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Abstract 

Background: Isobutyryl‑CoA dehydrogenase deficiency (IBDD) is a rare autosomal recessive metabolic disorder 
resulting from variants in ACAD8, and is poorly understood, as only dozens of cases have been reported previously. 
Based on a newborn screening program, we evaluated the incidence, phenotype and genotype of IBDD as well as the 
prognosis. Moreover, we reviewed the variant spectrum in ACAD8 associated with IBDD.

Methods: Forty unrelated patients with IBDD were retrospectively screened for newborns between Jan 2012 and 
Dec 2020. Tandem mass spectrometry (MS/MS) was used to determine the concentrations of C4‑acylcarnitine, 
C4/C2 (acetylcarnitine), and C4/C3 (propionylcarnitine). All suspected cases were genetically tested by metabolic 
genes panel.

Results: The incidence of IBDD here was 1: 62,599. All patients presented continuously elevated C4‑acylcarnitine 
levels with higher ratios of C4/C2 and C4/C3. Isobutyrylglycine occurred in only 8 patients. During follow‑up, 
four patients had a transient motor delay, and two patients had growth delay. Notably, one case harbored both 
ACAD8 compound heterozygous variants and a KMT2A de novo variant (c.2739del, p.E914Rfs*35), with IBDD and 
Wiedemann–Steiner syndrome together, had exact severe global developmental delay. All patients were regularly 
monitored once they were diagnosed, and each patient gradually had a normal diet after 6 months of age. After 
3–108 months of follow‑up, most individuals were healthy except the case harboring the KMT2A variant. A total of 
16 novel variants in ACAD8, c.4_5delCT, c.109C > T, c.110–2A > T, c.236G > A, c.259G > A, c.381–14G > A, c.413delA, 
c.473A > G, c.500delG, c.758 T > G, c.842–1G > A, c.911A > T, c.989G > A, c.1150G > C, c.1157A > G and c.1165C > T, were 
identified. Along with a literature review on 51 ACAD8 variants in 81 IBDD patients, we found that the most com‑
mon variant was c.286G > A (27.2%), which has been observed solely in the Chinese population to date, followed by 
c.1000C > T (8.6%), c.1176G > T (3.7%) and c.455 T > C (3.1%).
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Background
Isobutyryl-CoA dehydrogenase (IBD) deficiency (IBDD, 
OMIM#611283) is a rare autosomal recessive meta-
bolic disorder involving defects in valine metabolism [1], 
which is caused by biallelic variants in ACAD8 (acyl-CoA 
dehydrogenase family member 8; OMIM*604773) on 
chromosome 11q25 [2]. IBD is a mitochondrial enzyme 
that functions as a soluble homotetramer to catalyse the 
conversion of isobutyryl-CoA to methacrylyl-CoA in the 
degradation of the branched chain amino acid (BCAA)—
‘valine’, which finally converges on the tricarboxylic acid 
cycle. To date, only dozens of IBDD cases have been 
reported worldwide since it was first described in 1998, 
with an estimated prevalence of 1/45,466 in southern 
Italy and 1/292,451 in California [3, 4]. Affected indi-
viduals are mostly diagnosed through newborn screen-
ing (NBS) and characterized by elevated C4-acylcarnitine 
levels, with or without secondary carnitine deficiency [1, 
5–8]. However, elevated urine isobutyrylglycine (IBG) 
levels have been documented as additional support-
ing evidence, but this change is not always present in 
patients with IBDD [9]. Patients with IBDD are reported 
to be either asymptomatic [5, 10], or symptomatic with 
variable clinical features, including failure to thrive, sei-
zures, anaemia, muscular hypotonia, and developmen-
tal delay [5–9, 11, 12]. Some symptomatic patients had 
normal growth and development with carnitine sup-
plementation and avoidance of fasting to limit amino 
acid metabolism during childhood [5]. In contrast, one 
asymptomatic child with IBDD was reported to develop 
clinical symptoms, including muscle pain, muscle weak-
ness and tiredness, in adulthood [13], indicating a com-
plicated pathogenesis and suggesting that patients with 
IBDD should be monitored carefully [14]. As elevated 
C4-acylcarnitine concentrations are neither specific nor 
sufficient for the clinical diagnosis of IBDD, genetic test-
ing is increasingly applied for the identification of IBDD. 
Recently, more than 30 variants in ACAD8 have been 
reported in different ethnic populations. However, the 
clinical, genetic and prognostic data of IBDD are limited 
by the number of cases. Here, we retrospectively sum-
marized the phenotypes, genotypes and long-term prog-
nosis of up to 40 patients with IBDD identified between 
2012 and 2020, and reviewed all ACAD8 variants in 

described IBDD cases, including 16 novel variants in this 
study.

Materials and methods
Subjects
Forty patients with a diagnosis of IBDD based on the 
NBS program within 7  days after birth were retrospec-
tively reviewed between 2012 and December 2020 in a 
single site newborn screening program, among which 30 
patients were identified from 1,877,970 infants between 
January 2017 and December 2020. This study was con-
ducted at the Children’s Hospital, Zhejiang University 
School of Medicine, and approved by the Research Eth-
ics Committees. Patient information was tabulated in this 
article without individual patient identifiers.

Metabolic marks analysis
Tandem mass spectrometry (MS/MS) was used to deter-
mine the concentrations of C4-acylcarnitine, C4/C2 
(acetylcarnitine), and C4/C3 (propionylcarnitine) with 
dried blood spot filter paper samples in the NBS pro-
gram. Urine samples were collected from the patients 
for a urine organic acid analysis by gas chromatograph-
mass  spectrometer (GC–MS). The following cut-off 
parameters in our clinical lab were used for validation: 
normal values of C4-acylcarnitine ranged from 0.03 to 
0.48 (μmol/L) and those of urinary IBG ranged from 0 
to 0.4 (mmol/mol). Moreover, the normal C4/C2 ratio 
decreased in the 0–0.05 interval, and the C4/C3 ratio 
decreased in the 0.04–0.46 interval. The Wechsler Intel-
ligence Scale for Children-R (WISC-R) or the Ages-
Stages Questionnaire (ASQ) were used to assess patients’ 
developmental status. Length/height-for-age and weight-
for-age standards are according to China growth stand-
ards (0–3 years old) and WHO Child Growth Standards 
(> 3 years old).

Genetic analysis
Triometabolic gene panel tests by NGS (next-generation 
sequencing) were conducted in all suspected cases who 
were picked up by NBS, including the ACAD8, ACADS, 
ETHE1, ETFA, ETFB, and ETFDH genes. The DNA 
library was prepared using an Agilent SureSelect Inher-
ited Disease Capture Kit (Agilent, USA) and sequenced 

Conclusion: The concentration of C4‑acylcarnitine in NBS plus subsequent genetic testing is necessary for IBDD 
diagnosis. Both the genotypes and ACAD8 variants in IBDD are highly heterogeneous, and no significant correlations 
between genotype and phenotype are present here in patients with IBDD. Our IBDD cohort with detaied clinical 
characteristics, genotypes and long‑term prognosis will be helpful for the diagnosis and management of patients 
with IBDD in the future.
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using an Illumina MiSeq platform (Illumina, USA). The 
quality of the DNA library was tested with a Qubit and 
2100 Bioanalyzer (Agilent High Sensitivity DNA Kit, Agi-
lent). The sequencing libraries were quantified using an 
Illumina DNA Standards  and  Primer  Premix  Kit (Kapa, 
USA). The paired-end reads were quality trimmed using 
the Trimmomatic program (http:// www. usade llab. org/ 
cms/ index. php? page¼trimm omatic) and aligned with 
the human genome reference sequence (UCSC Genome 
build hg19). Single-nucleotide polymorphisms (SNPs) 
and insertions or deletions were identified using the Sam-
tools program (http:// www. htslib. org/). The ClinVar and 
Human Gene Mutation Database (HGMD) was used to 
search for known pathogenic mutations. Automatic tools 
(SIFT, Polyphen, MutationTaster, CADD, etc.) were used 
to predict the functional significance of novel variants. 
Variants were classified according to the recommenda-
tions of the American College of Medical Genetics and 
Genomics (ACMG) as follows: pathogenic (P), likely 
pathogenic (LP), variants of unknown significance (VUS), 
likely benign (LB), and benign (B) [15].

Results
Clinical manifestations and interventions
A cohort of 40 unrelated patients with IBDD is sum-
marized in Table  1. The IBDD incidence was 1: 62,599 
based on data from the NBS program between 01/2017 
and 12/2020. In this cohort, patients #9 and #22 were 
born prematurely, but their mothers’ pregnancies were 
uneventful to that point, and they did not require any 
significant interventions. The remaining 38 patients 
were born after uneventful pregnancies at full term. All 
40 patients were evaluated for significantly increased 
concentrations of C4-acylcarnitine ranging from 0.98 
to 3.36 μmol/L and elevated C4/C2 and C4/C3 ratios by 
NBS. Consistent with previous documents, isobutyrylg-
lycine occurred in only 8 patients (patients #2, #11, #13, 
#16, #21, #27, #35 and #38) from the cohort. Ten patients 
(patients #1, #12, #19, #25, #27, #29, #31, #36, #39 and 
#40) had anaemia as described elsewhere [10]. Some bio-
chemical indicators associated with liver function, such 
as aminotransferase and gamma-glutamyl transferase, 
were aberrant in 18 patients from 0.5–7  months after 
birth. However, the relationship between abnormal liver 
function and IBDD is not clear as abnormal liver func-
tion is common in most children patients with inher-
ited metabolic disease, especially in infants. Regarding 
development, patients #9, #10, #12 and #14 experienced 
a transient motor delay, and all recovered during follow-
up. However, patient #33 had a severe developmental 
delay, with an FIQ of 53 according to WISC-R. Subse-
quently, by whole exome sequencing and analysis, a de 
novo variant c.2739del (p.E914Rfs*35) in KMT2A was 

detected in patient #33, which was absent in gnomAD 
(Genome Aggregation Database). As KMT2A is known 
as the causative gene in Wiedemann-Steiner syndrome 
(WDSTS, OMIM#605130), this truncating variant was 
implied to be responsible for the manifestations of severe 
growth and developmental delay in patient #33. The 
height/length-for-age and weight-for-age of patients #5, 
#15, #17, #19 and #22 were slightly delayed during fol-
low-up. Patient #25, who with milk allergy, and patient 
#33 had severe thriving failure.

Consistent with published cases, most patients with 
IBDD turned out healthy and had no clinical seque-
lae [6, 10, 16]. Once diagnosed, all patients with IBDD 
were treated with sufficient caloric supplementation 
and dietary high-protein restriction (protein intake: 
2–2.5 g/kg/d) to avoid fasting and avoid protein catabo-
lism. Under the guidance of medical specialists, infants 
younger than 6 months were nourished with full breast-
feeding or formula supplementation when breast milk 
was insufficient. Elder infants were nourished addition-
ally with introduced complementary foods to meet 
daily protein requirements. The feeding interval for 
infants less than 6  months was no more than 4  h, that 
for infants 6–12  months was no more than 6–8  h, that 
for infants 1–3 years was no more than 8–10 h, and that 
for infants 3 years and above was no more than 10–12 h. 
Patient #33 accepted L-carnitine (50 mg/kg/d) and vita-
min B2 (100  mg/d) supplementation for one year and 
then stopped since there was no improvement in clini-
cal symptoms or biochemical indictors. Patient #25 was 
diagnosed with cow’s milk protein allergy (CMPA) by a 
gastroenterologist, and then his complementary food 
was changed to extensively hydrolysed formula, which 
has insufficient calories to supply and may account for 
his growth delay during infancy. Fortunately, his growth 
delay was improved later with the diet transitioning to 
toddler nutrition. Moreover, each parent had been edu-
cated and reminded to introduce complementary foods 
as stated and then gradually transitioned to normal tod-
dler nutrition after 1.5–2  years of age. After 6  months 
of follow-up, each patient gradually had a normal diet. 
During follow-up, each patient’s height/length, weight 
and health were regularly monitored. Assisted by famil-
ial rehabilitation, no other metabolic imbalance occurred, 
while C4-acylcarnitine was still sustained at high concen-
trations (Additional file 1: Table S2).

Genetic variants and genotypes
Biallelic variants were genotyped in 39 individu-
als except patient #7, in which only one variant was 
detected (Table  1). Twenty-nine (74%) patients car-
ried compound heterozygous variants, and 10 (26%) 
patients carried homozygous variants. The predominant 

http://www.usadellab.org/cms/index.php?page¼trimmomatic
http://www.usadellab.org/cms/index.php?page¼trimmomatic
http://www.htslib.org/
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Table 1 Genotypes and clinical features in 40 IBDD cases

Case Genotype Pathogenicity CADD Score NBS Clinical

Allele 1 Allele 2 classification Allele 1 Allele 2 C4
(0.03–
0.48 µmol/L)

C4/C2
(0–0.05)

C4/C3
(0.04–0.46)

symptom

1 c.4_5delCT# c.842‑1G >  A# P/P 20.7 31 1.86 ↑ 0.16 ↑ 1.14 ↑ ④
(p.L2Vfs*40)

2 c.286G > A c.286G > A LP/LP 30 30 1.79 ↑ 0.11 ↑ 1.28 ↑ ③
(p.G96S) (p.G96S)

3 c.286G > A c.1176G > T LP/LP 30 25.5 1.5 ↑ 0.11 ↑ 1.02 ↑ –

(p.G96S) (p.R392S)

4 c.1000C > T c.235C > G LP/LP 27.2 24.7 1.2 ↑ 0.1 ↑ 1.5 ↑ –

(p.R334C) (p.R79G)

5 c.286G > A c.286G > A LP/LP 30 30 1.24 ↑ 0.05 0.98 ↑ ④
(p.G96S) (p.G96S)

6 c.286G > A c.911A >  T# LP/VUS 30 31 1.57 ↑ 0.13 ↑ 0.86 ↑ –

(p.G96S) (p.Q304L)

7 c.286G > A – LP/? 30 – 1.06 ↑ 0.07 ↑ 0.7 ↑ ④
(p.G96S)

8 c.286G > A c.455 T > C LP/LP 30 27.4 2.55 ↑ 0.18 ↑ 2.48 ↑ –

(p.G96S) (p.M152T)

9 c.286G > A c.712delT LP/P 30 35 1.66 ↑ 0.21 ↑ 3.07 ↑ ②
(p.G96S) p.W238 fs*9

10 c.286G > A c.286G > A LP/LP 30 30 1.66 ↑ 0.1 ↑ 1.71 ↑ ②④
(p.G96S) (p.G96S)

11 c.1000C > T c.286G > A LP/ LP 27.2 30 1.86 ↑ 0.15 ↑ 1.84 ↑ ③④
(p.R334C) (p.G96S)

12 c.1000C > T c.286G > A LP/ LP 27.2 30 2.02 ↑ 0.09 ↑ 1.64 ↑ ②④
(p.R334C) (p.G96S)

13 c.286G > A c.235C > G LP/LP 30 24.7 2.88 ↑ 0.13 ↑ 1.18 ↑ ③④
(p.G96S) (p.R79G)

14 c.286G > A c.444G > T LP/LB 30 4.199 1.16 ↑ 0.04 0.56 ↑ ②
(p.G96S) (p.P148P)

15 c.286G > A c.413delA# LP/P 30 23.4 1.67 ↑ 0.1 ↑ 1.01 ↑ ④
(p.G96S) (p.N138Mfs*36)

16 c.286G > A c.286G > A LP/LP 30 30 2.96 ↑ 0.11 ↑ 1.55 ↑ ③
(p.G96S) (p.G96S)

17 c.413delA# c.500delG# P/P 23.4 25.3 1.59 ↑ 0.11 ↑ 1.92 ↑ –

(p.N138Mfs*36) (p.S167Mfs*7)

18 c.286G > A c.286G > A LP/LP 30 30 1.8 ↑ 0.09 ↑ 0.81 ↑ –

(p.G96S) (p.G96S)

19 c.110‑2A >  T# c.109C > T# P/LP 32 23.8 1.86 ↑ 0.1 ↑ 2.21 ↑ ④
(p.P37S)

20 c.1176G > T c.444G > T LP/LB 25.5 4.199 0.98 ↑ 0.05 0.58 ↑ –

(p.R392S) (p.P148P)

21 c.286G > A c.286G > A LP/LP 30 30 1.43 ↑ 0.08 ↑ 0.88 ↑ ③④
(p.G96S) (p.G96S)

22 c.259G >  A# c.1000C > T VUS/LP 27.1 27.2 1.9 ↑ 0.23 ↑ 2.84 ↑ ④
(p.G87R) (p.R334C)

23 c.500delG# c.758 T > G# P/VUS 25.3 28.5 3.36 ↑ 0.12 ↑ 0.85 ↑ –

(p.S167Mfs*7) (p.V253G)
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homoallelic genotype was [p. G96S];[p. G96S], detected 
in 9 individuals, and the other one was [p. R392S];[ p. 
R392S] in patient #24. As shown in Fig. 1A, 25 variants 
were identified in our patients, including 4 splicing vari-
ants (16%; c.110–2A > T, c.381–14G > A, c.842–1G > A, 
c.1092 + 1G > A), a synonymous variant (c.444G > T p. 

P148P), 16 missense variants (64%), and 4 truncating 
variants (16%) resulting from 4 deletions, c.4_5delCT 
(p. L2Vfs*40), c.413delA (p. N138Mfs*36), c.500delG (p. 
S167Mfs*7) and c.712delT (p. W238fs*9). Given its pro-
tein structure [17], most amino acid alterations caused 
by variants in IBD are localized in its catalytic domain 

Clinical symptom includes ①growth delay, ②motor delay, ③elevated urine IBG, ④abnormal other blood biochemical parameters; “–”: normal

IBD isobutyryl-CoA dehydrogenase; NBS Newborn screening; C4 isobutyl carnitine; C2 acetyl carnitine; C3 propionyl carnitine; LP likely pathogenic; P pathogenic; VUS 
variant uncertain significance; LB likely benign
# Novel variants in this study

33*, patient #33 have a de novo variant c.2739del (p.E914Rfs*35) in KMT2A,

Table 1 (continued)

Case Genotype Pathogenicity CADD Score NBS Clinical

Allele 1 Allele 2 classification Allele 1 Allele 2 C4
(0.03–
0.48 µmol/L)

C4/C2
(0–0.05)

C4/C3
(0.04–0.46)

symptom

24 c.1176G > T c.1176G > T LP/LP 25.5 25.5 2.33 ↑ 0.07 ↑ 1.08 ↑ –

(p.R392S) (p.R392S)

25 c.1157A >  G# c.1000C > T VUS/LP 23.8 27.2 1.09 ↑ 0.07 ↑ 1.38 ↑ ①④
(p.Q386R) (p.R344C)

26 c.4_5delCT# C.617G > A P/LP 20.7 30 2.29 ↑ 0.11 ↑ 1.89 ↑ –

(p.L2Vfs*39) (p.R206Q)

27 c.989G >  A# c.381‑14G >  A# LP/VUS 27.9 6.957 1.59 ↑ 0.08 ↑ 1.31 ↑ ③④
(p.R330Q)

28 c.1000C > T c.617G > A LP/ LP 27.2 30 2.57 ↑ 0.14 ↑ 1.82 ↑ ④
(p.R344C) (p.R206Q)

29 c.286G > A c.286G > A LP/ LP 30 30 1.64 ↑ 0.06 ↑ 1.39 ↑ ④
(p.G96S) (p.G96S)

30 c.286G > A c.286G > A LP/ LP 30 30 2.09 ↑ 0.14 ↑ 1.53 ↑ –

(p.G96S) (p.G96S)

31 c.236G >  A# c.286G > A LP/LP 27.2 30 0.99 ↑ 0.13 ↑ 1.15 ↑ ④
(P.R79Q) (p.G96S)

32 c.413delA# c.286G > A P/ LP 23.4 30 1.83 ↑ 0.29 ↑ 3.33 ↑ ④
(p.N138Mfs*36) (p.G96S)

33* c.286G > A c.1000C > T LP/ LP 30 27.2 1.97 ↑ 0.09 ↑ 1.99 ↑ ①②④
(p.G96S) (p.R344C)

34 c.286G > A c.1150G >  C# LP/VUS 30 21.3 1.04 ↑ 0.11 ↑ 1.24 ↑ ④
(p.G96S) (p.V384L)

35 c.473A >  G# c.413delA# VUS/P 31 23.4 1.82 ↑ 0.19 ↑ 2.28 ↑ ③④
(p.Y158C) (p.N138Mfs*36)

36 c.1000C > T c.1092 + 1G > A LP/P 27.2 33 1.9 ↑ 0.1 ↑ 1.2 ↑ ④
(p.R344C)

37 c.286G > A c.500delG# LP/P 30 25.3 1.61 ↑ 0.08 ↑ 1.46 ↑ –

(p.G96S) (p.S167Mfs*7)

38 c.286G > A c.500delG# LP/P 30 25.3 1.43 ↑ 0.08 ↑ 0.48 ↑ ③④
(p.G96S) (p.S167Mfs*7)

39 c.286G > A c.286G > A LP/LP 30 30 2.42 ↑ 0.07 ↑ 0.9 ↑ ④
(p.G96S) (p.G96S)

40 c.286G > A c.1165C >  T# LP/LP 30 26.5 2.71 ↑ 0.13 ↑ 1.12 ↑ ④
(p.G96S) (p.R389W)
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(Fig.  1B), while two variants, p. L2Vfs*40 and p. P37S 
are located in the mitochondria targeting sequence 
(MTS), and the p.S167Mfs*7 variant occurs in a binding 
domain for substrate FAD (flavin adenine dinucleotide). 
Notably, 16 novel variants were identified, including 
10 missense variants (Fig.  1C): c.109C > T (p. P37S), 
c.236G > A (p. R79Q), c.259G > A (p. G87R), c.473A > G 
(p. Y158C), c.758  T > G (p. V253G), c.911A > T (p. 
Q304L), c.989G > A (p. R330Q), c.1150G > C (p. V384L), 
c.1157A > G (p. Q386R), and c.1165C > T (p. R389W); 3 
truncating variants: c.4_5delCT (p. L2Vfs*40), c.413delA 
(p. N138Mfs*36) and c.500delG (p. S167Mfs*7); and 3 
splicing variants described above.

According to ACMG recommendations (Table  1), 
three novel truncating variants (c.4_5delCT, c.413delA, 
c.500delG) and novel splicing variants (c.110–2A > T, 
c.381–14G > A, c.842–1G > A) were postulated to be 
pathogenic (P), as along with the reported pathogenic 
variant c.455  T > C. The novel variant c.236G > A alters 
an arginine to glutamine (p. R79Q), like the previously 
reported c.235C > G (p. R79G) variant [10]. Similarly, 
the novel variant c.989G > A changes the same amino 
acid, R330, which was previously reported in c.988C > T 
(R330W) [7]. As shown in Fig.  1B, both c.236G > A and 
c.989G > A are localized in their catalytic domains, while 
c.109C > T is in the mitochondria-targeting sequence, 

Fig. 1 Twenty‑five ACAD8 variants were identified in 40 patients with IBDD. A Twenty‑five variants distributed in both the exons and introns 
of ACAD8. Black, variants detected in this study; grey, variants reported previously; *, novel variants identified in this study. B Distribution of 21 
variants in the IBD protein domain, without the intron variants. C 12 novel variants in protein 3D‑structure. Three novel splicing variants in introns 
and the MTS variant p. L2Vfs*40 were not illustrated. Referenced sequences for the ACAD8 gene, protein and structure are NM_014384.2, HUMAN 
NP_055199.1, and PDB entry, 1RX0, respectively
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which is crucial for protein imported into mitochondria. 
Novel missense variants c.911A > T and c.1157A > G were 
absent in the gnomAD database. Based on the evalua-
tion using bioinformatics programs (Additional file  1: 
Table S1), all 10 novel missense variants were predicted 
as functional variants that would exert damaging effects 
on its protein.

The missense variant c.286G > A (p. G96S) was 
reported to be most common in the Chinese popula-
tion, with an approximately frequency of 50% [10], 
which occurred here in 26 individuals with an allelic 
frequency of 44%, followed by c.1000C > T (p. R334C), 
c.1176G > T (p. R392S), c.413delA (p. N138Mfs*36) and 
c.500delG (p. S167Mfs*7) with allelic frequencies of 10%, 
5%, 5% and 5%, respectively. Most patients had their 
unique genotype. There were 27 genotypes distributed 
in 39 biallelic individuals. Except for the [c.286G > A];[ 
c.286G > A] genotype in 9 patients, there were 3 geno-
types shared by more than two patients, followed as 
[c.286G > A]; [c.1000C > T] by 3 patients (P#11, #12 and 
#33), [c.286G > A]; [c.413delA] by 2 patients (P#15 and 

#32), and [c.286G > A]; [c.500delG] by 2 patients (P#37 
and #38).

Review of ACAD8 variants in IBDD
Including our patient, 87 individuals with IBDD have 
been described [1–7, 9–23], of which 81 underwent 
genetic testing for ACAD8 and 78 individuals were con-
firmed to have biallelic variants. Fifty-one types of vari-
ants were detected, including 36 (70%) missense variants, 
one nonsense variant (2%, c.348C > A), one synonymous 
variant (2%, c.444G > T), 7 (14%) splicing sites between 
introns and exon barriers and 6 (12%) truncating vari-
ants. As shown in Fig.  2A, only 3 variants, c.289G > A, 
c.455  T > C and c.1000 C > T, occurred in both Asian 
and Caucasian population. To date, the variant c.286 
G > A was most prevalent in IBDD, specifically present 
in 44 Chinese patients [10, 19], followed by variants c. 
1000C > T in 14 patients, c.1176G > A in 6 patients and c. 
455 T > C in 5 patients. There were 57 different genotypic 
combinations in 78 patients. Consistent with our finding, 
67% of cases with biallelic variants were predominantly 

Fig. 2 Overview of the ACAD8 variants contributed to 81 IBDD patients. A ACAD8 variants in cases and different populations. B The genotypes and 
relative allelic frequency in IBDD patients. ho homozygous; RF relative allelic frequency in the 81 patients’ group; Refs references. Note Cases 1–55 
were reported in the Asian population; Cases 56–81 were reported in the Caucasian population
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genotyped with compound heterozygous alleles (Fig. 2B). 
However, only 26 IBDD individuals carried homozygous 
alleles (Fig. 2B). Similarly, most patients (62%, 48/78) had 
their unique genotype. However, 9 different genotypic 
combinations were shared in 30 individuals, including 
[c.286G > A];[c.286G > A] in 9 patients and [c.286G > A]; 
[c.1000C > T] in 5 patients (Fig. 2B).

Discussion
IBDD is a rare metabolic disorder that is less well 
understood, as only dozens of cases have been 
described previously in the literature [10–12]. Due to 
the limited number of cases, the IBDD prevalence var-
ies substantially in different regions and/or popula-
tions. Here, based on the NBS program and clinical 
diagnosis, 40 patients with IBDD were identified with 
a prevalence of 1/62,599 in Zhejiang Province, which is 
close to the incidence (1/70,000) estimated by Ogles-
bee et al. [7], but higher than the incidence reported in 
California (1/292,451) by Gallant et  al. [4]. Consistent 
with published cases, most patients with IBDD turned 
out healthy and had no clinical sequelae. Clinical symp-
toms, including increased urinary IBG levels, mild 
delay in growth and development, were generally tran-
sient during follow-up and had been restored by dietary 
management. However, there was no direct correlation 
between the improvement of clinical outcomes (includ-
ing growth-developmental delay and impaired liver 
function) and diet, and several developmental delay 
cases followed an age-appropriate intake of calories and 
protein after 6 months of age, similar to other children. 
Nevertheless, elevated C4-acylcarnitine concentrations 
always exist. Neonatal hypoglycemia in patients with 
IBDD that reported elsewhere was absent here [20], 
while 10 patients had anaemia instead. However, Acad8 
mutant mice showed significantly elevated transami-
nase levels and presented progressive hepatic steatosis 
[24]. Strikingly, some biochemical indicators associated 
with liver function were aberrant in 17 patients dur-
ing follow-up. Regarding anaemia or transient liver 
lesions, we are still unaware whether those clinical 
symptoms are in connection with IBDD. A few patients 
had developmental delay, speech delay or hypotonia 
[10, 12]. Unfortunately, patient #33 presented a severe 
delay in both growth and development with an inflex-
ible increase in serum C4-acylcarnitine levels, which 
was further genetically confirmed to be a novel vari-
ant, c.2739del (p. E914Rfs*35), in KMT2A that associ-
ated with WDSTS. Another special IBDD patient, with 
a severe lack of speech development and lack of social 
interactions, was reported to be associated with autism 
that was genetically confirmed in the DNA2 gene [18]. 

Therefore, appropriate interventions are required once 
IBDD is diagnosed, and patients with IBDD should be 
monitored carefully. All patients received proper die-
tary interventions as stated and had a positive progno-
sis during clinical monitoring.

Both the genotypes and ACAD8 variants in IBDD 
are highly heterogeneous. A total of 51 variants were 
reported in 81 IBDD patients and were widely dis-
tributed along the gene. More than 60% of patients 
presented with a unique genotype, and the com-
pound heterozygotes were predominant. The vari-
ants c.286G > A (p. G96S), c.1000C > T (p. R334C), 
c.1176G > A (p. R392S) and c.455  T > C (p. M152T) 
appeared to be more prevalent in 81 IBDD patients, 
with relative frequencies of 27.2%, 8.6%, 3.7% and 3.1% 
(Fig.  2B). To date, the hotspot variant, c.286G > A has 
been observed solely in Chinese patients [10, 19], indi-
cating that it is specific in this population and needs 
more cases to be confirmed. In this study, 16 ACAD8 
variants were first reported in IBDD patients. It should 
be certain that more novel variants will be detected in 
future cases with the widespread utilization of genetic 
testing in IBDD. The genotype–phenotype correla-
tion was unclear here. Nine patients with the same 
genotype, [c.286G > A];[c.286G > A], presented mild 
symptoms or were asymptomatic with different bio-
chemical indicators (Additional file 1: Table 2). On the 
other hand, 8 patients with elevated urinary IBG car-
ried different genotypes, including LP/LP, LP/P or P/
VUS combination (Table  1). Intriguingly, Patients #14 
and #20, harboring a synonymous variant c.444G > T 
(p. P148P) with a low CADD score [25], had a normal 
level of C4/C2 (0.05) at newborn screening and occa-
sionally elevated to 0.08 during follow-up. Patient #17, 
with 2 deletions, potentially no IBD activity, had mod-
erate elevations of C4 without a phenotype.

In summary, up to 40 patients with IBDD were diag-
nosed with a prevalence of 1/62,597 in Zhejiang Prov-
ince. IBDD patients picked up by NBS have a mild 
phenotype here. Most patients were healthy during fol-
low-up, except one who was associated with WDSTS. 
Sixteen novel ACAD8 variants were identified. Based 
on a review of the variant spectrum in IBDD, we found 
that c.286G > A and c.1000C > T were prevalent in 
patients, of which c.286G > A has been observed solely 
in the Chinese population. Similar to other metabolic 
disorders, compound heterozygotes were predominant 
in genotypes. No clear genotype–phenotype correla-
tion existed in IBDD patients. Here, our IBDD cohort 
with detailed clinical characteristics, genotypes and 
long-term prognosis will be helpful for the diagnosis 
and management of patients with IBDD.
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Conclusions
Isobutyryl-CoA dehydrogenase deficiency is a rare meta-
bolic disorder with an incidence of 1/62,599 in Zhejiang 
Province. The concentration of C4-acylcarnitine in NBS 
plus subsequent genetic testing is helpful for IBDD diag-
nosis. Both the genotypes and ACAD8 variants in IBDD 
are highly heterogeneous, No clear correlation between 
genotype and phenotype is presented here in patients with 
IBDD.
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