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Abstract

Background: Ribose-5-phosphate isomerase is an enzyme that catalyzes the interconversion of ribose-5-phosphate
and ribulose-5-phosphate. This family of enzymes naturally occurs in two distinct classes, RpiA and RpiB, which play
an important role in the pentose phosphate pathway and nucleotide and co-factor biogenesis.

Results: Although RpiB occurs predominantly in bacteria, here we report crystal structures of a putative RpiB from
the pathogenic fungus Coccidioides immitis. A 1.9 Å resolution apo structure was solved by combined molecular
replacement and single wavelength anomalous dispersion (SAD) phasing using a crystal soaked briefly in a solution
containing a high concentration of iodide ions. RpiB from C. immitis contains modest sequence and high structural
homology to other known RpiB structures. A 1.8 Å resolution phosphate-bound structure demonstrates phosphate
recognition and charge stabilization by a single positively charged residue whereas other members of this family
use up to five positively charged residues to contact the phosphate of ribose-5-phosphate. A 1.7 Å resolution
structure was obtained in which the catalytic base of C. immitis RpiB, Cys76, appears to form a weakly covalent
bond with the central carbon of malonic acid with a bond distance of 2.2 Å. This interaction may mimic that
formed by the suicide inhibitor iodoacetic acid with RpiB.

Conclusion: The C. immitis RpiB contains the same fold and similar features as other members of this class of
enzymes such as a highly reactive active site cysteine residue, but utilizes a divergent phosphate recognition
strategy and may recognize a different substrate altogether.

Background
Ribose-5-phosphate isomerases catalyze the interconver-
sion of ribulose-5-phosphate and ribose-5-phosphate as
an important part of the pentose phosphate pathway [1].
Ribose-5-phosphate is used in nucleotide and co-factor
biosynthesis. As with other isomerases, ribose-5-phos-
phate catalyzes this reaction at near equilibrium. Two
types of ribose-5-phosphate isomerases exist, RpiA and
RpiB, which share little structural homology and have
distinct active sites and mechanisms of action [2]. Most
organisms such as Escherichia coli contain both RpiA
and RpiB, but other organisms contain only one class of

Rpi. In E. coli, a double rpia/rpib knockout exhibited
severely impaired growth [3]. RpiB occurs almost exclu-
sively in bacteria.
RpiB is a member of the LacAB_rpiB superfamily of

proteins (PFAM PF02502). RpiB from different organ-
isms may have different substrate specificities and sev-
eral annotated RpiB enzymes act upon allose-5-
phosphate rather than or in addition to ribose-5-phos-
phate and are thus named AlsI. Indeed, one of the first
crystal structures solved for a member of this family was
the E. coli RpiB/AlsI [2]. Given the important cellular
role of ribose-5-phosphate isomerases and that mam-
mals only have RpiA, interest has been generated in
RpiB enzymes as potential drug targets, especially in
pathogenic organisms, many of which only have RpiB. E.
coli RpiB inhibitors have been described [4] and
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inhibitor-bound crystal structures have been determined
for RpiB from Mycobacterium tuberculosis [5] which
causes tuberculosis and Trypanosma cruzi [6], the cau-
sative agent of trypanosomiasis.
Coccidioides immitis is a pathogenic fungus that

causes coccidioidomycosis, also known as Valley Fever
[7-9]. One gene (CIMG_07932) encodes a putative
uncharacterized protein that contains high sequence
homology with RpiB enzymes from closely related
organisms. Specifically, the CIMG_07932 gene product
contains 98% sequence identity to an Rpi from C. posa-
dasii, 89% sequence identity to an Rpi from the non-
pathogenic fungus Uncinocarpus reesii, and 78%
sequence identity to an RpiB from Paracoccidioides bra-
siliensis. We have undertaken structural analysis of RpiB
from C. immitis and present here crystal structures in
apo and ligand bound forms.

Results and Discussion
Structure determination of C. immitis RpiB
Given that the C. immitis RpiB contains modest
sequence identity to other structurally characterized
RpiBs, we attempted to solve the crystal structure of C.
immitis RpiB by iodide ion single wavelength anomalous
dispersion (SAD) phasing [10,11], a strategy that has
proven successful for structure determination of many
SSGCID targets [12,13]. Attempts at phasing entirely
with SAD resulted in poor quality experimental phases
(FOM of 0.29 prior to density modification). Attempts
to solve the structure by molecular replacement with
other RpiBs such as that from Clostridium thermocellum
[14] yielded clear rotation and translation solutions, yet
poor refinement statistics (R of 0.39 and Rfree 0.47).
Addition of the MR solution to a SAD experiment has
been shown in improve phase quality [15]. Therefore
the partial molecular replacement solution was com-
bined with the SAD phases and yielded a clearly inter-
pretable electron density map (FOM 0.53 prior to
density modification) into which Buccaneer [16] built
both molecules in the asymmetric unit end-to-end in
less than one minute (Table 1; Figure 1).
Interestingly, the active site contains electron density

consistent with an oxidized cysteine residue (Cys76) in
both protomers (Figure 1). Although the exact oxidation
state of the cysteine residue was not determined, the
electron density maps were most consistent with two
conformations of the sulfenic state rather than sulfinic
or sulfonic acid. The oxygen on Cys76 appears to adopt
two different orientations contacting the backbone
nitrogen and side chain hydroxyl of Thr78 in one orien-
tation and the backbone nitrogens of Gly81 and Val82
in the other. The oxidized nature of Cys76 may imply
that this residue, thought to be the catalytic base, is
highly reactive. The high concentration solution of

sodium iodide used for phasing likely contains iodine,
indicated by a light yellow color. Iodine is the most
probable source for the oxidation of Cys76, which was
not oxidized in the other two C. immitis RpiB structures
(see below). Oxidation is unlikely to have occurred as a
result of radiation damage since the data were collected
in house under cryogenic temperatures. Oxidized
cysteines have been observed previously in the presence
of iodide ions [17,18] and also for other RpiB enzymes
(PDB entries 1O1X [19] and 3C5Y, no primary citation)
determined in the absence of iodide.

Comparison with other ribose-5-phosphate isomerases
The C. immitis RpiB contains ~20-38% sequence iden-
tity with other structurally characterized RpiB enzymes,
although fewer than 10 amino acids are completely con-
served across these sequences (Figure 2). The overall
structure of the C. immitis putative RpiB is quite similar
to other structurally characterized RpiB enzymes from
bacterial as well as eukaryotic organisms (Table 2). In
addition to the conserved overall fold, certain other
RpiB features are present in the C. immitis RpiB struc-
ture such as the highly conserved cis-peptide at residue
Gly43.
The C. immitis RpiB contains the canonical open (a,b)

Rossman fold, a common fold for proteins that bind
nucleotides or nucleotide-like molecules [20]. As deter-
mined by the Protein Interfaces, Surfaces and Assemblies
(PISA) server [21], the quaternary structure appears to be
dimeric (Figure 1) with 7408 Å2 of buried surface (12,690
Å2 of surface area for the dimer). However, based on the
structure, PISA also predicts a tetrameric structure (gen-
erated by crystal symmetry) in which 17,610 Å2 of surface
area is buried (22,730 Å2 of surface area for the tetramer).
The tetrameric structure of C. immitis RpiB is most likely
a dimer of dimers with one strong dimer and the second-
ary weaker dimer interaction that makes the tetramer.
This quaternary structure is consistent with the two
ligand bound C. immitis RpiB described below in a differ-
ent crystal form, and with previous X-ray structural char-
acterization of RpiB, such as that from E. coli [2].
Dynamic light scattering (DLS) experiments indicated a
monodisperse protein with an approximate molecular
weight of 80 kDa which is consistent with a tetramer in
solution. DLS measurement on E. coli RpiB also indicated
a tetramer in solution [2]. Thermofluor analysis indicated
a stable protein with a melting temperature of 52°C. The
melting temperature was unaffected by the presence of
ribose-5-phosphate, ribose-5-phosphate with MnCl2, or
iodoacetate.

C. immitis RpiB substrate recognition
Structures of RpiB from other organisms have been
obtained in the presence of ribose-5-phosphate or

Edwards et al. BMC Structural Biology 2011, 11:39
http://www.biomedcentral.com/1472-6807/11/39

Page 2 of 9



inhibitors. Comparison of the active site in multiple
sequence alignments showed that several residues
involved in recognition of the phosphate moiety of
ribose-5-phosphate or ribulose-5-phosphate are not con-
served in C. immitis RpiB (Figure 2). While other organ-
isms use up to five positively charged residues to
recognized the phosphate moiety, only one of these resi-
dues is positively charged (Lys148) in C. immitis. Several
other residues are small polar residues such as Ser109
and Ser145. Residue 17 is typically a histidine or aspara-
gine, but is surprisingly a negatively charged aspartic
acid residue in C. immitis. Because of the decreased size
of several residues and the presence of Asp17, we specu-
lated that the C. immitis RpiB may utilize a cation to
facilitate recognition of ribose-5-phosphate. RpiB

enzymes from other organisms typically recognize
ribose-5-phosphate with a low affinity of Km ~ 1-5 mM
[2,22]. Therefore, we performed co-crystallization
experiments in the presence of 20 mM ribose-5-phos-
phate or 20 mM ribose-5-phosphate with 12 mM
MnCl2, which are in excess of the protein (~3.3 mM).
We obtained a 1.8 Å resolution data set (Table 1) from
C. immitis RpiB co-crystallized in the presence of 20
mM ribose-5-phosphate and 12 mM MnCl2. Despite the
presence of 20 mM substrate, we only observed substan-
tial electron density for phosphate bound in the active
site, which presumably came from the 0.1 M SPG buffer
(succinic acid, phosphate, glycine) buffer at pH 5.0 (Fig-
ure 3). Therefore, it appears that under the conditions
of the crystallization experiment, phosphate

Table 1 Data collection, phasing and refinement statistics

Iodide Phosphate Malonic acid

Data reduction

Space group C2 F222 F222

Unit-cell parameters a = 103.2 Å, b = 49.9 Å, c = 62.0 Å, b = 108.6° a = 77.7 Å, b = 85.2 Å, c = 96.3 Å a = 77.5 Å, b = 84.4 Å, c = 96.2 Å

Resolution range (Å) 50-1.9 (1.95-1.90) 50-1.8 (1.85-1.80) 50-1.7 (1.74-1.70)

Unique reflections 23,513 (1520) 14,967 (1088) 16,561 (1028)

Rmerge 0.043 (0.286) 0.123 (0.397) 0.044 (0.256)

Mean I/s(I) 13.9 (2.9) 17.5 (3.0) 34.7 (6.6)

Completeness 98.9% (87.5%) 99.8% (98.7%) 94.5% (80.2%)

Multiplicity 5.8 (2.9) 6.9 (3.9) 9.6 (5.3)

Phasing

Anomalous Correlation 58% (8%)

SigAno 1.53 (0.81)

Iodide Sites 21

FOM (Phaser EP) 0.53

Refinement

Rcryst 0.166 (0.185) 0.150 (0.212) 0.144 (0.156)

Rfree 0.205 (0.242) 0.176 (0.270) 0.175 (0.189)

RMSD bonds (Å) 0.015 0.015 0.012

RMSD angles (°) 1.364 1.288 1.323

Protein Atoms 2415 1198 1210

Waters 213 173 169

Iodide Ions 29 0 0

Mean B-factor (Å2) 18.3 13.2 13.7

Reflections 22,275 (1434) 14,170 (1031) 15,677 (968)

Rfree Reflections 1205 752 832

Validation

Ramachandran favored 100% 100% 98.7%

Ramachandran outliers 0% 0% 0%

Molprobity score [35] 1.42 (97th percentile) 0.98 (100th) 1.32 (97th)

PDB ID 3QD5 3SDW 3SGW

Rfree = Σh||Fobs| - |Fcalc||/Σh|Fobs|. Values in parenthesis indicate the values for the highest of twenty resolution shells

Rfree was calculated using 5% of the reflections omitted from the refinement [31].
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outcompeted ribose-5-phosphate for binding to the
active site. Addition electron density extends from one
of the oxygens of the phosphate. The crystal may con-
tain a mixture of phosphate and ribose-5-phosphate,
which could be modeled into the active site without sig-
nificant steric clash. Refinement of ribose-5-phosphate
alone or at 0.5 occupancy with phosphate as the other
0.5 occupancy resulted in negative density in the |Fo|-|
Fc| electron density map and high crystallographic B-
factors for ribose-5-phosphate. Therefore, the final
model contains only phosphate. Phosphate is recognized
by Ser109, Ser145 and Lys148 of the active site. Some of
the negative charge may be stabilized via charge relay
from Ser109 to Arg105. In other organisms, Arg105 is a
leucine or methionine (Figure 2). The positioning of the
phosphate moiety is slightly different than that observed
in other structures, such as that of T. cruzi RpiB bound
to the competitive inhibitor 4-deoxy-4-phospho-D-ery-
thronohydroxamic acid [6] (Figure 4).
Given the substantial differences in the active site of

the C. immitis RpiB in comparison with other structu-
rally and functionally characterized RpiB enzymes, it is
possible that the C. immitis enzyme utilizes a substrate
different than ribose-5-phosphate/ribulose-5-phosphate.
In addition to the single positively charged residue that
interacts with the phosphate, the highly conserved histi-
dine involved in ring opening in the catalytic mechan-
ism (His102” in C. thermocellum [14]) has been replaced
with Ser109” in the C. immitis structure (Figure 4).
Given the position of the phosphate in the C. immitis
structure, we suspect that this enzyme may isomerize
shorter chain substrates, although confirmation of sub-
strate activity will require further structural and bio-
chemical characterization. Furthermore, C. immitis
contains another gene (CIMG_09662) that encodes a
putative uncharacterized protein which contains 99%
sequence identity to RpiA from C. posadasii (gene
CPC735_023760). Therefore, this essential function of
the pentose phosphate pathway may be accomplished by
RpiA, allowing RpiB to have evolved with an altered
substrate specificity.

C. immitis RpiB covalent inhibition
The catalytic cysteine residue of RpiB is known to be
reactive toward iodoacetate [2,23], although no crystal
structure has been determined for an RpiB covalently
bound to iodoacetate. Attempts at co-crystallization
after incubation with 10 mM iodoacetamide did not
yield diffraction quality crystals. However, a 1.7 Å reso-
lution data set was obtained from a crystal grown from
MIB buffer (malonic acid, imidazole, boric acid) at pH
5.0 which contained clear evidence for malonic acid
tightly bound off Cys76 (Figure 5). The malonic acid
refines with a C2-S distance of 2.2 Å, which is longer

Figure 1 A Global fold of C. immitis RpiB showing iodide ions
(violet spheres) and anomalous difference Fourier map shown
in violet mesh contoured at 5.0 s. Protomer A is shown in gray
ribbons and protomer B is shown in light green ribbons. The
oxidized cysteine residues are shown in sticks representation. B
Experimental electron density map from combined SAD/MR is
shown contoured at 1.0 s, and the anomalous difference Fourier
map is shown in violet mesh contoured at 5.0 s. C The active site
oxidized cysteine is modeled as Cys-OH (sulfenic acid) in two
conformations; the shape of the electron density was not consistent
with sulfinic acid or sulfonic acid, the latter of which would have
produced major steric clash with the main chain of Gly79 and the
side chain of Val82. The 2|Fo|-|Fc| map is shown in blue mesh
contoured at 1.0 s.
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than that expected for a covalent C-S bond (1.8 Å), but
significantly shorter than that expected for van der
Waals interactions (>3.3 Å); malonic acid was built into
the omit |Fo|-|Fc| density and allowed to refine freely in
REFMAC5 [24]. Therefore, this structure may reflect the
formation of a distorted (long) covalent bond between
malonic acid and Cys76. We do not know of a reason-
able mechanism for the formation of such a covalent
bond between malonic acid and Cys76, which rather
seems counterintuitive.
The chemical reaction of Cys76 with iodoacetate is

expected to form a Cys-CH2COOH adduct. The

conformation of either of the carboxylates of malonic
acid may be reflective of the carboxylate of the covalent
adduct formed with iodoacetate. One of the carboxylates
of malonic acid forms hydrogen bonds with the back-
bone amides of Thr78 (conserved as a serine or threo-
nine, 3.0 Å) and the universally conserved Gly77 (2.9 Å)
as well as the side chain of the universally conserved
Asp16 (2.6 Å). The hydrogen bond with Asp16 is unli-
kely to occur at neutral pH where both carboxylates are
expected to be deprotonated and negatively charged. In
contrast, the interaction is well ordered in the pH 5.0
crystal. Given an approximate pKa of ~4.8, at pH 5.0

Figure 2 Multiple sequence alignment of RpiB crystal structures from different organisms. C. immitis is from the current study (PDB ID
3QD5). S. pu is Streptococcus pneumonia (2PPW, no primary citation), V. pa is Vibrio parahaemolyticus (3ONO, no primary citation), T. ma is
Thermotoga maritima (PDB ID 1O1X) [19], E. co is E. coli (1NN4) [2], C. th is Clostridium thermocellum (3HEE) [14], T. cr is Trypanosoma cruzi (3K8C)
[6]. Mycobacterium tuberculosis contains different active site residues and utilizes a variant catalytic mechanism [5,22], and thus the sequence is
not shown in the alignment. Residues marked with an * are involved in recognition of the phosphate moiety of ribose-5-phosphate. Numbering
is based on the C. immitis sequence.

Table 2 Comparison of the global structure of C. immitis RpiB with RpiB enzymes from other organisms

Organism Reference PDB Similar Ca atoms R.m.s.d. (Å) Identity (%)

Bacteria

Clostridium thermocellum 3HEE [14] 148 1.17 34

Escherichia coli 1NN4 [2] 143 1.10 38

Mycobacterium tuberculosis 2VVO [5,22] 141 1.18 26

Novosphingobium aromaticivorans 3C5Y 149 1.97 <20

Streptococcus pneumoniae 2PPW 146 1.91 <20

Thermotoga maratima 1O1X [19] 143 1.24 33

Vibrio parahaemolyticus 3ONO 149 1.86 <20

Eukaryotes

Giardia lamblia 3S5P 125 1.06 28

Trypanosoma cruzi 3K8C [6] 148 1.40 29

Superposition calculations were done in CCP4 using the program Superposition and the secondary structure matching setting. The number of similar Ca atoms
(residues) is reported. For PDB entries 3C5Y (JCSG), 2PPW (Wu, R. et al.), 3ONO (Kim, Y. et al.) and 3S5P (Edwards, T.E. et al.) no primary citation has been
reported.
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about half of the carboxylates should be protonated. The
second malonic acid carboxylate forms hydrogen bond-
ing interactions with the backbone amide nitrogen of
the universally conserved Gly81 (2.5 Å) and with the
side chain of the universally conserved Asn110’ of the
other protomer of the obligate dimeric enzyme (3.0 Å).
The interactions of this carboxylate with RpiB may
reflect the interactions formed by the iodoacetate cova-
lent adduct. There is a chloride ion in the active site 3.7
Å away from the malonic acid and near Arg105’ and
Arg120, although this anion is ill-suited to mimic the
iodide ion leaving group of iodoacetate because it is on
the opposite side of the caboxylate relative to Cys76. An
iodide ion resides in the same place as this chloride ion

Figure 3 1.8 Å resolution crystal structure of C. immitis RpiB
bound to phosphate. The coloring is the same as used in Figure 1
with one protomer in gray and the other in green. The 2|Fo|-|Fc|
map is shown in blue mesh contoured at 1.0 s.

Figure 4 Comparison of active site residues of eukaryotic RpiB
enzymes from C. immitis (green and gray in panel A) and T.
cruzi [6](salmon in panel B) and overlay in panel C. The C.
immitis structure contains phosphate whereas the T. cruzi structure
contains the competitive inhibitor 4-deoxy-4-phospho-D-
erythronohydroxamic acid.

Figure 5 1.7 Å resolution crystal structure of C. immitis RpiB
bound to malonic acid. The coloring is the same as used in earlier
figures with one protomer in gray and the other in green.
Hydrogen bonds are shown as dashed lines. A The |Fo|-|Fc| map
calculated with model phases lacking the malonic acid residue is
shown in green mesh contoured at 3.0 s. B The 2|Fo|-|Fc| map
calculated with model phases containing the malonic acid residue
is shown in blue mesh contoured at 1.0 s.
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in both protomers of the asymmetric unit in the iodide-
phased structure.

Conclusions
Here we present crystal structures of RpiB from the
pathogenic fungus C. immitis, which together with the
structures from T. cruzi [6] and G. lamblia (Edwards, T.
E. et al., unpublished) are the only eukaryotic RpiB crys-
tal structures currently available. These structures reveal
the presence of a highly reactive cysteine residue in the
active site, thought to be the catalytic base in the iso-
merase reaction and provide insight into a possible
structural mechanism for the inhibition of RpiB by
iodoacetate. Furthermore, these structures reveal the
basis for phosphate recognition by a single positively
charged residue and may indicate that this C. immitis
has altered substrate specificity.

Methods
Cloning, expression, and purification
The 163-residue Coccidioides immitis putative uncharac-
terized protein (C. immitis RpiB, UniProt ID: P0CL19,
formerly Q1DP31; Gene CIMG_07932, targetDB ID:
CoimA.00584.a, E. C. 5.3.1.6) was amplified from geno-
mic DNA and cloned into an expression vector
(pAVA0421) encoding an N-terminal histidine affinity
tag followed by the human rhinovirus 3C protease clea-
vage sequence using ligation independent cloning [25].
The full length expressed protein contains the tag
sequence MAHHHHHHMGTLEAQTQGPGS followed
by the 163-residue C. immitis RpiB. The plasmid is
available through the BEI repository (NR-28451). The
plasmid was transformed into E. coli BL21 (DE3) R3
Rosetta cells. Starter cultures of LB broth with appropri-
ate antibiotics were grown for ~18 hours at 37°C. Pro-
tein was expressed in a LEX bioreactor in ZYP-5052
auto-induction media [26] in the presence of antibiotics
in 2 liters of sterilized auto-induction media inoculated
with the overnight starter culture. After 24 hours at 25°
C the temperature was reduced to 15°C for an addi-
tional 60 hours. The sample was centrifuged at 4000 × g
for 20 minutes at 4°C. Cell paste was flash frozen in
liquid nitrogen and stored at -80°C. The frozen cells
were re-suspended in 20 mM HEPES pH 7.0, 300 mM
NaCl, 5% w/v glycerol, 0.5% w/v CHAPS, 30 mM imida-
zole, 10 mM MgCl2, 1 mM TCEP, 250 μg/ml AEBSF,
200 μl of lysozyme (100 mg/mL), 5 tablets of Roche pro-
tease inhibitor tablets, and 280 μl of b-mercaptoethanol
at 4°C. Lysis was achieved by sonication, followed by
incubation with Benzonase (20 μL of 25 unit/μL). Inso-
luble proteins and other cellular components were
removed by centrifugation at 10,000 rpm for 60 minutes
at 4°C. The supernatant was filtered using a low-protein
binding 0.45 μm sterile filter. The soluble fraction was

then loaded onto a Ni-NTA His-Trap FF 5 ml column
(GE Healthcare). The column was washed with 20 col-
umn volumes of wash buffer (20 mM HEPES pH 7.0,
300 mM NaCl, 5% w/v glycerol, 30 mM imidazole, and
1 mM TCEP). The bound protein was eluted with 7 col-
umn volumes of elution buffer (20 mM HEPES pH 7.0,
300 mM NaCl, 5% w/v glycerol, 1 mM TCEP, and 500
mM imidazole). The collected protein was loaded onto
a Hiload 26/60 Superdex 75 prep grade column (GE
Healthcare) equilibrated in SEC buffer (20 mM HEPES
pH 7.0, 300 mM NaCl, 5% v/v glycerol, and 1 mM
TCEP). The protein eluted off the SEC column in a split
peak, which was pooled into two samples and concen-
trated to 82 mg/mL for the first peak sample and 128
mg/mL for the second peak sample. Both samples were
shown by sodium dodecyl sulfate polyacrylamide gel
electrophoresis to be >95% pure and contain a protein
of the expected molecular weight. Therefore, the two
samples may reflect different oligomeric states of the
same protein in solution. The sample from the first
peak resulted in the crystal structures, whereas the sam-
ple from the second peak yielded crystals which did not
diffract to better than 3 Å resolution. The purified pro-
tein samples were stored at -80°C. Dynamic light scat-
tering (DLS) was performed at 8 mg/mL in SEC buffer
on a Malvern Instruments Nano series Zetasizer. Ther-
mofluor experiments were performed in SEC buffer at 2
and 4 mg/mL as described [27].

Crystallization and structure determination
Crystallization trials were set up according to a crystalli-
zation approach [28] using the JCSG+ and PACT sparse
matrix screens from Emerald BioSystems. Protein drops
(0.4 μL at 82 mg/mL) were diluted with an equal
volume of precipitant and equilibrated against 80 μL of
precipitant in 96-well sitting drop vapor diffusion format
using Compact Junior plates from Emerald BioSystems.
A crystal grown from the JCSG+ screen condition B9
(0.1 M Na citrate pH 5.0, 20% w/v PEG 6000) was
soaked into a solution containing 0.1 M Na citrate pH
5.0, 20% w/v PEG 6000, 22% v/v ethylene glycol, and 0.7
M NaI for 1 minute, then vitrified in liquid nitrogen. A
data set (Table 1) was collected at 100 K under a stream
of liquid nitrogen using a Rigaku FR-E+ SuperBright Cu
Ka rotating anode X-ray generator with VariMax optics
and a Saturn 944+ CCD detector. Data parameters
include 360 images, Δ� = 1°, 2θ = 5°, 20 s exposure
times, and a detector distance of 50 mm. Data were
reduced with XDS [29]. The structure was solved by
combined molecular replacement and iodide ion SAD
phasing. First, molecular replacement was performed
using the protein model from protomer A of Clostri-
dium thermocellum crystal structure (PDB ID 3HEE,
[14]) as a search model in Phaser [30] from the CCP4
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suite [31]. Separately, twenty-one anomalous sites were
identified using phenix.hyss [32]. Phases calculated from
SAD were combined with the MR solution in Phaser EP
[30]. After density improvement in parrot [33], the
model was initially built using Buccaneer [16] using the
default parameters for both programs and Hendrickson
Lattman coefficients and Rfree rather than Phi/FOM.
Another crystal of C. immitis RpiB was grown at 66 mg/
mL in the presence of 20 mM ribose-5-phosphate and
12 mM MnCl2 in the PACT screen condition A2 (0.1 M
SPG buffer pH 5.0, 25% w/v PEG 1500). The crystal was
cryo-protected in a solution containing 20 mM ribose-
5-phosphate, 12 mM MnCl2, 0.1 M SPG buffer pH 4.0,
30% w/v PEG 1500 and 20% v/v ethylene glycol and
vitrified. A data set was collected as described above for
the iodide crystal with the exception of 2θ = 10°, 340
images and 30 s exposure times. The phosphate bound
structure was solved by molecular replacement in Phaser
[30] using the protein-only model of the iodide phased
structure. A third crystal of C. immitis RpiB was grown
at 66 mg/mL in the presence of 20 mM ribose-5-phos-
phate and 12 mM MnCl2 in the PACT screen condition
B2 (0.1 M MIB buffer pH 5.0, 25% w/v PEG 1500). The
crystal was cryo-protected in a solution containing 20
mM ribose-5-phosphate, 12 mM MnCl2, 0.1 M MIB
buffer pH 4.0, 30% w/v PEG 1500 and 20% v/v ethylene
glycol and vitrified. A data set was collected as described
above for the iodide crystal with the exception of 2θ =
10°, 360 images and 6 s exposure times. This malonic
acid bound structure was solved using the protein
model from the phosphate-bound structure. The final
models (Table 1) were obtained after numerous rounds
of refinement in REFMAC5 [24] and manual re-building
in COOT [34]. NCS averaging was not used due to the
high resolution of each structure (sub 2 Å). Both 2|Fo|-|
Fc| and |Fo|-|Fc| electron density maps were used in
model building. TLS refinement was used with one
group per chain. Water molecules were built that were
within hydrogen bonding distance to the protein (~3.2
Å) and showed electron density above 1.1 s in the final
2|Fo|-|Fc| electron density map. Structures were assessed
for correctness and validated using Molprobity [35]. All
diffraction images are freely available (http://www.csgid.
org/csgid/pages/diffraction_images).
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