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Abstract

The conventional reductionist approach to cardiovascular research investigates individual candidate factors or linear

signalling pathways but ignores more complex interactions in biological systems. The advent of molecular profiling

technologies that focus on a global characterization of whole complements allows an exploration of the interconnec-

tivity of pathways during pathophysiologically relevant processes, but has brought about the issue of statistical analysis

and data integration. Proteins identified by differential expression as well as those in protein—protein interaction net-

works identified through experiments and through computational modelling techniques can be used as an initial start-

ing point for functional analyses. In combination with other ‘-omics’ technologies, such as transcriptomics and

metabolomics, proteomics explores different aspects of disease, and the different pillars of observations facilitate

the data integration in disease-specific networks. Ultimately, a systems biology approach may advance our under-

standing of cardiovascular disease processes at a ‘biological pathway’ instead of a ‘single molecule’ level and accelerate

progress towards disease-modifying interventions.

This article is part of the Review Focus on: Cardiovascular Systems Biology

1. Introduction

Proteomics represents the large-scale analysis of proteins, particularly
their structures and functions. The term ‘proteomics’ was coined to
make an analogy with genomics, the study of the genome. Although
the genome is just the ‘blueprint’ of the proteins, the proteins
execute cellular function. Importantly, the transcriptome is not linearly
proportional to proteome and many human diseases result from altera-
tions in the proteome. In the first part of this review, we provide a
short summary of proteomics techniques that have been extensively
reviewed elsewhere.! ™ Knowing the major limitations and advantages
of the different proteomic techniques is essential for their successful ap-
plication. An overview of systems biology approaches and examples
follows, along with some of the resources available. Computational
methods for dealing with the unique challenges of proteomics data
will be key to fulfilling the promise of systems biology.

2. Proteomics

Before summarizing different proteomic strategies (Figure 1), a few
points should be emphasized®:

(i) No proteomic technology can currently resolve the entire com-
plexity of the mammalian proteome.

(ii) With any proteomic technique, there is bias towards more abun-
dant proteins.

(i) In general, there is a trade-off between how many proteins can
be identified and how accurately they can be quantified.

(iv) Inevitably, information is lost by the propagation of quantitative
peptide information to protein changes.
Table 1 gives a brief overview of the advantaged and disadvan-
tages of the following proteomics techniques.

2.1 Two-dimensional gel electrophoresis

Two-dimensional gel electrophoresis (2-DE) allows separation of pro-
teins based on their isoelectric point (pl) and molecular weight
(Mw).®> The first dimension involves separating proteins according
to their pl. A protein mixture is loaded onto a strip with an immobi-
lized pH gradient. Once an electric field is applied, the proteins
migrate to their pl, where they become zwitterionic, i.e. they lose
their net charge and stop migrating (isoelectric focusing). After iso-
electric focusing is complete, the immobilized pH gradient strips are
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Figure | Proteomic approaches. Protein extracts can either be fractionated at the protein level prior to digestion or after protein digestion at the
peptide level. In DIGE, the protein extracts are labelled with different fluorescent dyes before they are separated by 2-DE. For SILAC, cells are meta-
bolically labelled in culture by incorporation of heavy or light amino acids. Alternatively, labelling is performed at the peptide level, using iTRAQ or
TMT isobaric tags. Peptides are then analysed by MS/MS. 2-DE, two-dimensional gel electrophoresis; DIGE, difference gel electrophoresis; 1-DE, one-
dimensional gel electrophoresis; SILAC, stable isotope labelling with amino acids in cell culture; AA, amino acid; iTRAQ, isobaric tag for relative and
absolute quantitation; TMT, tandem mass tag.

Table | Comparison of proteomics methods

Abbreviation

Full name and explanation

Advantages

Disadvantages

Gel-LC-MS/MS

SILAC

iTRAQ,
TMT-tags

Difference gel electrophoresis

Separation by SDS—PAGE before
LC-MS/MS analysis

Stable isotope labelling with amino
acids in cell culture

Isotopic labelling of peptides

Quantitation at the protein level
Visualization of posttranslational modifications and

protein isoforms

Good quantitative accuracy

Ease of use

Prefractionation before LC-MS/MS analysis increases
sensitivity

‘Laddering’ as indication of proteolytic degradation

Minimal experimental variation

Excellent quantitative accuracy

Ease of use for cells in culture that proliferate and
tolerate filtered serum supplements

Good quantitative accuracy

Can be used with tissues as well as cell cultures

Low sensitivity

Only the differentially expressed proteins tend
to be identified by MS/MS

Proteins with very high or low pl or Mw are
not resolved on the gel

Prefractionation increases time requirements
for MS/MS analysis

Poor quantitative accuracy in complex
mixtures without peptide labelling

Proteins with very high or low Mw are not
resolved on the gel

Quantitation at the peptide level

Not suitable for cells that do not proliferate in
culture, i.e. cardiomyocytes

Metabolic labelling of animals is expensive

Quantitation at the peptide level

Mixed MS/MS spectra will contain reporter
ions from different peptides
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Figure 2 Gel-based proteomics. Separation of the murine cardiac proteome by DIGE on different immobilized pH gradients: pH 3—10 NL (A) and
pH 4-7 (B). The white box highlights the better resolution of the same area on the narrow pH gradient. (C) Mw distribution of six extracellular
glycoproteins by SDS—PAGE. The characteristic ‘laddering’ in abdominal aortic aneurysms (AAA) compared with normal aortic tissue (CON) is in-
dicative of proteolysis. Differences in spectral counts are color-coded (red high, blue low). (D) Incubation of healthy aortic tissues with matrix
metalloproteinases-12 (MMP-12) induced a similar fragmentation pattern of fibronectin as observed in AAA. In comparison, degradation by matrix
metalloproteinases-9 (MMP-9) was less pronounced (reproduced with permission from Didangelos et al.'®).

transferred onto large-format gels for separation in the second dimen-
sion, where proteins are resolved according to their molecular mass
by SDS—PAGE.

Unlike SDS—PAGE, 2-DE gels produce complex maps of pro-
teomes that are visualized as discrete protein ‘spots’. Since pl and
Mw are independent properties, 2-DE gels can resolve many more
proteins than SDS—PAGE. Importantly, the same protein may be
present in multiple spots on a gel. Shifts in pl or Mw indicate the pres-
ence of post-translational modifications, protein degradation, or
protein isoforms.®” Protein features are visualized with Coomassie
or silver staining, and differential expression between samples is
determined using relative densitometric quantification. However,
gel-to-gel variability can limit the quantitative accuracy and prohibit
the detection of minor differences in expression.

A more sophisticated 2-DE technique is difference gel electrophor-
esis (DIGE, Figure 2A).2 DIGE involves fluorescent labelling of protein
mixtures with Cy-dyes in order to determine relative differences in
protein expression. An internal standard comprising the pooled ex-
perimental samples is included, which is representative of all
samples. The sensitivity of detection of DIGE is comparable with
the sensitivity of silver staining’ and the dyes are matched for pl
and Mw. The main advantage of DIGE over conventional 2-DE gels
is that samples can be multiplexed on the same gel, thus reducing
the number of gels needed and limiting experimental variation.
DIGE employed with an internal standard reliably quantifies differ-
ences as low as 10% in protein expression.”® The gels are scanned
using a fluorescence scanner, which specifically measures the emission
wavelength of each Cy-dye. Commercial software packages match
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protein features and calculate differential expression from the scanned
gel images. Normalization of protein levels across gels is performed by
comparing the protein ratios with the internal standard that is
co-detected on each gel.

Unlike other proteomic techniques, quantitation by 2-DE is per-
formed at the protein level, not at the peptide level, and the quanti-
tation is uncoupled from the identification by mass spectrometry
(MS). Silver staining can be used to visualize protein features on a
gel to facilitate excision of the relevant spots for MS. Alternatively,
spots are directly picked from fluorescent gels using a robotic spot
picker. Spots are then subjected to in-gel tryptic digestion before
protein identification.

One of the main caveats of the 2-DE approach is that high-
abundant proteins mask less-abundant proteins. This can be partially
addressed by using gradients with a narrow pH range (Figure 2B).
However, separation in the first dimension, in particular the transition
from the first to the second dimension is not loss-free, and very large,
small, and hydrophobic proteins remain difficult to resolve.

2.2 Liquid-chromatography tandem mass
spectrometry

Liquid-chromatography tandem mass spectrometry (LC-MS/MS) is
the current gold standard in proteomics. The basic principle of MS
involves measuring the mass-to-charge ratio (m/z) of an ionized
peptide and its fragmentation products. Proteins are initially digested
by enzymes such as trypsin to produce peptide fragments that are
easier to resolve by reverse-phase LC and ionize by electrospray
MS."" Depending on their hydrophobicity, the peptides elute at differ-
ent time points from the reverse phase column (retention time).
A typical workflow using LC-MS/MS involves a regular survey scan
to record the masses and the intensities of the eluting peptides.
The most abundant precursor ions eluting from the column are
selected for fragmentation (MS/MS). The amino acid sequence infor-
mation obtained from MS/MS data allows the identification of the
protein. Peptide parameters, such as spectral counts, ion intensities,
and chromatographic peak area, can provide a quantitative index for
protein abundance (label-free quantitation)." The versatility of mass
spectrometric technology has spawned numerous different mass
spectrometers, with MALDI-TOF-TOF, Q-TOF, and Orbitrap mass
analysers'® being among the common ones currently in use for dis-
covery proteomics.

2.3 Gel-LC-MS/MS analysis

Pre-fractionation by SDS—PAGE prior to MS has proved useful in the
characterization of samples that are not amenable to separation by
2-DE. It also helps to overcome the single greatest cause of bias
against low-abundant proteins—the stochastic under sampling of low-
abundant peptides that arises because high-abundant peptides domin-
ate the duty cycle of the mass spectrometer. For gel-LC-MS/MS ana-
lysis, proteins are separated by SDS—PAGE, the entire gel lane is
divided into a series of bands, the bands are excised without leaving
empty gel pieces behind, digested with trypsin, and LC-MS/MS analysis
is performed on each of the bands."*"® Since gel bands tend to be
mixtures of proteins, LC separation is essential for protein identifica-
tion and quantitation, i.e. by spectral counting.'® Spectral counting has
become a popular strategy to quantitate relative protein abundance
but is less reliable for complex mixtures. Generally, the more abun-
dant a protein, the more likely it is detected by MS/MS. The spectral

counts are derived from the number of MS/MS spectra corresponding
to a particular protein.

In the gel-LC-MS/MS approach, information on the native Mw of a
protein is preserved. If protein degradation has occurred prior to
tryptic digestion, peptides are detected by MS in gel segments
below the expected Mw of the native proteins (Figure 2C). Thus, veri-
fication regarding whether differentially expressed proteins are con-
fined to the same gel bands is essential. Otherwise, a degraded
protein may appear upregulated due to its characteristic ‘laddering’
on the SDS—PAGE (Figure 2D). Alternatively, protein fragments may
be too small and escape detection because they migrated ahead of
the buffer front. On the other hand, information on proteolytic deg-
radation products is important and lost in conventional shotgun pro-
teomics analysing tryptic peptides without prior separation at the
protein level.

2.4 Shotgun proteomics

Apart from gel-based approaches, there are gel-free methods to
quantify differences in protein expression based on peptide abun-
dance. Although these shot-gun proteomic methods can mine
deeper into the proteome, problems arise with quantitation if
samples are too complex. MS is not inherently quantitative because
of differences in the ionization efficiency. The most abundant ions
will attract the most charges during electrospray ionization, making
it less likely for low-level peptides to get ionized. To avoid false-
positive protein changes due to co-eluting high-abundant peptides, la-
belling techniques should be used for reliable quantitation. Popular la-
belling methods include isobaric tagging for relative and absolute
quantification (iTRAQ), tandem mass tags (TMT), and stable
isotope labelling by amino acids in cell culture (SILAC)."” iTRAQ is
currently available as four-plex and eight-plex, allowing the relative
quantification of up to eight samples, whereas labelling of TMT and
SILAC can been used with six and three samples, respectively.'®
However, peptides are just a surrogate measure and not always reli-
able for protein quantitation, ie. if they are subject to post-
translational modifications or proteolysis.

2.4.1 Stable isotope labelling by amino acids in cell culture
SILAC makes use of non-radioactive isotope labels to label proteins
with light (e.g. ">C) and heavy isotopes (e.g. *C)."® Samples can be
multiplexed and analysed during the same MS run, thereby minimizing
experimental error.”® The SILAC pairs co-elute during chromatog-
raphy but the corresponding peptides of the heavy and light
isoform appear with a characteristic mass shift. The relative quantity
of each protein can be calculated by the differences in the peak inten-
sities of SILAC-labelled peptides. The use of SILAC to quantify differ-
ential levels of proteins goes beyond using cells in culture.
SILAC-labelled mice have been described with near-complete label-
ling of all proteins, although the SILAC diet is expensive.”® Metabolic
labelling also introduces information on amino acid synthesis and
sourcing, protein assembly, and turnover kinetics.

2.4.2 Isobaric tagging for relative and absolute
quantification/tandem mass tags

In instances where human tissue is used, iTRAQ or TMT is an option
for multiplexing clinical samples for differential expression studies by
LC-MS/MS,?" but these techniques are not without caveats.”” (i) One
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Figure 3 Computational approaches in proteomics. Bioinformatics has become an essential part of the proteomic workflow to comprehensively

analyse and visualize global changes in proteins as biological networks.

disadvantage of the iTRAQ and the TMT system over SILAC is the fact
that labelling is performed at the peptide level and occurs late in the
experimental process. Before labelling, proteins are first extracted
from cells or tissues and digested to peptides. This is a potential
source of variation. (i) Unlike SILAC, quantitation is performed at
the MS/MS level, not at the MS level. The peptides from different
samples maintain their identical m/z ratios after labelling (MS). Only
upon fragmentation (MS/MS), the isobaric mass tags release their differ-
ent reporter ions with a single isotopic substitution per tag and provide
quantitative information for each individual sample. A commonly
observed problem in iTRAQ experiments is that a complex back-
ground can lead to underestimation of protein fold changes. During
precursor ion selection, more than one peptide may be within the
mass window selected for fragmentation. In such mixed MS/MS
spectra, reporter ions originating from peptides of different proteins
are erroneously combined for quantification.

2.5 Protein identification

Although accurate and accessible databases are needed for each of the
‘-omics’ fields, proteomics is perhaps the most dependent on these
resources. The technologies for identifying and quantifying proteins are
reliant on comprehensive databases for protein identification and
peptide quantification. These databases are not directly under the
scope of systems biology, but they provide a foundation for the latter ana-
lyses, as the curation and maintenance of these databases are vital for the
correct identification and quantification of the examined proteins.

For functional and sequence-based databases, UniProt is one of the
most comprehensive. UniProt consists of several classifications:

Swiss-Prot and TrEMBL contain sequence and functional information
about proteins, UniRef and UniParc contain sequence and archived
sequence records and, when available, supporting data such as litera-
ture references and cross-referenced databases.”> Programs such as
Mascot, SEQUEST, or X!Tandem search FASTA protein sequences
obtained from public databases such as UniProt. After performing
an ‘in silico fragmentation’ with known enzyme specificity, the peak
mass lists with intensities (the experimental data) are searched
against the in silico-fragmented database. Parent ion masses are
scanned against the masses derived from the database sequences. If
there is a match within a certain mass tolerance, the observed MS/
MS spectra are then compared with the theoretical sequence-derived
ion series. Although not explicitly covered here, the review and com-
mentary by Noble and MacCoss** provide insight into these method-
ologies and techniques. The scoring algorithms can produce different
results and the reliance on single-peptide identifications in large-scale
data sets is a potential cause of false identifications. Most proteomic
studies only report identifications with a minimum of two unique pep-
tides or include the MS/MS spectra for single-peptide identifications.

3. Systems biology approaches

3.1 Cellular and subcellular proteome
identification

Technological advances in the past 5-10 years have made large
-omics’ experiments feasible, where biological changes can be
assessed at the systems level (Figure 3). One can now identify and
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Figure 4 Protein identification. The visualization of ECM proteins, and the corresponding correlation networks, identified by proteomics in the
secretome of two murine cell types: (A) aortic SMC and (B) CF. Correlation networks have been thresholded at a correlation coefficient of
>0.90. (C) Number of ECM proteins identified. Number of nodes (proteins) (D) and links (correlations) (E) found in each cell type, as well as

those in common.

quantify the proteins present in a specific cell type or subcellular frac-
tion. As proteins can be present at varying levels in different cellular
systems, it is imperative to know the baseline measurements for
cells and systems related to cardiovascular disease. In that respect,
the proteomes of several cardiovascular-specific cell types have
been characterized in the past few years, including human arterial
smooth muscle cells (SMC),”> human early pro-angiogenic cells,”®
rat cardiac stem cells and neonatal cardiomyocytes,”” and human
left ventricle.”® Recently, Burkhart et al.* characterized the proteome
of human platelets within and between healthy subjects. They identi-
fied approximately 4000 unique proteins and showed that 85% of the
platelet proteome did not vary across subjects. Subcellular fractions
can also be informative for cardiovascular disease. Several of these
fractions have been analysed, including the extracellular matrix
(ECM) in human aorta," the mitochondrial proteome in mouse,
and the rodent cardiac myofilament.®’

As an example, Figure 4 illustrates the proteomic network structure
of ECM proteins in two different murine cells types: primary aortic
SMC (Figure 4A) and cardiac fibroblasts (CF) (Figure 4B). Both are cor-
relation networks where the links between nodes (proteins) repre-
sent correlation values >0.9. The Venn diagrams show the total
number of proteins identified in the two cell types and those in
common between the two (Figure 4C); the number of nodes (pro-
teins) in the networks as well as the number of shared nodes
between the two (Figure 4D); finally, the number of links (correlations

>0.9) for SMC and CF as well as the ones in common between the
two (Figure 4E). The two networks and the corresponding nodes and
links highlight the differences in the relationship between the ECM
proteins in two different cell types.

For a systems biology approach of cardiovascular disease, it is im-
portant to identify and quantify proteomes in different species,
tissue, cellular or subcellular compartments, as the differences,
shown here in two ECM-producing cell types, may be specific to
the defined system. Including these proteomes in public repositories
will aid further systems biology studies as the proteomics data will
be available to other researchers. One of the biggest public repository
of proteomics data is the PRoteomics IDEntifications (PRIDE) data-
base supported by the European Bioinformatics Institute (EBI).** As
of the data of submission for this review, PRIDE contained over 26
000 proteomics experiments with the associated studies.

3.2 Differential protein expression analysis

With a defined system, one can study changes that result after a sys-
tematic perturbation. These perturbations can come in the form of
inhibition, over-expression, incubation, or a number of other cellular
manipulation techniques, but also as a comparison between normal
and disease samples. The system perturbation approach is not
unique to proteomics; the other ‘-omics’ fields use similar approaches.
A large number of studies have been performed on transcriptomics
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and differential gene expression analysis and several methods have
been developed. Proteomics faces similar statistical and computational
consideration genomics, but there are also challenges specific to pro-
teomics, especially label-free techniques. Several studies, including our
own,"™"#333* have applied standard statistical methods to cardiovas-
cular proteomics data.** 73’ Although these methods may be appro-
priate, i.e. for the analysis of DIGE data, they are not optimal for
label-free, spectral count protein expression data. Although many
proteins are identified, less-abundant proteins often contain one or
more missing values across samples.®® This presence/absence dichot-
omy is not suitable for basic imputation methods. Missing values will
skew statistical tests that assume normality and standard statistical
methods (Student’s t-test, analysis of variance—ANOVA, linear re-
gression) may not accurately determine differential expression.*”*’
On the other hand, excluding proteins with missing spectral counts
will inherently create a bias towards high-abundant proteins.®® Low-
abundant proteins, however, are often informative, especially when
comparing disease states, as the presence in one state and the
absence in another can suggest a functional role for that protein.
The small number of replicates within an experiment reduces the
robustness and increases the noise-to-signal ratio.*> Non-parametric
tests, like the Wilcoxon rank-sum test, have limited power when
used with the small sample sizes often found in proteomic
studies.*! Applying multiple testing corrections becomes problematic,
as permutation or bootstrapping techniques are not feasible with
small sample sizes. With this in mind, several methods have been
developed specifically for evaluating protein differential expression,
which take into consideration these limitations. Some methods
address the non-normal distribution properties of the data, where
the data are normalized and transformed to better fit the standard
statistical tests. Three of the commonly used methodologies for this
approach are the Normalized Spectral Abundance Factor (NSAF),*
the Power Law Global Error Model (PLGEM),** and the Normalized
Spectral Index (Sln)*® (Table 2). These methods, however, do not take
into consideration the small sample sizes that are common in proteo-
mics experiments, nor do they directly correct for multiple testing.
Other methods incorporate techniques that address both the non-
normal distributions and the limited number of replications. The Spec-
tral Index (Spl),** Qspec,*” and the hybrid approach proposed by
Wang et al.* are three examples of methods that account for small
sample sizes and do not require the data to be normally distributed
(Table 2). These methods also directly incorporate multiple testing
corrections. Unlike gene expression microarray analyses, there is no
standard method for normalization and differential expression

Table 2 Differential expression methods

Abbreviation Name Reference
NSAF Normalized Spectral Abundance Zybailov
Factor et al.*®
PLGEM Power Law Global Error Method Pavelka et al.**
SIn Normalized Spectral Index Griffin et al.*
Spl Spectral Index Fu et al*
Qspec Qspec Choi et al¥’
Hybrid Hybrid-based approach Wang et al.*

analyses in proteomics. Owing to the variability between experiments
and methodologies, statisticians and computational biologists should
guide proteomic analyses.

3.3 Incorporating functional and pathway
information

Functional information such as Gene Ontology (GO) and pathway
resources can inform on the biological function of proteins and
their interactions and on the relevance of the proteins to the
disease. GO and Kyoto Encyclopedia of Genes and Genomes
(KEGG)* are the two resources widely used in the literature
but there are other pathway and functional databases available
(Table 3). The KEGG database contains manually curated pathways
within five areas: metabolism, genetic information processing, environ-
mental information processing, cellular processes, and human disease.
Unlike GO, these pathways are species dependent. The GO database
contains species-independent terms relating to genes and their pro-
ducts. There are three main classifications of ontologies, cellular com-
ponent, biological process, and molecular function with several
sub-classifications under each of the three. In addition, there is a
GO consortium specifically focused on annotating genes relevant to
cardiovascular  disease  (http:/www.geneontology.org/GO.cardio.
shtml), and, to date, has identified over 4000 genes with a cardiovas-
cular disease association. The GO Cardiovascular Consortium also
annotates gene products, including proteins and microRNAs.
Instead of a one-way exchange, the relationship between the cardio-
vascular proteomics community, including our group, and the consor-
tium is circular. Researchers not only use GO annotation to inform
their research, but can also submit data from their experiments to val-
idate annotations and suggest novel cardiovascular GO terms.

As an example, Isserlin et al.*® incorporated a differential expres-
sion analysis with a Gene Set Enrichment Analysis (GSEA) to identify
sets of differentially expressed proteins that were enriched for func-
tional terms relating to dilated cardiomyopathy. They utilized GO as
well as several other sources of publicly available functional data to
perform the GSEA and derived functional networks, which show
novel processes in the progression from pre-symptomatic to dilated
cardiomyopathy.

3.4 Network biology

The identification of differentially expressed proteins is only one part
of a systems biology approach to proteomics. Further analyses are
often performed on the set of differentially expressed proteins to elu-
cidate their functional role in the disease pathology. The post-genomic
shift in paradigm acknowledges the fact that many biological systems
can be represented using concepts of network biology. Different
pathways cross-talk with each other at points that can be graphically
represented as well-connected nodes or nexuses within a map of sig-
nalling networks.*® In addition to high-throughput data acquisition, the
last decade introduced a number of sophisticated methodologies that
intend to interrogate cellular interactions.® > Preliminary analyses of
these interactomes revealed the complexity of molecular signalling,
which presents a challenge for accurate interpretation and application.
It is now believed that the human interactome comprises approxi-
mately 20 000 protein-coding genes, approximately 1000 metabolites,
and an undefined number of distinct proteins, whereas the number of
functional links between these components is expected to be
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Table 3 Functional annotation databases

Abbreviation Name

BBID Biological Biochemical Image Database
BioCarta BioCarta Pathways

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes
NCBI BioSystems NCBI BioSystems Database

OMIM Online Mendelian Inheritance in Man
PANTHER Protein ANalysis THrough Evolutionary Relationships
PID NClI-Pathway Interaction Database
Reactome Reactome

WikiPathways WikiPathways

Website

http:/bbid.grc.nia.nih.gov/
http://www.biocarta.com/genes/index.asp
http:/www.geneontology.org/
http:/www.genome.jp/kegg/
http://www.ncbi.nlm.nih.gov/biosystems
http:/omim.org/

http:/www.pantherdb.org/

http:/pid.nci.nih.gov/

http:/www.reactome.org/
http://www.wikipathways.org/index.php/WikiPathways

approximately 130000.°" An emerging computational discipline,
network biology, has been proposed as a tool that may supplement
traditional quantitative analysis and uncover relational properties
that control the behaviour of a cell through data integration and com-
putational modelling.56 Network biology was successfully used to
define gene regulatory patterns in physiological cardiac hyper‘crophy57
and highlight network topology of heart development and failure.*® In-
creasing evidence suggests that combination of network concepts,
such as centrality, with gene, protein, or microRNA expression infor-
mation, may contribute to better prioritization of relevant biological
t::u"gets.”_61

Despite their usefulness, networks analyses should be used with
some degree of caution. It is currently not feasible to access and char-
acterize the entire human proteome and so each proteomic network
will consist of a subset of all possible proteins. Network studies, es-
pecially those focusing on protein—protein interactions, have shown
that network properties from a sample or subset of a global
network differ from the properties of the global network.5>~** For
example, biological networks have been described as ‘scale-free’ net-
works where there are several nodes with a high degree of connect-
ivity and many nodes with a low degree of connec‘civity.65 Although
this may be an appropriate assumption for a large-scale biological
network, no statistical tests were applied to prove scale-freeness in
biological networks, and the smaller sub-networks, including most
protein—protein interaction networks, do not follow the same
assumptions.

4. Is a systems-level integration
of ‘~-omics’ data the way forward?

Within a biological system, proteins do not act on their own, but rather,
through complex interactions with metabolites, RNA, and other pro-
teins. As we learn more about the pathophysiology of cardiovascular
diseases, the underlying complexity becomes apparent, and the integra-
tion of ‘-omics’ fields provides an unbiased way to elucidate the
mechanisms. The advancements in the technologies and the data avail-
ability of each of the ‘-omics’ give rise to a finer assessment but also
provide a greater opportunity to study the interactions between
genes, gene expression, proteins, and metabolites.

4.1 Integrating transcriptomics and
proteomics

Initial investigations into the correlation between mRNA levels and
protein levels have shown poor-to-moderate associations between
the two. These low correlations can be attributed to epigenetic
factors, translation rates, and protein degradation rates, but they
can also be due to the levels being assessed for different samples,
across different time points.°® To overcome some of these issues,
Schwanhausser et al.®” used mouse fibroblasts to quantify and
analyse global mRNA and protein levels along with their associated
half-lives, transcription, and translation rates. To get an accurate
picture of the strength of association between mRNA and protein
levels, the authors used metabolic pulse labelling in an experimentally
growing population of embryonic fibroblasts to record mRNA and
proteins levels occurring at the same time point. They found that
40% of the variation in proteins levels can be attributed to variation
in MRNA levels but translation efficiency was the best predictor.
Certain combinations of half-lives and mRNA levels correspond to
shared functional role, indicating shared selective pressures. In
another transcriptomic and proteomic analysis, Zhao et al.*® recon-
structed a heart-specific metabolic network using transcriptome and
proteome data with a model-building algorithm. Using generic
genome-wide metabolic networks, they constructed heart-specific
models by mapping transcriptomics and proteomics data from the
heart onto the genetic networks. The resulting model contained
2803 reactions with 1721 active enzymes in the heart. With this meta-
bolic network, they were able to estimate the lethality, in silico, of
house-keeping and heart-specific genes and identify potential CVD
biomarkers.

4.2 Integrating proteomics
and metabolomics

Currently, proteomics and metabolomics are rarely used in tandem, but
this technological platform offers advantages. It has the potential to
identify the emergent behaviour that cannot be found by studying pro-
teins or metabolites in isolation. Besides, proteomic and metabolomics
findings can effectively reinforce or cross-validate each other.
We utilized a combined proteomics and metabolomics approach to
investigate cardiovascular diseases.*” Our aim was to contribute to a
better understanding of enzymatic and metabolite changes associated
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Figure 5 Metabolomics. A comparison of control and hibernating murine hearts by high-resolution magic-angle-spinning "H-magnetic resonance
spectroscopy (HRMAS "H-MRS) analysis from solid hearts (A) and "H-nuclear magnetic resonance spectroscopy ('H-NMR) of cardiac tissue extracts
(B, reproduced with permission from Mayr et al.”®). Both techniques showed consistent changes in metabolites, i.e. the ratio of glutamate, lactate, and
taurine in hibernating compared with control hearts as determined by HRMAS "H-MRS was 0.81, 1.09, and 0.79, respectively, which is in good agree-
ment with the measurements of 0.68, 1.13, and 0.72 for the same metabolites by "H-NMR. HRMAS "H-MRS provides a means for measuring meta-
bolites in intact hearts ex vivo. 'H-NMR of tissue extracts offers better resolution and allows the identification of more metabolites than HRMAS

"H-MRS spectra obtained from solid tissue.

670 ischaemic

with cardiovascular diseases, including atherosclerosis,
7273 and atrial fibrilla-

tion.”* In a recent study on myocardial hibernation, murine hearts

preconditioning,”" cardioprotective signalling,

were analysed by a combined transcriptomic, proteomic, and metabo-
lomic approach (Figure 5).>’® Unguided network analysis correctly
identified hypoxia-inducible factor 1 alpha (HIF1a) activation as the
top signalling pathway, and provided independent confirmation that
anaerobic glycolysis is affected. A direct link to cardiac remodelling

was also provided by the activation of collagen hydroxylases, which
produce hydroxyproline. By combining the ‘-omics’ data, the P-value
of the HIF1a signalling pathway decreased by two orders of magnitude,
and became the top-ranking pathway even though it was not the
top-ranked pathway based on either dataset individually. The proteo-
mics and transcriptomics focused on, and contributed different mole-
cules to, the protein network, which enabled the HIF1a signalling
pathway to rise to the top.
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4.3 Personal ‘-omics’ profiles

In a proof of concept study, Chen et al.”’

presented an integrative per-
sonal ‘-omics’ profile analysis, where the genetic, transcripomic,
proteomic, metabolomic, and autoantibody profiles were measured
and integrated for one healthy individual over the course of
14 months. The measurements were assessed in blood components
(plasma, serum, and peripheral blood mononuclear cells) at several
time points during the course of the study. The ‘-omics’ responses
were studied in greater detail during two viral infections, showing
the dynamic response of the immune system. Interestingly, the
authors identified a genetic predisposition to type Il diabetes at the
start of the study and noticed a pronounced change in insulin-related
responses after the second infection. Although the causal relationship
between the infection and the onset of diabetes cannot be deter-
mined from one individual, these tightly linked events, and the indica-
tion that they are related, were detected only through the
combination of ‘-omics’ profiles. As the technology to measure
‘-omics’ profiles becomes feasible, the greatest challenge will not be
the generation of data, but their analysis.

5. Conclusions

A discrete biological function is very rarely attributed to one
single molecule; more often it is the combined input of many proteins.
The studies mentioned above, which integrate protein data with other
“omics’ data including transcriptomics®”*®”” and metabolomics,” ="’
illustrate the utility of an integrative ‘-omics’ approach to cardiovascu-
lar diseases. However, variants and changes from the genetic to the
phenotypic level are not linearly associated and often variations
seen at one level are absent at another. Although the integration of
data from different ‘-omics’ techniques is still a challenge, the incorp-
oration of proteomics with systems biology, and the application to
study metabolism, is a promising area for future applications in cardio-
vascular diseases.”®”? Combining proteomics with stringent statistics,
bioinformatics, and other ‘-omics’ technologies, such as metabolo-
mics, can aid in identifying targets that have clinical relevance for
working towards new therapies for cardiovascular disease.®® Improve-
ments in protein identification and quantification technologies as well
as the availability of more proteomics in public
data repositories such as PRIDE** combined with focused GO
8182 will facilitate the application of systems biology to car-
diovascular research.
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