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Transcriptomic meta-signatures identified in
Anopheles gambiae populations reveal previously
undetected insecticide resistance mechanisms
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Increasing insecticide resistance in malaria-transmitting vectors represents a public health
threat, but underlying mechanisms are poorly understood. Here, a data integration approach
is used to analyse transcriptomic data from comparisons of insecticide resistant and
susceptible Anopheles populations from disparate geographical regions across the African
continent. An unbiased, integrated analysis of this data confirms previously described
resistance candidates but also identifies multiple novel genes involving alternative resistance
mechanisms, including sequestration, and transcription factors regulating multiple down-
stream effector genes, which are validated by gene silencing. The integrated datasets can be
interrogated with a bespoke Shiny R script, deployed as an interactive web-based application,
that maps the expression of resistance candidates and identifies co-regulated transcripts
that may give clues to the function of novel resistance-associated genes.
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nsecticide resistance is a major threat to global public health,

reducing the efficacy of vector control efforts, which currently

rely heavily on four public health insecticides for use in
insecticide impregnated materials and in indoor residual or aerial
spraying applications2. Resistance to all these insecticide classes
is widespread in major disease vectors and there are increasing
reports of vector control breakdown as a result of this
resistancel>3-%. Understanding the causes of this resistance is
critical for developing resistance management strategies and to
inform the development of new public health insecticides'-3*. A
wealth of data exists on the gene expression patterns of insecticide
resistant Anopheles malaria vector populations and corresponding
susceptible populations from across Sub-Saharan Africa’~!8.
Analysis of such datasets yield lists of hundreds to thousands of
transcripts showing different expression patterns in resistant
mosquitoes. In many of these studies, only a priori candidate
genes such as those encoding enzymes from families with known
insecticide detoxification functions, have been chosen for further
analysis and validation!®-22, reducing complex and informative
datasets to patterns in known gene families. Identifying patterns
of expression in transcripts across multiple datasets may offer a
deeper insight into the mechanisms of insecticide resistance by
finding intersecting processes across independent but related
datasets. However, recognising these patterns for insecticide
resistance has been confounded by the complexities of the data
available, such as variable susceptible reference strains, broad
geographical distances between populations analysed, and dif-
fering experimental designs.

Here, 31 datasets comparing resistant and susceptible popula-
tions from three of the major malaria vector species in Africa,
Anopheles gambiae, An. coluzzii and An. arabiensis were retrieved
from published literature’~!8 (Fig. 1) and re-analysed using the
limma?3?4 package in R. The datasets represent mosquito
populations from a disparate geographical range, covering much
of Sub-Saharan Africa and span five years of collections. We
searched these data for meta-signatures associated with insecti-
cide resistance, which resulted in several unreported potential
mechanisms, both at a regulatory and direct mechanistic level.
Firstly, we identified a number of transcripts consistently up-
regulated in pyrethroid resistant An. gambiae s.l. populations
across Africa. Most of these transcripts belong to gene families
not previously associated with insecticide resistance but silencing
expression of a subset of these genes in resistant populations
significantly supressed the resistant phenotype. Secondly, we
identified two additional transcription factors that regulate
expression of genes associated with insecticide resistance. Finally,
we developed a bespoke web-based application (app) in ShinyR?>,
IR-TEx (Insecticide Resistance Transcript Explorer), that enables
all users to explore transcripts of interest, map their associated
expression across Africa, and identify putative functions and
pathways of their transcripts using pairwise correlation matrices.

Results

Available datasets. ArrayExpress?® and VectorBase?” were sear-
ched for available microarray datasets comparing resistant and
susceptible mosquitoes from the three dominant vector species in
the Anopheles gambiae complex: An. gambiae, An. coluzzii and
An. arabiensis. These members of the An. gambiae species
complex have overlapping distributions; however, although
hybrids are viable, they are primarily found at low frequency in
wild populations, indicating limited introgression, with the
exception of the pyrethroid target site mutation, kdr?3. From this
search, datasets were retrieved from 22 geographically distinct
mosquito populations (Fig. 1);”~!8 the total number of datasets
available for this study was 31 as mosquito collections from some

sites were used in multiple experiments either (i) involving
comparisons to different susceptible populations or (ii) as part of
a temporal study. These represent disparate datasets collected
from across regions of the continent with the highest malaria
endemicity and span 5 years of collections’~!8, Meta-data,
including resistance status, insecticide exposure and kdr fre-
quency for the 31 datasets used in this study are provided in
Supplementary Table 1. Initially, the metadata itself was used to
cluster the microarray datasets to identify patterns of resistance in
population subsets, but as this only explained <0.5% of the var-
iation, we instead took hypothesis-based approach to identify
patterns across all data sets.

Candidate gene families in pyrethroid resistant mosquitoes. As
resistance to pyrethroid insecticides, the only insecticide class
currently used to treat bednets is of most immediate threat to
malaria control, our analysis focused on populations resistant to
this insecticide class. Of the 31 datasets, 12 compared gene
expression in mosquitoes that had been exposed to pyrethroids
(with RNA extracted from survivors 48 h post-exposure) with a
susceptible unexposed population (dashed circles, Fig. 1). A total
of 101 transcripts from 86 genes showed the same direction of
differential expression (i.e. higher in resistant population, herein
referred to as up-regulated, or higher in susceptible population,
referred to as down-regulated) across all 12 datasets; 56 genes
were up-regulated and 30 genes were down-regulated (Supple-
mentary Table 2). These data represent pyrethroid resistant
populations from seven countries and include five populations of
An. coluzzii, one An. gambiae and three An. arabiensis (two An.
arabiensis and one An. coluzzii population were compared to two
separate susceptible strains hence 12 datasets were included in
total (see Supplementary Table 1 for further details on the mos-
quito populations)).

Candidate gene families in pyrethroid resistant An. coluzzii.
Data were further subdivided into species as the low levels of
introgression between the An. gambiae species complex increases
the likelihood of species specific resistance mechanisms. Analysis
of the 11 highly or moderately pyrethroid resistant (unexposed or
exposed) An. coluzzii populations identified a total of 43 tran-
scripts from 41 genes that were significantly differentially
expressed in the same direction (compared to lab susceptible
populations) across each experimental set (Supplementary
Table 3). Despite many of the same populations being used to
produce the gene lists in Supplementary Table 2 and Supple-
mentary Table 3, with the notable exception of the a-crystallin
family, there is little overlap in transcript identity between these
two lists (just two transcripts are commonly up-regulated across
both tables).

Detoxification candidates. Enhanced detoxification of insecti-
cides is thought to be one of the major resistance mechanisms
and several glutathione transferases (GSTs), cytochrome P450s
(CYPs) and carboxylesterases (COEs) have previously been
shown to be elevated in resistant population and encode enzymes
that detoxify insecticides’~!8. Nine of the 56 genes commonly
up-regulated in resistant populations across the species complex
belong to these three gene families. This list includes two
known pyrethroid metabolisers, CYP6Z3 (AGAP008217)*° and
GSTD1 (AGAP004164)%°, but also seven additional detoxification
genes, (GSTD7 (AGAP004163), GSTD3 (AGAP004382),
GSTE5 (AGAP009192), GSTMS3 (AGAP009946), COEAES8O
(AGAP006700), CYP4C28 (AGAP010414) and CYPI2F2
(AGAP008020) (note that the CYPI2F2 probe overlaps with the
unnamed p450 AGAP012800 (Supplementary Table 4)) which,

2 | (2018)9:5282 | https://doi.org/10.1038/s41467-018-07615-x | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07615-x

ARTICLE

BANFORA
Ac

Ac

X ‘
TIEFORA ‘u

Ag

TENGRELA

.

TIASSALE:

Resistant population mortality

Moderate resistance

’ High resistance

[ ) Low resistance

N 4

Susceptible

. Unknown

YOUANDE \\

Fig. 1 Distribution of available microarray datasets. Microarray datasets available from sub-Saharan Africa comparing insecticide resistant and susceptible:
An. gambiae (Ag), An. coluzzii (Ac) or An. arabiensis (Aa). Resistance levels are characterised by the populations maximal recorded mortality in WHO

discriminating dose assays: high resistance 0-33% mortality, moderate resistance 33-66%, low resistance 66-90% mortality, susceptible populations are
those that consistently exhibited 100% mortality after exposure (See Supplementary Table 1). The insecticides that the populations have been exposed to
prior to RNA extraction are represented by D DDT, P Pyrethroid, B Bendiocarb, NK Not known; unexposed mosquitoes have no corresponding letter. Figure
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as far as we are aware, have not been evaluated for insecticide
metabolising activity. The cytochrome P450 cofactor, cytochrome
b5 (AGAP007121), is also amongst this list of genes commonly
upregulated in pyrethroid resistant populations. CYP4D22
(AGAP002419) is the only candidate detoxification gene con-
sistently up-regulated across all 11 An. coluzzii populations.
Several of the better characterised insecticide detoxification
genes, such as CYP6M2 (AGAP008212)!%30 and CYP6P3
(AGAP002865)2? are not found in this list of 56 common genes
up-regulated in all pyrethroid resistant populations of An.
gambiae s.1. although these are represented in multiple individual
populations. A heatmap showing the expression of the 11
cytochrome P450s (10 % of the total family in this species)
most commonly associated with resistance is provided in

Supplementary Figure 1. Cognisant that genome sequencing of
several hundred An. gambiae individuals from across Africa has
pointed to multiple origins of insecticide resistance’! our
approach is not intended to identify candidates that emerge
from single populations. Instead, our data integration approach of
pooling populations from diverse geographical origins is aimed at
identifying putative candidates that have previously been over-
looked by studies on single populations due to a priori candidate
focus and to highlight common biological and cellular mechan-
isms operating at a higher level.

Novel gene families associated with pyrethroid resistance.
Seven genes from Supplementary Tables 2 and 3 were selected for
qPCR validation in three pyrethroid resistant colonies of An.
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Fig. 2 gPCR analysis of top insecticide resistance candidates from multiple resistant populations. gPCR results of three 3-5 day old, unexposed, pyrethroid
resistant Anopheles populations compared to the lab susceptible N'Gousso, three biological replicates and three technical replicates were used for each
gene. Relative fold change (y), and resistant populations (x). Standard deviation bars are shown, with significance *p <0.05, **p <0.01, ***p <0.001 as

calculated by ANOVA with Dunnett's post hoc test

gambiae sl. (Tiassalé, VK7 and Banfora) maintained at LSTM. Six
were significantly over expressed in at least one of the resistant
colonies compared to the laboratory susceptible N’Gousso strain
(Fig. 2). (It should be noted that mosquitoes used in the qPCR
had not been exposed to insecticides; had we-pre-exposed to
pyrethroids, as was the case in the majority of the microarray
experiments, an even stronger correlation might have been
expected.) The hexamerin and a-crystallin families, plus the
ATPase subunit (as it had the highest mean fold change of all
candidate transcripts) were selected for further validation.

a-crystallins. Amongst the top five genes up-regulated across
pyrethroid resistant populations (Supplementary Table 2) and
confirmed by qPCR on lab colonies (Fig. 2) is a member of the
a-crystallin family, AGAP007161. a-crystallins are small, ATP-
independent chaperone proteins, that are induced by a variety of
stresses including heat stress, hyperoxia and oxidative stress;>?
they directly bind to stress induced mis-folded proteins, pre-
venting toxic aggregation®3. AGAP007161 is one of eight putative
a-crystallins in An. gambiae, five of which are clustered on
chromosome 2 L, division 27B in the genome; transcripts from
this cluster of paralogous genes are up-regulated across multiple
microarray datasets, indicating possible transcriptional co-
regulation (Supplementary Figure 2). qPCR characterisation of
their expression confirmed that four of the five 2L a-crystallins
are overexpressed in at least one of the three pyrethroid resistant
laboratory colonies (Supplementary Figure 3).

As oa-crystallins are frequently up-regulated in response to
stress, the impact of insecticide exposure on the expression of
the four members of this gene family constitutively overexpressed
in resistant populations was investigated. AGAP007159 was
strongly induced 24 and 48 h post deltamethrin exposure (relative
fold changes, compared to unexposed Tiassalé control =22.1x
and 60.5x respectively) whereas other members of this gene
cluster showed reduced expression after exposure to insecticides
(Supplementary Figure 4). AGAP007159 was not one of members
of the a-crystallin family over expressed in the microarray
analysis (Supplementary Tables 2 or 3) but results for this
transcript may be confounded by the cross hybridisation between
the probe for AGAP007159 and other member of this gene family
(Supplementary Table 4), which can then be discerned by unique
primer sets in qPCR.

Four of the a-crystallins were silenced in one or more
pyrethroid resistant strains and the impact on the resistance
phenotype investigated; in each case no difference in mortality
after gene knockdown was seen after exposure to control
papers, indicating no dramatic short-term fitness cost of gene
silencing. Attenuation of expression of AGAP007159 by RNAi
resulted in a large significant increase in mortality following
deltamethrin exposure in two pyrethroid resistant lab colonies
(43.5% mortality in dsGFP controls compared to 82.3% in
Tiassalé, panova, Tukey post hoc) =0.0003, 19.4% in dsGFP
compared to 62.4% in VK7, p(aNoOvA, Tukey post hoc) = 0.0002).
Silencing of the non-induced a-crystallins had no effect on
pyrethroid induced mortality; this could be due to the
ubiquitously over-expressed a-crystallins having functional
redundancy or a non-crucial component in a resistance pathway
(Fig. 3).

Hexamerins. The list of transcripts up-regulated across pyre-
throid resistant populations contained multiple members of
the hexamerin family (Supplementary Table 2). These proteins
are the most abundant proteins in the haemolymph, where
they act as storage and transport proteins®*. There are eight
putative hexamerins in An. gambiae and six of these are up-
regulated across multiple pyrethroid resistant microarray datasets
(Supplementary Figure 5) (AGAP005766 and AGAP005767
have identical probes, so these transcripts will experience cross-
hybridisation on the arrays) with qPCR confirming that five of
these are up-regulated in at least one of the three pyrethroid
resistant lab colonies (Supplementary Figure 6). RNAi was again
used to determine whether up-regulation of these hexamerin
transcripts was associated with pyrethroid resistance. dsRNA
mediated attenuation of AGAP001659 resulted in a small but
significant increase (43.5-60.1% P(ANOVA, Tukey post hoc) = 0.0415)
in mortality after deltamethrin exposure when compared to GFP
controls in the Tiassalé strain although this phenotype was not
observed in VK7 (Fig. 3). Suppression of expression of
AGAP001657 or AGAP001345 had no significant impact on the
pyrethroid resistant phenotype.

ATPase subunit e. The final gene from the meta-analysis selected
for RNAi validation was AGAP006879, which encodes subunit e
of the F-type ATP synthase. This transcript was the most highly
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Fig. 3 RNAi phenotyping for potential candidates. RNAi was performed using two pyrethroid resistant colonies, Tiassalé and VK7. 3-5 day old females
mosquitoes were injected with dsRNA from each of the respective transcripts. 72-h post injection, the mosquitoes were exposed to 0.05% WHO
deltamethrin papers for 1h and mortality scored 24 h later. a Mortality associated with dsRNA induced knockdown in Tiassalé mosquitoes. b dsRNAs
showing significantly increased mortality in Tiassalé mosquitoes were then injected into a second resistant colony, VK7. € Knockdown levels for each
dsRNA construct relative to GFP-injected controls (Tiassalé population only). Error bars represent standard deviation, three biological replicates and three
technical replicates were used for each gene with each circle representing the mean value for each biological replicate in the gPCR data and significance
is indicated by *p <0.05, **p <0.01, ***p <0.001, as computed by ANOVA with post hoc Tukey correction. Numbers on the bars represent number of

mosquitoes tested under each condition

overexpressed across all An. coluzzii arrays (FC, = 37.26, Sup-
plementary Table 3) and its over expression in lab colonies was
confirmed by qPCR (Fig. 2). Suppressing expression of the
ATPase resulted in a significant increase in mortality in both
Tiassalé and VK7 mosquitoes post deltamethrin exposure
(43.46-76.34%, P(ANOVA, Tukey post ho) = 0.0099, 19.4-45.4%,
P(ANOVA, Tukey post hoc) = 0.00146 respectively) (Fig. 3). Although
previously thought to only have a role in the mitochondria,
ATPases are present in the plasma membrane of the insect
midgut and salivary glands and have been shown to have a role
in lipid transport3>-3°,

Transcriptional regulation of insecticide resistance. Silencing of
the transcription factor Maf-S has recently been shown to mod-
ulate expression of key insecticide detoxification genes’’, pro-
viding evidence for a major role in the regulation of metabolic
resistance. Screening the previously published transcriptomic data
set on dsMaf-S compared to dsGFP control revealed that 30%
of the pyrethroid resistance candidates identified in the current
study, including AGAP002603 (EF-like Factor), AGAP001659
(Hexamerin), AGAP008217 (CYP6Z3) and two a-crystallins
(AGAP007161 and AGAP007160) show decreased expression
when the Maf-S transcription factor is silenced, providing further

evidence for the importance of Maf-S in controlling insecticide
resistance (Supplementary Table 5).

In order to identify other potential regulatory pathways,
putative homologues of all 560 transcription factors described
in Drosophila melanogaster®® were identified using FlyMine®
and searched against the An. gambiae s.l. datasets. Twenty-five
transcription factors differentially expressed in at least 50% of
the data sets from insecticide resistant compared to susceptible
populations were identified, including Maf-S (Supplementary
Figure 7). Literature searches show that five of these transcription
factors are linked to stress responses: Met has been indirectly
linked to stress response to insecticide exposure in Drosophila;*°
AP-1 (jra)*! and TFAM*? are linked to oxidative stress; sug has
been linked to salt*3, starvation and sugar stress;** and REL2 has
been directly implicated in response to permethrin exposure?”.
Two of the 25 transcripts, Dm (previously unlinked to stress) and
Met, were individually suppressed by RNAIi in the resistant
Tiassalé strain and both led to a significant increase in mortality
(p(ANOVA, Tukey post hoc) — 0.022, PaNoOVvA, Tukey post hoc) — 000098)
after exposure to deltamethrin (Fig. 4).

In order to determine whether this data integration approach
was a valid method for identifying transcription factors control-
ling expression of insecticide resistance candidates, a microarray
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Fig. 4 RNAI phenotyping for potential transcription factor candidates. RNAi was performed using the pyrethroid resistant Tiassalé colony. Three to five-
day-old females mosquitoes were injected with dsRNA from each of the respective transcripts. Seventy two-hours post injection, the mosquitoes

were exposed to 0.05% WHO deltamethrin papers for Th and mortality scored 24 h later. a Deltamethrin induced mortality following dsRNA induced
knockdown of the transcription factors Met and Dm. b Knockdown levels for each dsRNA construct relative to GFP-injected controls. Error bars represent
standard deviation, three biological replicates and three associated technical replicates were used for each gene in the gPCR data and significance is
indicated by *p <0.05, **p < 0.01, ***p <0.001, as computed by ANOVA with post hoc Tukey correction. Numbers on the bars represent number of

mosquitoes tested under each condition

experiment was performed to compare gene expression in
dsMet and dsGFP (control) female mosquitoes. A total of 1365
transcripts were differentially expressed between the two test sets
(Supplementary Data 1); this dataset is described in more detail in
ArrayExpress (E-MTAB-4043). Up-regulated transcripts from the
Met knockdown experiment were significantly enriched for Gene
Ontology (GO) terms related to key housekeeping and various
binding activities whereas down-regulated transcripts were
enriched for oxidation reduction processes, structural assembly,
haem binding and transferase activity as seen in Aedes aegypti*®.
Only six detoxification candidates were up-regulated in the dsMet
arrays (6 out of 688, no enrichment p(nypergeometric testy = 0.95).
Conversely, there was significant enrichment (27 out of 677) for
downregulated detoxification family members (p(nypergeometric test)
=9.73e-7). Fifteen of these down-regulated transcripts following
Met transcription factor silencing are cytochrome p450s, includ-
ing the insecticide metaboliser CYP6M2 (AGAP008212)19:30,
consistent with Met having an activating role in transcription of
these detoxification genes (Supplementary Table 6).
Down-regulated transcripts were enriched in vitellogenin and
lipoprotein domains, concurrent with a role in ovarian develop-
ment#6-48, Similarly using the DroPhEA database*’ to determine
putative phenotypic roles of enriched transcripts, 249 homo-
logues had an effect on fertility (p=0.043, as calculated by
DroPhEA?’), again consistent with a role in reproduction6-48,

App development. The Insecticide Resistance Transcript
Explorer (IR-TEx) was developed in ShinyR?>>0 to facilitate
exploration, via an interactive browser applet of all insecticide
resistance  microarray datasets  [https://www.stmed.ac.uk/
projects/ir-tex]. The aim of the app is to allow end-users to
apply their own filtering criteria to identify whether genes of
interest are differentially expressed in insecticide resistant popu-
lations and view the geographical distribution of populations
differentially expressing these genes. Users can also input their
own data sets to look for similarities or differences with other
populations (Supplementary Note 1). IR-TEx displays the fold
change of the transcript in all selected arrays in graphical (log,)
(Fig. 5a) and tabular form (raw); the user can save the graphical
output and download the tabular output tab separated value
format, which also contains adjusted p-values (Q values) for each
dataset and the total number of datasets in which the transcript is

significantly differentially expressed. A map is also displayed for
each transcript (Fig. 5b), allowing visualisation of the geo-
graphical distribution of the significance of the entered transcript
and the associated fold change. IR-TEx also enables correlation
networks to be visualised (Fig. 5¢); by identifying co-regulated
transcripts, putative pathways can be constructed and hypotheses
on transcript function developed. Analogous to the transcript
expression outputs, IR-TEx graphically displays the log, fold
change of all transcripts fitting with the user-defined cut-off
(defined by Pearson’s r value); a tabular version can be down-
loaded to explore the transcripts further (Supplementary Note 1).

Using IR-TEx to predict gene function. In addition to displaying
fold change information graphically and geographically across
populations, a powerful application of IR-TEx is to assign puta-
tive functions to transcripts through correlation networks; these
transcripts could be (i) co-regulated or (ii) active in a single
pathway. To illustrate this, the correlation networks of two genes
that have previously been implicated in insecticide resistance, but
are not involved in insecticide detoxification are described.
CYP4G16 is a cytochrome p450 responsible for the decarbo-
nylase step in cuticular hydrocarbon (CHC) synthesis®!. Using a
strict correlation cut-off of Pearson’s pairwise |r|=0.85, 44
transcripts (including all 4 splice variants of CYP4GI16 and the
paralog CYP4G17) were found correlated with CYP4G16 across
the 31 datasets of insecticide resistant populations (Fig. 5¢). GO
term enrichment analysis of this list shows that the transcripts are
lipid-related (GO terms: fatty acid biosynthetic process (p = 5e-
3); 3-ox0-X-coA synthase activity (2.8e-3); hydrolase activity,
acting on ester bonds (p=4.6e-3); as calculated by DAVID
enrichment®2). Transcripts in this list include propionyl CoA
synthase (AGAP001473), 1 fatty acid synthase, 2 fatty acid
elongases, 1 fatty acid reductase and 1 fatty acid desaturase
(Supplementary Table 7) all of which belong to enzyme families
known to catalyse key steps in the CHC pathway (Fig. 6). Further
evidence in support of the role of these genes in the CHC
biosynthesis pathway is provided by data on tissue expression
which shows 80% (35/44) are significantly enriched in the
abdomen carcass of Tiassalé>> (Supplementary Table 7), the site
of the oenocyte cells which are responsible for CHC production®!.
This correlation network thus provides a basis for predicting
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specific genes involved in this biosynthetic pathway for functional
validation.

Recently, the overexpression of multiple ABC transporters in
pyrethroid resistant populations of An. gambiae was reported,
along with the observation that several members of one of the

NATURE COMMUNICATIONS | (2018)9:5282 | https://doi.org/10.1038/s41467-018-07615-x | www.nature.com/naturecommunications

larger subfamilies of this transporter family, the ABCGs, were
enriched in the legs®. The correlation network (|r| > 0.8) provides
clues as to a putative function for at least one member of this
subfamily. ABCG16 (AGAP009467) is correlated with just 5
transcripts; AGAP001763 a fatty acid transporter, AGAP003600 a
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Fig. 5 Graphical Outputs from IR-TEx App. These panels represent three graphical outputs from the IR-TEx App, each of which is available in downloadable
tabular formats. These outputs result from a user inputted VectorBase ID, selected filtering criteria based on meta-data and finally, user inputted
correlation value. Each panel here is AGAPO01076-RA (CYP4G16). a Log, fold change of CYP4G16 (y) across each microarray experiment meeting pre-
selected user criteria (x), here all data is selected. b Each point represents a dataset with significant differential expression of CYP4G16 and the associated
approximate collection site. Green points show significant down regulation of CYP4G16, orange points show significant fold changes of 1-5 and red a fold
change of >5 compared to susceptible controls. Map data source: Google Maps, 2018. ¢ Log, fold change (y) across each microarray experiment meeting
pre-selected user criteria (x) for each transcript showing a correlation of |r| > 0.85 for CYP4G16
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fatty acid elongase, AGAP005634 a chitinase, AGAP002739
an ortholog of Drosophila uninflatable protein which contains a
LDL-receptor domain and AGAP010295 a Ca>* binding protein.
The ABCG family has been implicated in lipid transport from
the epidermis to the cuticle in other insect species®>® and the
correlation network for ABCGIG6 is certainly supportive of an
orthologous function in An. gambiae.

Discussion

Despite the large amount of data available on the transcriptomes
of insecticide resistant mosquitoes from across sub-Saharan
Africa, and the importance of this information for malaria control
programmes, no concerted effort to analyse these data in an
overarching manner has previously been reported. Using meta-
signatures across populations with pyrethroid resistance profiles,
several new and potent insecticide resistance gene candidates
have been identified, acting across multiple resistant populations
sourced from large geographical distances.

The candidates identified by this approach do not belong to
gene families previously associated with pyrethroid resistance.
Interestingly, two of the new gene families implicated, the hex-
amerins and a-crystallins, are typically associated with binding
and storage roles’>3* and may hint at a previously unreported
sequestration insecticide resistance mechanism. If these protein
families are indeed capable of binding and sequestering insecti-
cides, it may be a characteristic of multiple members of each
family as different transcripts were found elevated in assorted
resistant populations. However, dsRNA silencing suggested only a
single member of each family was involved in altering the resis-
tance phenotype in the strain we examined. Although off-target
siRNA effects cannot be excluded (and is examined in further
detail in Supplementary Table 4), the large differences in

mortality seen within members of a single families indicates
that this effect is not a major confounding factor in this study.

In addition to identifying putative effector genes linked to
insecticide resistance (albeit by an as yet unknown mechanism)
this study also implicated several transcription factors in reg-
ulating the pyrethroid resistance phenotype. Silencing of three
separate transcription factors (Dm, Met and Maf-S) resulted in
increased mortality after exposure to pyrethroid insecticides;
using a data integration approach in this way can identify reg-
ulatory changes with small but consistent changes in fold change
that were previously hard to detect by analysing individual data
sets. The role of Maf-S, in regulating expression of metabolic
resistance has been described previously®” but it is noteworthy
that approximately one third of the new resistance candidates
identified in the current study also appear to be under the control
of this transcription factor, elevating the status of this transcrip-
tion factor to a key regulator of insecticide resistance in mos-
quitoes. Transcriptional silencing of Met also resulted in a
significant reduction of expression in multiple detoxification
family members, including CYP6M2, one of the key enzymes
involved in insecticide metabolism!%3°, indicative of a role in
pyrethroid resistance as well as the known role in juvenile hor-
mone analogue resistance?6-48,

The production of the IR-TEx ShinyR app ensures that the
insecticide resistance transcriptomic data are available and easily
explored by all users without significant bioinformatics or pro-
gramming experience. The value of this app in identifying potent
novel insecticide resistance mechanisms, elucidating regulatory
pathways and assigning putative functions and pathways to
Anopheles transcripts has been demonstrated in this study. The
simple nature of the data input sheet will allow users to add their
own datasets, and for the datasets to be easily updated as
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microarray experiments are published; hence increasing the
power of the app. Further insights will accrue as the wider malaria
vector community use this tool to interrogate their own datasets
and validate additional candidates identified in this study.

Methods

Microarray datasets. Literature and ArrayExpress searches were used to identify
microarray experiments comparing resistant and susceptible populations of three
Anopheline species: An. gambiae, An. coluzzii or An. arabiensis, across the African
continent. Raw data files were acquired, from ArrayExpress?® or VectorBase?’ (all
data included before July 2017). All studies that were aimed at exploring the
transcriptome of An. gambiae s.l. or An. arabiensis in relation to insecticide use
were used in this study, no experiments were excluded. The resulting data were
analysed using R°° and all array designs were analysed as direct resistant vs sus-
ceptible experimental design. Within-array normalisation was carried out by loess,
and between array normalisation by Aquantile®’. Signals were corrected for dye
by performing and correcting for dye swaps as directed in the limma package?*?4.
The limma package?3?* was used to fit linear models to normalised corrected
signals to assess differential expression, following the limma user guide on two-
colour arrays with a common reference, using the functions ImFit and eBayes
[https://bioconductor.org/packages/release/bioc/vignettes/limma/inst/doc/
usersguide.pdf] for RvsS designs and a contrast matrix for complete loop designs.
The limma outputs of each experiment were used to create a file used for the data
integration by combining the fold changes and adjusted p values for each transcript
across each experiment. Transcript fold changes and p values were averaged across
each individual experimental data set if >75% of the probes: (a) showed the same
fold change directionality or (b) were all non-significantly differentially expressed.
All arrays used in this study compare two mosquito populations on an Agilent 8 x
15k Anopheles gambiae microarray platform (A-MEXP-2211). Transcripts with
multiple probes (such as detoxification families) were averaged to produce a single
value for fold change. For all transcripts of interest, BLAST of the probes to the
Anopheles gambiae transcript database was used to identify potential cross-
hybridisations. Subsetting of data-sets to answer data-driven hypotheses was per-
formed using R, all significance levels are taken as adjusted p values of <0.05. A fold
change of >1 was used to define up-regulation and <1 to define down-regulation.

Variation calculation. Metadata associated with each array was collected,
including country, species, susceptible comparator, kdr levels, mortality levels,
insecticide exposure and year collected. The variation explained by each factor
was calculated using the unbiased estimator w?.

2 _ SSrrearment — (& — 1)MSg
Storar + MSg)s

SS = sum of squares, & = number of treatments, MSg/, = mean square error.

Shiny app. The fold change and Q values generated in data outputs from limma
analysis were combined into a large table [see IR-Tex live: https://www.Istmed.ac.
uk/projects/ir-tex or available for local use at github: https://github.com/
LSTMScientificComputing/IR-TEx]. The resultant large dataset was used as the
basis to develop a publicly accessible database. Using the package ShinyR?, an
online application was written to analyse transcripts of interest and output infor-
mation on that transcript in each dataset, alongside strongly correlated transcripts
both in tabular and graphical formats. Map display of significant transcripts was
also integrated using the dismo package®®, The App ‘IR-TEX’ is available [https://
www.Istmed.ac.uk/projects/ir-tex / https://github.com/LSTMScientificComputing/
IR-TEx].

Co-correlation. Correlation networks were used to infer an association between
transcripts across datasets using a pairwise correlation matrix as calculated in R
using Pearson’s correlation®’. By manipulating high absolute Pearson correlation
coefficient cut-off value (|r| >0.75), stringency of the correlation network can be
changed.

Enrichment analysis. Enrichment analysis was performed for all datasets on
DAVID?? and for detoxification transcripts/correlation network enrichments using
a hypergeometric test on R (phyper), ¢ = number of detoxification candidates
present in a given list, m = number of detoxification candidates in the genome,
n = number of transcripts in the genome - the number of detoxification family
members and k = number of transcripts present in a given list. DroPhEA% was
also used for enrichment analysis, using Drosophila melanogaster homologues.
Benjamini-Hochberg multiple test correction was used throughout.

Transcription factor search. A list of putative and known Drosophila transcrip-
tion factors were downloaded from flyTF.org>® and An. gambiae orthologs iden-
tified using FlyMine®. The microarray database table [see IR-TEx Github URL:

https://github.com/LSTMScientificComputing/IR-TEx] was searched against these
transcription factors and those differentially expressed in over 50% of the arrays
(=16) were extracted and visualised.

Mosquito rearing conditions. The An. gambiae s.1. used in these experiments were
from the Tiassalé strain originally from Coéte D’Ivoire, and the An. coluzzii were
from VK7 and Banfora strains from Burkina Faso. All populations have been
maintained under pyrethroid selection pressure in the insectaries at the Liverpool
School of Tropical Medicine since 2009/2014/2014 respectively. The strains are
resistant to pyrethroids and organochlorides!%16:5%%0, The lab susceptible An.
coluzzii population N’Gousso®! was used as a qPCR comparitor. Mosquitoes were
reared under standard insectary conditions at 27 °C and 70-80% humidity under
a 12:12 h photoperiod and are presumed mated. Tiassalé was used for all RNAi
experiments as it is the easiest of the resistant colonies to rear in large numbers; this
colony was established in 2009 and originates from the same rice fields as the
‘Tiassalé’ microarray datasets (number of microarray datasets performed on
Tiassalé = 4). VK7 and Banfora were colonised in 2014 and require arm-feeding
and so are maintained at lower-levels; both populations have the same geographical
origin as the microarrays with the resistant population same name (number of
microarray datasets performed on VK7 =2 and Banfora = 2).

RT-gPCR. RNA (4 pug) from each biological replicate was reverse transcribed using
Oligo dT (Invitrogen) and Superscript III (Invitrogen) according to manufacturer’s
instructions. For the induction qPCR time course, alive adult female’s RNA was
extracted at 30 min, 1h, 24 h and 48 h post-deltamethrin exposure. Quantitative
real-time PCR was performed using SYBR Green Supermix III (Applied Biosys-
tems) using an MX3005 and the associated MxPro software (Agilent). Primer Blast
(NCBI)®? was used to design primer pairs (Supplementary Table 8). Where pos-
sible, primers were designed to span an exon junction. Each 20 pl reaction con-
tained 10 ul SYBR Green Supermix, 0.3 uM of each primer and 1 pl of 1:10 diluted
cDNA. Standard curves were produced using whole N’Gousso ¢cDNA, in 1, 1:5,
1:25, 1:125, 1:625 dilutions. gPCR was performed with the following conditions:
3 min at 95 °C, with 40 cycles of 10s at 95°C and 10s at 60 °C. All amplification
efficiencies of designed primers were within acceptable range (90-120%), following
MIQE guidelines, relative expression was normalised against two housekeeping
genes: EF and $7%3. Validation of RNAi knockdown was performed after extraction
of RNA from unexposed females 3 days post-injection. Analysis was performed on
delta Ct values; Bartlett and Shapiro tests were used to confirm homogeneity of
variance and normality of data respectively. For non-normal data square trans-
formations were performed when possible. Normal data was analysed using an
ANOVA followed by Dunnett’s post hoc test, non-normal data was analysed using
Kruskall-Wallis followed by a Dunn’s post hoc test. Graphs were produced using
GraphPad Prism 7. All qPCR analysis had three biological replicates and three
technical replicates within each biological replicate.

RNA.I. PCR was performed on Tiassalé cDNA using Phusion® High-Fidelity DNA
Polymerase (Thermo Scientific) following manufacturer’s instructions and primer
sets with a T7 docking sequence at the 5’ end of both the sense and antisense
primers. Primers were designed to produce an asymmetric product with a length of
300-600 bp, a GC content of 20-50% and no more than three consecutive
equivalent nucleotides (Supplementary Table 9). PCR was performed with the
following cycle: three minutes 98 °C, 35 cycles of seven seconds at 98 °C and 10 sec
at 72 °C, with a final hold at 72 °C for seven minutes. PCR products were purified
using a Qiagen QIAquick PCR Purification kit following manufacturer’s instruc-
tions. dsSRNA was synthesised using a Megascript® T7 Transcription (Ambion) kit,
with a 16-hour 37 °C incubation, following manufacturer’s instructions. The
dsRNA was cleaned using a MegaClear® Transcription Clear Up (Ambion) Kkit,
with DEPC water, twice heated at 65 °C for 10 min, to elute the sample. The
resultant dsSRNA product was analysed using a nanodrop spectrometer (Nanodrop
Technologies, UK) and subsequently concentrated to 3 ug/ul using a vacuum
centrifuge at 35 °C. 100, three-to-five day old, presumed mated, non-blood fed
females, which were immobilised on a CO, block and 69 nl injected directly into
the thorax, between the cuticle plates of the abdomen, underneath the wing. As a
control, non-endogenous GFP dsRNA was injected at the same amount and
concentration®. BLAST was carried out on all dsRNA constructs to identify off-
site targets. Off-site targets are defined as sequences greater than 21 base pairs with
100% identity. dsRNAs constructs that resulted in greater than 40% reduction in
mRNA abundance (4 = 78.8% * 17.5%) were used for attenuation. Graphs were
produced using GraphPad Prism 7.

Bioassays. 72-hours post injection, a minimum of 75 female mosquitoes were
exposed to 0.05% deltamethrin impregnated papers using WHO bioassay tube test
kits°. In each case, 25-30 treated females were present in each tube, the minimum
number of replicates for each group is 3 (with the exception of Dm, where only two
replicates were available). For each knockdown and each exposure, 20-25 female
mosquitoes were simultaneously exposed to untreated papers as a control. Post-
exposure, mosquitoes were left in a control tube, under insectary conditions for
24 h, with sucrose solution and mortality recorded. Analysis of mortality data was
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done on normal data using an ANOVA test followed by a Tukey post hoc test.
Graphs were produced using GraphPad Prism 7.

Microarray experiment. A whole-genome microarray approach was used to
determine the effect of Met knockdown on transcriptional profiles. The tran-
scriptional profiles of Met knockdowns were compared against a GFP injected
control. RNA was extracted from three biological replicates for each of Met injected
and GFP injected controls. Mosquitoes were collected 72 h post injection, between
the hours of 8am and 2 pm. In both cases larvae were collected and reared in
insectary conditions and species ID® performed on the colony. Each replicate was
added to extraction buffer from the PicoPure RNA extraction kit, heated for 30 min
at 42 °C and frozen at —80 °C as per manufacturer’s instructions. Each biological
replicate for each treatment consisted of RNA, extracted using PicoPure RNA
Isolation kit (Arcturus), from 7-12 three to five-day-old non-blood fed, presumed
mated females. The quantity and quality of the RNA was assessed using a nano-
drop spectrophotometer (Nanodrop Technologies UK) and Bioanalyser (Agilent)
respectively. 100 ng of RNA was amplified and labelled with Cy3 and Cy5, using
the Two colour low input Quick Amp labelling kit (Agilent) following the man-
ufacturer’s instructions. Samples were then purified (Qiagen) with the cRNA yield
and quality assessed using the nano-drop and Bioanalyser respectively. RNA from
each Met injection replicate was competitively hybridised with the GFP injected
control replicates. Dye swaps were performed on each of the technical replicates for
each array, to correct for dye bias. Labelled cRNAs were hybridised to the whole
genome 8 x 15k Anopheles gambiae array (ArrayExpress accession number A-
MEXP-2211). Microarray hybridisation, washing and scanning were performed
according to previously described protocols®). The dsMet experiment was sub-
mitted to ArrayExpress, accession E-MTAB-4043. Banfora, Tiefora 2013 and
Tiefora 2014 microarrays were submitted to ArrayExpress?® accession numbers:
E-MTAB-6498, E-MTAB-6499, E-MTAB-6500 respectively, with all relevant
information on study design. All data were analysed using the limma package in R,
with background and between- and within- array normalisations as previously
reported>>.

Code availability. All code used in this study is available on the IR-TEx Github
(https://github.com/LSTMScientificComputing/IR-TEx).

Data availability

The datasets generated during the current study are available on ArrayExpress
under the accession numbers: E-MTAB-4043, E-MTAB-6498, E-MTAB-6499 and
E-MTAB-6500. All data analysed during this current study are available on public
repositories and detailed in the present paper, as detailed in Supplementary
Table 1. The authors declare that all other data supporting the findings of this
study, are available within the article and its Supplementary Information files, or
are available from the authors upon request.
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