and hind paws,

were analyzed (Figure 4A). In the Catwalk gait analysis, print

area and mean intensity indicated the paw force, which may

reflect the weight-bearing capability of the limbs; swing speed

and body speed indicated the thrust force of the limbs, where

shorter swing speed or body speed indicated that the thrust

force of the limbs was reduced (Figures 4E–H). Compared

with the model group, only the footprint area was significantly

increased in the drug group (Figure 4B, P < 0.001, n = 6).

On the contrary, all parameters, print area (P < 0.05, n = 6),

swing speed (Figure 4C, P < 0.001, n = 6), and body speed

(Figure 4D, P < 0.01, n = 6), were significantly increased in

the runner group. Mice in the combination group showed

improvement in all three parameters (P < 0.001, n = 6). In

addition, compared with the drug group, the combination group

showed a more significant effect on swing speed (P < 0.001)

and body speed (P < 0.001). Therefore, compared with VPA

treatment, LE-VPA can significantly improve movement

disorders such as discoordination of limbs and slow movement

caused by epilepsy.
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FIGURE 4

E�ect of LE-VPA on the gait parameters after KA. (A) Diagram of gait analysis. The Catwalk gait analysis demonstrated that auxiliary running

could improve the gait posture as reflected by the increased print area (B), swing speed (C), and body speed (D) compared with the model

group. (E–H) Displayed the footprints picture and the marching patterns of the groups. Data were expressed as mean ± SEM. ns > 0.05,

***P < 0.001; #P < 0.05, ###
P < 0.001, comparison of the model group with each treated group (two-way ANOVA).

Inhibitory e�ects of LE-VPA on LFP
responses

Subsequently, to determine whether LE-VPA could reduce

the intensity of epileptic seizures, the effects of running on

the power spectral density (PSD) of LFP during KA-induced

seizures were directly tested (Figure 5A). In the recording, which

was not <30min, 10min of data were randomly selected for

statistical analysis. The LFP of control mice showed normal

rhythms with low-frequency amplitude, and there was no

abnormal epileptic rhythm. The electroencephalogram of model

mice showed an explosive polyspike rhythmwith high frequency

and large amplitude, while the LFP frequency and amplitude

were decreased in both the drug and runner groups. On the

contrary, the LFP frequency and amplitude in the combination

groupwere almost like those in healthy control mice (Figure 5B).

The energy intensity of five common rhythms collected by LFP

was statistically analyzed, as shown in Figure 5C. The δ rhythms

(0.5–4Hz) are slow rhythm of the sleep state in mice that

can convert early long-term potentiation (LTP) to long-lasting

LTP (39). The energy intensity of δ- rhythms of KA mice was

significantly increased (P < 0.001, n = 3). Compared with the

model group, the energy intensity of δ rhythms of the drug (P <

0.05, n= 3), runner (P < 0.001, n= 3), and combination groups

(P < 0.001, n = 3) decreased by 50 and 70%. The θ rhythms

(4–7Hz) are like δ rhythms and occur during sleep. The KA

model group exhibited a higher θ- rhythm energy intensity (P <

0.001, n= 3). Compared with the KA group, the energy intensity

of θ rhythms of the drug group (P < 0.05, n = 3), runner

group (P < 0.01, n = 3), and combination group (P < 0.001,

n = 3) was decreased by 50%. The α rhythms (8–13Hz) are

normal brain rhythms in mice. The α rhythm energy intensity

was significantly increased in the model group (P < 0.001, n =

3). Compared with the model group, the energy intensity of α

rhythms of the drug, running, and combination groups (all P <

0.001, n= 3) was significantly decreased. The θ and α frequency
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bands are usually collectively referred to as the low-frequency

(LF) range (40, 41). LF oscillations have been widely studied in

cognitive and emotional fields, including memory consolidation

(42), attention and consciousness (43), and depressive mood

(44, 45). There is some evidence that LF oscillations are related to

the message of self-movement (46) and sequential dependencies

during spatial planning (47). The β rhythms (15–30Hz) are

the main rhythms of the brain during excitation, which seem

to focus more on associative memory and ability to predict

object locations based on environmental cues (48, 49). The

energy intensity of the β rhythms was significantly increased

in the model group as compared with the control group (P

< 0.05, n = 3), while the other groups showed no significant

difference from the model group. The γ rhythms (> 30Hz) are

fast rhythms occurring in the rapid eye movement sleep period,

in which oscillations in entorhinal cortex-hippocampus circuits

play crucial roles in memory function in a healthy animal’s brain

(50). The energy intensity of the γ rhythms was significantly

increased in the model group (P < 0.05, n = 3), while the other

groups showed no significant difference as compared with the

model group. Figure 5D shows that the PSD of the model group

was increased, while it was inhibited to a certain extent after drug

therapy, running therapy, and combination therapy. In addition,

the combination group showed more effective inhibition of

abnormal LFP signals than the drug group for the δ (P < 0.05),

θ (P < 0.05), and α rhythms (P < 0.001). These results also

support our hypothesis that LE-VPA therapy is more potent in

suppressing neuroexcitability, especially low-frequency rhythm.

Suppressive e�ect of LE-VPA on
neuroinflammatory response induced by
epilepsy

In mammals, epilepsy can be caused by a large number

of inflammatory factors that activate microglial cells (15).

We used ELISA (Figures 6A–C) and immunofluorescence

(Figures 6D–G), to verify the expression levels of the

inflammatory cytokines IL-1β, TNF-α, and IL-6 in the

hippocampus of mice. High levels of IL-1β (P < 0.001, n = 6),

TNF-α (P < 0.001, n = 6), and IL-6 (P < 0.05, n = 6) were

expressed in the hippocampal tissues of model mice, while

running reduced the expression levels of IL-1β (P < 0.05, n= 6)

and TNF-α (P < 0.05, n= 6). Drug treatment alone was effective

in reversing the hyperinflammatory state of the hippocampus

(IL-1β and TNF-α: P < 0.001, IL-6: P < 0.05, n = 6), but the

advantage of the combination group was more prominent (all P

< 0.01, n = 6) and significantly different from that of the drug

group in TNF-α and IL-6 expression (both P < 0.05, n = 6).

To verify this conclusion, we performed immunofluorescence

staining of IBA1 (M1 microglial marker), IL-1β, TNF-α, and

IL-6 in the CA3 region (51) and found that microglial cells

were activated and IL-1β, TNF-α, and IL-6 levels were high in

model mice (all P < 0.001, n = 6). We determined the average

percentage of positive areas of IBA1+ IL-1β, IBA1+ TNF-α,

or IBA1+ IL-6 in each group. Compared to the model group,

the levels of all three inflammatory factors in the hippocampus

decreased after treatment with VPA alone (IL-1β and TNF-α:

P < 0.01, IL-6: P < 0.05, n = 6). In the combination group,

the mean positive area related to IL-1β, TNF-α, and IL-6 was

decreased by 60% (P < 0.001, n = 6), 50% (P < 0.001, n = 6),

and 50% (P < 0.001, n = 6), respectively. Compared with the

drug group, LE-VPA has more obvious inhibitory effect on the

TNF-α (P < 0.05) and IL-6 (P < 0.05).

LE-VPA inhibited NF-κB activation in the
hippocampus

In the attempt to define the underlying molecular

mechanisms by which LE-VPA suppressed microglial

inflammatory response, we monitored expression levels of

TLR4 and the activation of the transcription factor NF-κB,

which occurs in response of proinflammatory stimuli and results

in increased expression of many cytokines and chemokines (52).

To this end, we quantified the expression level of NF-κB p65

subunit as an indicator of NF-κB activation (Figures 7A–C).

TLR4 (P < 0.001, n = 6) and p65 (P < 0.001, n = 6) are

abundant in the hippocampus of KA mice, and the levels

of these two factors decreased in the runner group (TLR4:

P < 0.05, P65: P < 0.01, n = 6) and combination group (both

P < 0.01, n= 6) after exercise, but drug group only reversed the

expression of p65 (P < 0.05, n = 6) and has no effect on TLR4

(P > 0.05, n= 6). Thus, the combination treatment significantly

reduced the expression of TLR4 and inhibited NF-κB activation

compared with the drug alone treatment (P < 0.05), suggesting

that inhibition of NF-κB activation may contribute to the

anti-inflammatory effect of the microglial cells.

Discussion

First, our results of animal behavioral experiments and LFP

show that compared with conventional drug treatment, LE-VPA

can better control mild seizures and ease epilepsy-associated co-

morbidities, such as cognitive dysfunction, depression, anxiety-

like behaviors, and movement disorders (Figures 2–4). In

addition, we found that LE-VPA had a larger significant effect

on the abnormal LFP signal at low-frequency waves (Figure 5).

This result is consistent with the literature, since LFP is used to

understand the relationship between brain oscillations within

different frequency ranges and cognitive and motor processes

(53). Next, we explored the mechanism of action of the LE-VPA

treatment of seizures and epilepsy-associated co-morbidities.

We performed immunohistochemistry to examine the activation
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FIGURE 5

LFP spectral characteristics and PSD in each group. (A) Diagram of local field potential recording in mice. (B) LFP signals and spectral heat maps

from representative seizure mice treated with control (orange), model (lavender), drug (blue), runner (amaranth), and combination (gray) groups

were displayed, respectively. (C) Spectral plots and cumulative distribution curves from model mice with no treatment, VPA, treadmill, and

combination treatment were shown, respectively. (D) Spectral analysis on PSD values of δ, θ, α, β, and γ rhythm in each group. Data in (C) were

shown as mean ± SEM. ns > 0.05, *P < 0.05, ***P < 0.001; #P < 0.05, ##
P < 0.01, ###

P < 0.001, compared with model group (two-way

ANOVA).

of TLR4/ NF-κB and the downstreaming IL-1β, TNF-α, and

IL-6 signaling in the hippocampus. LE-VPA reduced TLR4

expression, inhibiting NF-κB signaling and, in turn, inhibiting

the increase in expression levels of IL-1β, TNF-α, and IL-6.

Therefore, this novel therapeutic approach was more effective

in attenuating seizures and associated co-morbidities (Figure 8).

The pathogenesis of epilepsy is complex and has not

been fully elucidated; consequently, there is a limited clinical

cure rate. Recent studies have suggested that a variety of

signaling pathways may be associated with epilepsy (54). These

pathways include the Phosphatidylinositol-3-kinase (PI3K) /

protein kinase B (Akt) / mammalian target of rapamycin

(mTOR) signaling pathway that regulates the autophagy process

in neurodegenerative diseases (55), the Wnt/β-catenin signaling

pathway (56), mitogen-activated protein kinase (MAPK)

signaling pathway (57) and the TLR4/ NF-κB pathway (58) that

is associated with neurogenesis and neuronal death. Different

inflammatory factors are closely related to these signaling

pathways. Studies have shown that an increase in the BBB

permeability is directly associated with seizure generation and

severity (18, 59). Activated macrophages produce IL-1, IL-6, and

TNF-α; these cytokines can alter the permeability of the blood–

brain barrier (BBB) and allow peripheral proinflammatory

factors to enter the circumventricular brain regions and cause

seizures (60), followed by the activation of NF-κB pathway.

IL-1β then triggers the breakdown of the BBB and activates

glial cells (61). NF-κB then recruits other proteins (coactivators

and RNA polymerase), which finally lead to the expression of

proinflammatory cytokines (e.g., IL-1, IL-2, IL-6, and TNF-α)

that exacerbates and perpetuates the seizures (62). In addition,

TNF-α can control the glutamate receptor transport via TNF

receptor 1 and the TNF receptor 2, and these receptors promote

neuron firing by increasing glutamate levels in the synaptic cleft;

therefore, TNF-α plays a role in epilepsy (63). During acute and
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FIGURE 6

LE-VPA blocked the activation of microglial cells and the release of inflammatory factors. (A–C) ELISA analysis of secreted TNF-α, IL-1β, and IL-6

levels in control and four di�erent treatment groups with epilepsy. (D–F) Quantitative analysis of percentage of IBA1+ IL-1β-, IBA1+ TNF-α-, and

IBA1+ IL-6-positive area. (G–I) Immunofluorescent staining of IBA1 and IL-1β, IBA1+ TNF-α, and IBA1+ IL-6 in the hippocampal CA3 area (scale

bar, 100µm). The data were expressed as the mean ± SEM. ns > 0.05, *P < 0.05, ***P < 0.001; #P < 0.05, ##
P < 0.01, ###

P < 0.001,

compared with model group (two-way ANOVA).

chronic seizures, IL-1β is highly expressed and its binding to IL-

1β receptors (IL-1R1) activates NF-κB in target cells amplifying

the inflammatory response (64). Previous studies have shown

that following seizures, the IL-6 receptor mRNA is upregulated

only in the hippocampus (65, 66). However, in recent years, there

have been conflicting reports on the role of IL-6 in seizures.

Although IL-6 is necessary for the nervous system normal

development (67), high levels of IL-6 in the brain can lead to

neurotoxic and proconvulsive effects (68, 69). The inhibition

of the histone deacetylase (HDAC) and the modulation of

brain-derived neurotrophic factor (BDNF) play a key role in

regulating the main pathways that modulate the VPA epigenetic

effects (70). Therefore, VPA may inhibit PI3K/Akt/ Mouse

double minute 2 (MDM2) signaling pathway (71), inhibit NF-

κB, p65-dependent transcriptional activation (71), and promote

the tropomyosin receptor kinase B (TrkB)/BDNF signaling

pathway (70) that reduces neuroinflammation and regulate

synaptic plasticity.

In recent years, the relationship between VPA and cognitive

function has been controversial (72–74). Our results of the

water maze and the Y maze align with the evidence that

shows VPA-induced cognition improvement in KA mice.

There was no significant difference between the VPA-treated

mice and the control group in total distance traveled in

the Y maze (Figure 3G); this result could be explained by

the diminished motor state of the mice resulting from the
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FIGURE 7

E�ect of LE-VPA on TLR4/ NF-kB activation in the hippocampus. (A) Five brain slices were processed for TLR4 and NF-κB p65

immunohistochemical staining. Experiments were performed three times, and the staining of the cells under a 20x microscope was shown. (B,C)

Comparison of the IODs of TLR4 and p65 using immunohistochemical staining in the hippocampus from each group. The data were expressed

as the mean ± SEM. ns > 0.05, *P < 0.05, ***P < 0.001; #P < 0.05, ##
P < 0.01, compared with model group (two-way ANOVA).

continuous intraperitoneal drug injection for 4 weeks. The

gait analysis showed that VPA increased the print area during

walking, but not the swing speed or body speed (Figure 4).

This result suggests VPA might improve walking stability in

patients with epilepsy without changing their physical flexibility.

In addition, the immunohistochemistry showed that VPA did

not reduce the expression levels of TLR4 in the hippocampus

but significantly inhibited NF-κB p65-dependent transcriptional

activation (Figure 6). We speculate that VPA may inhibit NF-κB

activation through a pathway other than TLR4.

There is vast evidence for the beneficial effects of

physical exercise on epilepsy in animals models and at

the clinical level (75). For instance, it improves cognitive

function and alleviates depression and anxiety in patients

with epilepsy, which is consistent with our experimental

results. The exact mechanism has not been elucidated.

Nevertheless, researchers have adopted different strategies to

explain the phenomenon. First, in chronic epilepsy, aerobic

exercise improves regional cerebral glucose metabolism and

an increase in adenosine content in the brain gray matter

associated with motor, sensory, and autonomic functions. Thus,

aerobic exercise has an anticonvulsant effect by affecting brain

metabolism (76). Second, physical exercise exerted positive

effects on hippocampal synaptic plasticity, including increasing

hippocampal neurogenesis and restoring the LTP-induced

damage in epileptic rats (77). Particularly, physical exercise

alters BDNF/TrkB (78) and Akt/ mTOR signaling pathways (79).

Finally, physical exercise can improve the hyperinflammatory

state in the hippocampus (80). It has been shown that swimming

exercise stimulates IGF1/PI3K/Akt and AMPK/SIRT1/PGC1α

survival signals to suppress inflammation (81).

Most studies suggest that physical exercise can boost

serotonin (82), norepinephrine (83), dopamine synthesis and

release (84), increase BDNF, and reduce the activity of the

hypothalamus–pituitary–adrenal (85). Consequently, there is a

reduction in epilepsy co-morbidities. In addition, studies have
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FIGURE 8

Summary of the article.

shown that moderate physical exercise could reduce the levels

of IL-1β and TNF-α in the hippocampus or serum (86, 87) in

interventions for brain disorders, although the effect on IL-6 is

subject to specific discussion. To illustrate, physical exercise can

reduce IL-6 levels in the hippocampus and cerebellum (88, 89).

By contrast, during physical exercise, skeletal muscle produces

large amounts of IL-6 to induce hepatic glucose export and

induce lipolysis (90).

Altogether, our experiments showed that VPA plays a

leading role in improving the frequency of severe seizures;

however, physical exercise alone has little effect as a treatment

(Figures 2C,D). Moreover, the effects of physical exercise alone

on working memory tests (Figure 3E) and hippocampal IL-6

expression levels (Figures 6C,F) were also limited. Considering

previous studies, we speculate that the physical exercise intensity

may not be the optimal intensity for KA mice. Therefore, the

next step is to determine the optimal intensity for the KA mice.

To this end, we will divide the physical exercise intensity by

gradient. Here, we showed that low-intensity physical exercise

may be inhibiting the TLR4/ NF-κB pathway. Nonetheless,

the mechanism in which the physical exercise-generated force

is affecting the TLR4 expression in the brain needs to be

further explored. For instance, physical exercise activates

the mechanical sensor Piezo1 (91) which leads to enhanced

expression of the bone-derived growth factor osteocalcin (OCN)

(92). Subsequently, OCN can regulate cognition through G

protein-coupled receptors (GPR) (93, 94). Furthermore, it has

been shown that activation of GPR30 on microglial cells can

reduce ischemic injury by inhibiting TLR4-mediated microglial

inflammation. We need more evidence on whether microglial

cells have receptors for OCN, thus, possibly playing a role

in seizures and its co-morbidities by regulating the TLR4-

mediated signaling pathway. These results suggest the LE-

VPA treatment is a promising novel therapeutic avenue with

translational application.
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