
CXCL12 Mediates Trophic Interactions between
Endothelial and Tumor Cells in Glioblastoma
Shyam Rao1., Rajarshi Sengupta2., Eun Joo Choe2, B. Mark Woerner2, Erin Jackson3,4, Tao Sun2, Jeffrey

Leonard5, David Piwnica-Worms3,4,6,7, Joshua B. Rubin2,8*

1 Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America, 2 Department of Pediatrics, Washington

University School of Medicine, St. Louis, Missouri, United States of America, 3 Bridging Research with Imaging, Genomics and High-Throughput Institute, Washington

University School of Medicine, St. Louis, Missouri, United States of America, 4 Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School

of Medicine, St. Louis, Missouri, United States of America, 5 Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of

America, 6 Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America, 7 Department of

Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America, 8 Department of Anatomy and Neurobiology,

Washington University School of Medicine, St. Louis, Missouri, United States of America

Abstract

Emerging evidence suggests endothelial cells (EC) play a critical role in promoting Glioblastoma multiforme (GBM) cell
proliferation and resistance to therapy. The molecular basis for GBM-EC interactions is incompletely understood. We
hypothesized that the chemokine CXCL12 and its receptor CXCR4 could mediate direct interactions between GBM cells and
tumor-associated endothelial cells and that disruption of this interaction might be the molecular basis for the anti-tumor
effects of CXCR4 antagonists. We investigated this possibility in vivo and in an in vitro co-culture model that incorporated
extracellular matrix, primary human brain microvascular ECs (HBMECs) and either an established GBM cell line or primary
GBM specimens. Depletion of CXCR4 in U87 GBM cells blocked their growth as intracranial xenografts indicating that tumor
cell CXCR4 is required for tumor growth in vivo. In vitro, co-culture of either U87 cells or primary GBM cells with HBMECs
resulted in their co-localization and enhanced GBM cell growth. Genetic manipulation of CXCL12 expression and
pharmacological inhibition of its receptors CXCR4 and CXCR7 revealed that the localizing and trophic effects of endothelial
cells on GBM cells were dependent upon CXCL12 and CXCR4. These findings indicate that the CXCL12/CXCR4 pathway
directly mediates endothelial cell trophic function in GBMs and that inhibition of CXCL12-CXCR4 signaling may uniquely
target this activity. Therapeutic disruption of endothelial cell trophic functions could complement the structural disruption
of anti-angiogenic regimens and, in combination, might also improve the efficacy of radiation and chemotherapy in treating
GBMs.
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Introduction

Tissue architecture, including cell-cell and cell-extracellular

matrix interactions, is an essential determinant of cellular behavior

in normal and pathological states. The potential of three-

dimensional tissue relationships to influence the phenotype of

cancer cells has been appreciated since the time of Virchow and

directly demonstrated more recently (reviewed in [1]). Increasing-

ly, malignant behavior is being redefined as a consequence of not

only mutational events in cancer cells but also specific tumor-

stroma interactions that promote tumor formation, progression,

and resistance to therapy [2].

The earliest histopathological descriptions of glioblastoma

multiforme (GBM) recognized the involvement of vascular

endothelial cells (ECs) in tumor architecture. The close apposition

of glioblastoma cells to the abluminal surface of endothelial cells, a

cardinal feature of GBM, was originally described by Scherer, who

suggested this was a route by which tumor cells invaded

surrounding brain [3].

In GBMs, there is an abundance of vascular endothelial cells,

which was initially assumed to maintain the high metabolic rates

observed in these tumors through the formation of perfusing blood

vessels [4]. However, it is now clear that the vasculature within

GBM is abnormal. Despite a redundancy in microvessels, tumors

exist in a relatively hypoxic state in which they utilize anaerobic

metabolism to a greater degree than normal brain tissue [5]. These

observations call into question the role of the abundant vasculature

in GBM.

Scherer suggested that the perivascular space possessed

specialized properties important for the maintenance and spread
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of glioblastoma [3]. The details of this specialization have recently

been suggested to include maintenance of a stem cell-like

phenotype in glioblastoma cells localized to this region [6]. The

stem-like phenotype includes increased DNA repair capacity,

increased efflux pump expression and growth in response to

endothelial cell-derived factor(s) [7,8,9,10]. Thus, the peri-vascular

space is predicted to contribute to tumor growth and therapeutic

resistance. It is therefore imperative to understand the biology of

this space and to develop systems in which to screen for drugs that

can disrupt its function(s).

The vasculature of GBM is distinguished from normal brain

vasculature by levels of CXCL12 expression. In extensive studies

of malignant neural and astrocytic tumors, we and others found

increased CXCL12 expression in the endothelium of tumor-

associated blood vessels. [11,12,13,14,15,16,17]. The functional

significance of increased endothelial expression of CXCL12 in

GBMs remains to be fully defined. CXCL12 plays multiple roles

during normal development and tissue homeostasis both inside

and outside the central nervous system. Prominent among these

roles is the regulation of progenitor cell localization to germinal

niches [18,19,20,21,22,23,24], the regulation of progenitor cell

proliferation [22,25,26], survival [27] and differentiation [28], as

well as the regulation of immune cell chemotaxis and activation

[29]. Relevant to brain tumors, endothelial cell CXCL12 could

directly regulate tumor growth and spread, promote angiogenesis

and/or regulate immune response to tumors.

CXCR4, a CXCL12 receptor, is expressed on brain tumor cells

and high levels of expression have negative prognostic significance

[30]. These findings suggest that the CXCL12/CXCR4 pathway

functions in tumor growth and/or therapeutic resistance. The

anti-tumor effects of AMD3100 and AMD3465, competitive

antagonists of CXCR4 activation also indicate that CXCL12

regulation of tumor growth involves activation of tumor cell

CXCR4 [14,31,32]. In intracranial xenograft models of GBM and

medulloblastoma we demonstrated that systemic delivery of

AMD3100 or AMD3465 had significant anti-tumor activity

against established xenografts. Within 48 hours of the initiation

of AMD3100 treatment, tumor cells exhibited decreased prolifer-

ation and increased apoptosis indicating that AMD3100 disrupted

a critical direct effect of CXCL12 on tumor growth [14].

Recently, using a similar U87 intracranial xenograft model of

GBM, AMD3100 was shown to prevent tumor recurrence after

radiation therapy through inhibition of mesenchymal progenitor

cell recruitment for vasculogenesis [33]. Together, these studies

underscore the potential complexity of CXCL12 effects on brain

tumor growth and the possibility for multiple mechanisms of

CXCR4 antagonist action. In addition to CXCR4, CXCL12 also

binds to a second G-protein coupled receptor CXCR7, which has

been recently characterized. CXCR7 is shown to be expressed and

functional in a number of glioma cell lines, although its exact role

in tumorigenesis is still unclear [34], [35].

In order to better define the roles of CXCL12 and its receptors

in functions of the GBM perivascular niche we investigated the

interactions between human brain microvascular endothelial cells

and GBM cells when the two cell types were cultured together. In

this system, where there is no vasculogenesis and uniform

oxygenation, we demonstrate that CXCL12 is essential for

chemo-attracting GBM cells to the peri-endothelial cell space

and mediating a direct trophic effect of endothelial cells on GBM

cells. Endothelial cell effects on GBM cell growth were blocked by

both the specific CXCR4 antagonist AMD3100 and knock-down

of endothelial cell CXCL12 expression with short hairpin

interfering RNA (shRNA). In contrast, the CXCR7 antagonists

CCX733 and CCX773 had no effect on CXCL12-induced

growth. These data indicate that targeting the CXCL12/CXCR4

pathway could abrogate a specialized trophic function of GBM-

associated vasculature that contributes to brain tumor growth.

These data further suggest that therapeutic regimens that combine

antagonism of both perivascular niche formation and function

could have synergistic effects on tumor growth and recurrence.

Materials and Methods

Chemicals, Reagents, and Antibodies
All chemicals were obtained from Sigma-Aldrich (St. Louis,

MO) unless otherwise indicated. All tissue culture reagents and

media were obtained from Invitrogen (Carlsbad, CA) unless

otherwise indicated. A construct containing mCherry cDNA was

the kind gift of Dr. Roger Y. Tsien (University of California, San

Diego, CA). Antibodies utilized in this study were: PECAM/CD31

(Santa Cruz Biotechnology, Santa Cruz, CA), GFAP (Sigma-

Aldrich), CXCR4 monoclonal (R&D Systems, Minneapolis, MN),

CXCR4 polyclonal (Leinco, St. Louis, MO), CXCL12 (Peprotech,

Rock Hill, NJ), b-actin (Sigma-Aldrich) and immunoglobulin (IgG)

isotype controls (Jackson Immuno-Research, West Grove, PA).

AMD3100 was purchased from Sigma-Aldrich. CCX733 was

obtained from Chemocentryx (Mountain View, CA).

Cell Culture
Primary Human GBM cells. Primary tumor specimens

from three adult patients and one pediatric patient with GBM

were retrieved from the Children’s Discovery Institute Pediatric

Brain Tumor Bank at Washington University School of Medicine

in accordance with an Institutional Review Board–approved

protocol for human research. Freshly resected tumors specimens

were kept in cold low calcium artificial cerebrospinal fluid (low

Ca++ aCSF: 124 mM NaCl, 5 mM KCl, 3.2 mM MgCl2, 0.1 mM

CaCl2, 26 mM NaHCO3, 10 mM D-glucose). Samples were

minced and placed in dissociation media (25 U/mL collagenase,

150 ug/mL hyaluronidase, trypsin, 0.2 mg/mL kynurenic acid,

1% penicillin/streptomycin in low Ca++ aCSF). Single cells were

pelleted and washed in aCSF three times, then resuspended in

tumor sphere media (TSM), (Dulbecco’s Modified Eagle Media

Nutrient Mix F-12 (DMEM/F-12, Invitrogen) supplemented with

Glutamax (Invitrogen), 20 ng/mL epithelial growth factor (EGF,

Sigma-Aldrich), 20 ng/mL basic fibroblastic growth factor (bFGF,

Chemicon (Billerica, MA)), 1% penicillin/streptomycin, and 16B-

27 Serum-Free Supplement (Invitrogen).

Primary Human Endothelial Cells. Primary human brain

microvascular endothelial cells (HBMEC) were obtained from

ScienCell, Carlsbad, CA). Primary human umbilical vein

endothelial cells (HUVEC) were obtained from American Type

Culture Collection (ATCC, Manassas, VA). For certain

experiments endothelial cells were engineered to express

mCherry fluorescent protein via lentiviral infection by viral

particles that were produced by the Viral Vectors Core Facility

of The Hope Center for Neurological Diseases at Washington

University School of Medicine followed by sorting for expression

with a MoFLO high speed cell sorter. Expression vectors used in

viral production contained a transgene for mCherry fluorescent

protein under a CMV promoter. ECs were used between passages

3–8 and maintained in endothelial cell growth media (EGM-2MV

(Lonza, Basel, Switzerland)) on gelatin-coated dishes.

Established Human GBM cell line. U87 cells were

originally obtained from ATTC and were engineered at low

passage (,5) to express a fusion protein of firefly luciferase and

enhanced green fluorescent protein (eGFP) driven by the human

ubiquitin C promoter after transduction with a lentivirus (FUW-
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FLG) described previously [31,32,36]. U87 cells expressing firefly

luciferase-eGFP (U87-Luc) were sorted to purity based on GFP

expression, expanded and stored at 2150 degrees Celsius. All

experiments were performed with U87-Luc cells at less than

passage 15 (approx 4 months), post their acquisition from ATCC.

U87 cells were maintained in DMEM supplemented with 10%

fetal bovine serum.

GBM – endothelial cell co-cultures
Co-localization studies. Fifteen thousand HBMEC or

HUVEC cells were plated on coverslips (35 cm2) coated with

Matrigel extracellular matrix (BD Biosciences, San Jose, CA) as

per manufacturer’s instructions and then grown in EGM-2MV.

After 24 hours, either 15,000 U87 cells or 30,000 primary GBM

cells per 35 mm2 were added to the cultures and grown in Serum

Free DMEM. Unless mentioned otherwise, co-localization

measurements were performed 24 hours following addition of

tumor cells.

Growth assays. Growth assays were conducted with

Matrigel-coated, 96 well tissue culture plates containing 3000

HBMECs and 3000 U87 or 6000 primary GBM cells per well,

plated and grown as described above.

Primary Human GBM Tissue
Formalin-fixed, paraffin-embedded archival specimens of GBM

were retrieved from the pathology files at Washington University

School of Medicine in accordance with an Institutional Review

Board–approved protocol for human research.

Overexpression and knockdown
For knockdown experiments, CXCL12 or CXCR4 specific

shRNAs (CXCL12: TGTGCATTGACCCGAAG CTAA or G-

AGTACCTGGAGAAAGCTTTA; CXCR4: GCTGCCTTAC-

TACATTGGGAT) or a scrambled (control) shRNA sequence

(CCGGCAACAAGATGAAGAGCACCAA) cloned into a lenti-

viral packaging vector (pLKO.1) were obtained from the Genome

Institute at the Washington University School of Medicine in St

Louis. Viral particles were produced from each packaging vector

separately by the Viral Vectors Core Facility of The Hope Center

for Neurological Diseases at Washington University School of

Medicine. HBMECs were infected with lentivirus encoding either

control or CXCL12 shRNA and U87 cells were infected with

lentivirus encoding either control or CXCR4 shRNA as previously

described [37]. Cells expressing shRNA constructs were selected

using puromycin. As described in the results, knockdown of

CXCL12 expression levels were determined by PCR and ELISA

analysis. Knockdown of CXCR4 was confirmed by western blot.

For over-expression experiments, HUVECs were infected with

lentivirus containing CXCL12 gene as described previously [38].

CXCL12 overexpression was confirmed by ELISA.

Quantitative PCR
RNA was isolated from endothelial cells using the RNeasy

system (Qiagen (Valenica, CA)). Copy DNA was synthesized from

100 ng of RNA using iScript RTase, and CXCL12 and

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) transcripts

were amplified using the power SYBR GREEN PCR Master Mix

(Applied Biosystems (Carlsbad, CA)) according to the manufac-

turer’s instructions. Primers for CXCL12 (forward primer, A-

TGCCCATGCCGATTCTT; reverse primer, GCCGGGCTA-

CAATCTGAAGG) and GAPDH (forward primer, GGCAAA-

TTCAACGGCACAGT; reverse primer, AGATGGTGATGGG-

CTTCCC) were obtained from Integrated DNA Technologies

(Iowa City, IA) and used at 300 nmol/L. Samples were run in

triplicate with a corresponding GAPDH control for each sample.

PCR and data collection were done using the BioRad Mini-

Opticon Real Time PCR machine and Opticon Monitor 3

Software from BioRad (Hercules, CA). Relative transcript copy

number for each CXCL12 and corresponding GAPDH sample

were calculated using the delta-delta-C(t) method. The CXCL12

relative expression values for each condition were normalized to

that of the lowest relative expression level for each experiment

(n = 3).

CXCL12 ELISA
HBMEC or HUVECs (wild type or infected with viruses as

described in results) were plated onto gelatin or Matrigel coated

dishes and maintained in EGM-2MV media for 24 hours. The

media was then changed to Serum Free DMEM. After 48 hours of

additional incubation, culture supernatants were collected and

concentrated (1006) for CXCL12 detection by indirect ELISA

assay. Briefly, CXCL12 standards, culture supernatants from

endothelial cells and DMEM from Matrigel alone were incubated

in a 96-well plate overnight in 20 mM sodium bicarbonate buffer

(pH 9.5). The plate was blocked with 2% BSA for 1 hour and then

incubated with rabbit anti-hCXCL12 (1:200, PeproTech Inc.) for

1 hour. OPD substrate (Sigma-Aldrich) was added to the plate

following incubation of goat anti-rabbit IgG HRP (1:2500, Bio-

Rad) for 1 hour. The reaction was stopped by 3M HCL and OD

at 490 nm was measured with a microplate reader (Bio-Tek

Instruments, Inc.). CXCL12 concentrations were calculated with

reference to an ELISA standard curve. All samples were analyzed

in duplicate.

Western blot analysis
Protein extracts were obtained by lysing cells with lysis buffer

[20 mmol/L Tris (pH 7.4), 137 mmol/L NaCl, 10% glycerol, and

1% Triton X-100] supplemented with Complete Protease

Inhibitors (Roche) and Phosphatase Inhibitor Cocktail set #IV

(Calbiochem (Gibbstown, NJ)). The proteins (25 mg) were resolved

with 10% Bis-Tris gels (Invitrogen) and transferred onto the

Hybond ECL nitrocellulose membrane (Amersham (Piscataway,

NJ)) according to standard protocols. Blots were then probed with

polyclonal anti-CXCR4 antibody. Total protein loading per lane

was evaluated with anti-b-Actin antibody. This was followed by

incubation with IRDyeH conjugated secondary antibodies (LI-

COR (Lincoln, NE)). Blots were imaged with the Odyssey

fluorescent scanning system (Li-Cor).

Immunofluorescence
Cells were fixed with 70% ethanol for 10 minutes at 220uC.

Immunostaining of CXCL12, GFAP or CD31/PECAM was done

as described [14]. CXCR7 antibody 11G8 was used (15 mg).

Secondary AlexaFluor 488 or 568–conjugated donkey anti-mouse,

AlexaFluor 555-conjugated donkey anti-rabbit, AlexaFluor 488–

conjugated donkey anti-rat or anti-goat antibody were used at a

concentration of 1:1750 (Molecular Probes) for 90 minutes. Nuclei

were counterstained with DAPI (4N, 6-diamidino-2-phenylindole)

or TO-PRO 3 (Invitrogen).

Tissue sections and immunohistochemistry
Sections (5 mm) were deparaffinized in xylene and rehydrated in

descending alcohols to water. Endogenous peroxidase was blocked

with 3% H2O2 in TBST [10 mmol/L Tris (pH 8.0), 0.15 mol/L

NaCl, 0.05 Tween] and nonspecific avidin/biotin binding sites

were blocked with the Vector Avidin/Biotin Blocking kit (Vector

CXCL12 Mediated GBM-Endothelial Cell Interactions
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Laboratories, Burlingame, CA). Sections were additionally blocked

with 10% serum from the animal source of the appropriate

corresponding secondary antibody diluted in incubation media

[0.1 mol/L Tris (pH 7.5), 0.15 mol/L NaCl, 2% nonfat dry milk,

and 0.1% Triton X-100] and then incubated in primary antibody

overnight at 4uC. CXCL12 was detected with rabbit polyclonal

antibody (1:66 dilution). Immunoreactive complexes were detected

using the corresponding secondary biotin-conjugated antibodies

augmented by streptavidin-horseradish peroxide and visualized by

3,39-diaminobenzidine supplied by DAKO (Carpinteria, CA).

Slides were then counterstained with hematoxylin, dehydrated

through a series of alcohols and xylene, and coverslipped in 50:50

xylene/Permount. Control sections were incubated with isotype-

matched IgG.

Localization Measurements
Primary human brain endothelial cells expressing mCherry and

human GBM cells were grown on Matrigel coated coverslips, as

above. After treatment, cells were fixed in 70% ethanol at 220uC
for 10 minutes and counterstained with DAPI. Images were

acquired on a Zeiss Scope.A1 fitted with an Axiocam MRc camera

and using Axiovision software (Carl Zeiss, North America

(Thornwood, NY)). Distances between GBM cell nuclei and the

nearest endothelial cell nucleus were measured using a vector tool

in Axiovision. For U87-HBMEC or HUVEC co-localization we

measured ,1000 cells in 4 separate experiments for each

condition. We then used the average +/2 SEM. For Primary

GBM-HBMEC co-localization cells we measured ,450 cells from

3 different patient specimens. We then used the average +/2

SEM.

Growth Assays
Primary GBM: After treatment, tumor cells were fixed and

identified via immuno-labeling for glial fibrillary acidic protein

(GFAP). Images were acquired using a Molecular Devices Image

Express Micro High Content Imager at the High-Throughput

Screening Core at Washington University in St. Louis. Automated

image analysis using MetaExpress and AcuityExpress (Molecular

Devices (Sunnyvale, CA)) was performed to count the total

number of GFAP positive cells/well. Cell counts were normalized

to control conditions in which GBM cells were cultured with

Matrigel, but in the absence of ECs.

Established GBM cell line: For U87 cells expressing firefly

luciferase, cell number was evaluated using bioluminescence

measurements at the Molecular Imaging Core facility, BRIGHT

Institute, Washington University in St. Louis. Endothelial cells did

not express luciferase activity. Cell number, as determined by

direct cell counts, and bioluminescence were linearly proportional

under our culture conditions (data not shown). Cells were grown in

96 well black-wall clear-bottom plates (Costar). After treatment,

cells were washed into phenol red-free media and exposed to

0.15 mg/ml luciferin for 10 minutes. Bioluminescence was

measured using a charge-coupled device camera-based biolumi-

nescence imaging system (IVIS 50; Caliper; exposure time 1–30 s,

binning 8, field of view 12, f/stop 1, open filter). Regions-of-

interest (ROIs) were drawn over images of wells and biolumines-

cence data, expressed as total photon flux (photons/s), were

normalized to untreated controls [31,36].

TUNEL assays
Terminal nucleotidyl transferase–mediated nick end labeling

(TUNEL) staining of fixed cells was done by standard procedures

according to the manufacturer’s directions (Roche Applied

Science, Indianapolis, IN) along with nuclear counterstain.

TUNEL-positive cells were detected under direct fluorescence

microscopy. TUNEL positivity is reported as the percent of total

GBM cell nuclei that were TUNEL positive.

Generation of intracranial xenografts
Intracranial xenografts were generated as described previously.

Homozygous NCR nude mice (Taconic Farms) were anesthetized

[intraperitoneal ketamine (87 mg/kg)/xylazine (13 mg/kg); Phoe-

nix Pharmaceuticals], the cranium was exposed, and a small hole

was made 2 mm lateral and posterior to the bregma with a size 34

inverted cone burr (Dremel). Mice were positioned in a

stereotactic frame (Stoelting) and 50,000 cells in 5 mL PBS were

injected through a 27-gauge needle over 1 min at 3 mm below the

dura mater. The incision was closed with Vetbond (3M).

Bioluminescence imaging
NCR nude mice bearing intracranial xenografts of U87-Luc

expressing scrambled shRNA (sc-U87-Luc) or CXCR4-specific

shRNA (shCXCR4-U98-Luc) were injected with D-luciferin

(150 mg/g; Biosynth) as previously described. After anesthesia

using 2.5% isoflurane, mice were imaged with a charge-coupled

device camera-based bioluminescence imaging system (IVIS 50;

Xenogen; exposure time 1–30 s, binning 8, field of view 12, f/stop

1, open filter). Signals were displayed as photons/s/cm2/sr.

Regions of interest were defined manually and images were

processed using Living Image and IgorPro Software (Version 2.50)

as described. Raw data were expressed as total photon flux

(photons/s).

Statistical Analyses
All values represent the means from experiments repeated at

least 3 separate times. Data were analyzed using GraphPad Prism

version 4.00 (GraphPad Software) using the specific statistical tests

identified in the corresponding figure legends. Potential statistical

outliers were detected by application of Grubb’s test. A single

animal was removed from the in vivo studies as an outlier. A second

animal exhibited highly erratic bioluminescence and was also

excluded. This did not alter the results.

Results

We previously demonstrated that systemic administration of the

specific CXCR4 antagonist AMD 3100, inhibited the intracranial

growth of U87 glioblastoma xenografts by increasing apoptosis

and decreasing proliferation of tumor cells [14]. Both tumor cells

and endothelial cells express CXCR4, and to distinguish whether

tumor cell-CXCR4 function is required for tumor growth, we

depleted CXCR4 by shRNA-mediated knock-down in U87

glioblastoma cells that had also been engineered to express a

fusion protein of firefly luciferase and eGFP (shCXCR4-U87-Luc).

Control cells were generated through expression of a scrambled

shRNA (sc-U87-Luc). CXCR4 depletion was confirmed by

western blot analysis (Figure 1A). Intracranial xenografts of

shCXCR4-U87-Luc and sc-U87-Luc cells were generated in nude

mice as described [26,31]. Bioluminescence imaging 48 hrs post-

intracranial injection was similar between the two groups [mean

photon flux for sc-U87-Luc: 6.786106; and for shCXCR4-U87-

Luc: 7.176106] suggesting that CXCR4 was not required for

tumor cell engraftment. In contrast, CXCR4 depletion in U87

cells significantly suppressed their intracranial growth over a four-

week experimental period (Figure 1B). These data strongly

indicate that tumor cell CXCR4 function is required for tumor

growth.

CXCL12 Mediated GBM-Endothelial Cell Interactions
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In vivo, CXCR4 function depends upon its ligand CXCL12.

As previously described [11,14,15,17,39] and illustrated in

Figure 2A, CXCL12 is localized to the endothelium of tumor-

associated blood vessels in GBM. Therefore, we hypothesized that

similar to normal neural stem cell niches [40], endothelial cell

CXCL12 and tumor cell CXCR4 would play important roles in

the biology of the GBM perivascular stem-like cell niche.

To assess whether CXCR4 mediates direct interactions between

GBM and endothelial cells we turned to an in vitro co-culture

model similar to that used by others [8,16], in which primary

human brain microvascular endothelial cells (HBMECs) and

either U87 cells, or primary GBM cell isolates were cultured

together in extracellular matrix (Matrigel). While the mouse

sarcoma origin of Matrigel could limit its relevance in modeling

the brain perivascular space, the primary components of Matrigel,

including laminin, heparan sulfate proteoglycans, collagen IV and

nidogen [41], are known to be essential components of brain

germinal matrices, as well as the subendothelial cell basement

membrane of the brain microvasculature [42]. The appropriate-

ness of Matrigel for these studies is further supported by Matrigel’s

successful application in studies of neural stem cells [43,44,45] and

human brain tumor cells [6].

When cultured in standard fashion on tissue culture plastic,

HBMECs grow as a monolayer in which many individual cells

assume an ‘‘epithelioid’’ morphology with abundant cytoplasm

surrounding a round nucleus (Figure S1A). In contrast, when

plated on Matrigel, HBMECs adopt a lattice-like configuration

reminiscent of a capillary network in which individual cells exhibit

a more native morphology characterized by an elongated nucleus

and cell body (Figure S1B). Reproducible lattice networks were

not observed when HBMECs were cultured on plastic, glass,

fibronectin or gelatin (data not shown). This restricted distribution

of HBMECs in Matrigel better models the arrangement of

HBMECs in vivo when compared to the uniform distribution of

cells when HBMEC were cultured as a monolayer on plastic.

To determine whether HBMECs cultured in Matrigel express

CXCL12, we performed immunofluorescence labeling of fixed

HBMECs (Figure 2B) and CXCL12 ELISAs on supernatants

collected from HBMEC cultures (Figure 2C). We found that

CXCL12 protein was present in HBMEC cells and released to the

culture media. Thus, similar to native GBM vasculature, HBMEC

Matrigel cultures could provide CXCL12 in a spatially restricted

manner. Consistent with prior reports, U87 cells and primary

GBM cell isolates express CXCR4 (Figure 2D).

To ascertain whether HBMEC-derived CXCL12 would

influence the behavior of GBM cells we first sought to determine

whether HBMECs in this capillary-like configuration impose a

Figure 1. Deletion of CXCR4 suppresses the growth of intracranial U87 xenografts. (A) Western blot analysis of CXCR4 expression in U87
cells infected with lentirvirus encoding a scrambled shRNA control (scRNA) or a short hairpin RNA directed against CXCR4 (CXCR4 shRNA). CXCR4
expression declined with increasing viral mulitplicity of infection (MOI). (B) Animals were injected with U87 cells expressing either control (scrambled,
sc-U87-Luc) or a CXCR4 specific shRNA (shCXCR4-U87-Luc). Growth curves were derived from serial bioluminesence imaging measurements (six to
eight animals per experimental group) over the four-week experimental period post tumor cell implantation. Presented are the mean
Bioluminescence Ratios (photon flux week (1–4)/photon flux hr48) 6 SEM for each group. * = P,0.005 as determined by two-way ANOVA.
doi:10.1371/journal.pone.0033005.g001

Figure 2. Primary human brain endothelial cells express
CXCL12 and GBM cells express CXCR4. (A) Human glioblastoma
specimen immunostained for CXCL12 (brown) demonstrates expression
in vascular endothelial cells. t = tumor cells, e = cross-section through
tumor-associated capillary, and Scale bar = 25 mm. (B) HBMECs, in co-
culture on Matrigel, express CXCL12 (red). Nuclei are counterstained
blue with DAPI. Scale bar equals 25 mm. (C) Human brain micro-vascular
endothelial cells cultured on Matrigel (Mat HBMEC) secrete CXCL12 into
the media as determined by ELISA. Mat alone indicates results from
Matrigel alone-conditioned media. N = 3. ** = p,0.005 as determined
by two-tailed t-test. (D) Single cell suspensions from two different adult
GBM patients (GBM1, GBM2) and cultured U87 cells express CXCR4 by
western blotting. CXCR4 appears red and the actin loading control
appears green.
doi:10.1371/journal.pone.0033005.g002
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spatial organization to the culture milieu. U87-Luc cells were

added to a preformed HBMEC network in which the endothelial

cells had been engineered to express mCherry fluorescent protein.

U87 cells appeared to localize to the peri-endothelial cell space

and to make direct contact with endothelial cells (Figure 3A). Co-

localization of most U87 cells to the HBMECs occurred within the

first 24 hours and the mean distance between tumor and

endothelial cells did not significantly change beyond that time

(Figure 3B). Hence, for all subsequent co-localization experi-

ments measurements were performed after 24 hrs of addition of

tumor cells. To more quantitatively evaluate this co-localization

we analyzed the data as follows. The spaces within the lattice-work

approximate circular elements. We determined that the mean

radius of these elements was 155 mm. By calculating the fractional

area of concentric circles within each space, we were able to derive

a relation between distance and cell number for a theoretical random

distribution of cells within the lattice-work (Figure S2A). By

measuring the mean distance between eGFP-expressing U87 cells

and mCherry-expressing HBMECs (Figure S2A–D), we found

that U87 cells were not distributed randomly within the culture

dish but instead were clustered around endothelial cells.

Approximately 50% of U87 cells were localized within 40 mm of

an endothelial cell with approximately 30% of U87 nuclei within

20 mm of an endothelial cell, including cells in physical contact

with the endothelium (Figure 2C). The non-random nature of

this distribution indicated that U87 cells were co-localized with

HBMECs.

To determine whether primary GBM cells would also localize

to the peri-endothelial cell space, we added primary GBM cells

from patient specimens to pre-formed HBMEC lattice/tubule

structures. Primary GBM tumor cells were identified by their

expression of the standard histopathological marker for astrocy-

toma (glioma) cells, GFAP [46]. We found that primary GBM

cells also co-localized with the endothelial cells (Figure S3A)

and made direct cell-to-cell contacts via their processes (Figure
S3B).

Figure 3. U87 and primary GBM cells localize to the peri-endothelial domain when plated with HBMECs on Matrigel. (A) Twenty-four
hours after establishing a capillary-like network of mcherry-expressing HBMECs in Matrigel, eGFP-expressing U87 cells were added to the culture.
Within 24 hours U87 cells were seen in physical contact with HBMECs. Scale bar = 50 microns. (B) The mean distances between U87 cells (500 to 800
cells) and HBMECs were calculated at different time points after the addition of the tumor cells to the HBMEC networks. There was a significant
increase in co-localization (reduction in mean distance) within 24 hrs, which was maintained over a 72 hr period. * = p,0.05 as determined by one
way ANOVA for the means of three separate experiments involving 500–800 measurements per experiment. (C) The distance between approximately
1000 eGFP-expressing U87 cells and mCherry fluorescent protein-expressing HBMECs in co-culture (24 hrs) was measured and the distribution was
plotted as the percentage of total cells in 20 micron increments (black triangles). More than 50% of the total U87 cells in the culture were within
40 microns of an endothelial cell. A theoretical plot of a random distribution of cells is shown (open circles). (D) The distance between GFAP positive
GBM cells and mCherry fluorescent protein-expressing HBMECs in co-culture were measured and the distribution was plotted as the percentage of
total cells in 20 micron increments (black triangles). Error bars represent SEM from three independent experiments involving three different GBM
isolates. Approximately 500 GBM (GFAP positive) cells were counted. Nearly 80% of the GFAP positive GBM cells in the culture were within 20 microns
of an endothelial cell. A theoretical plot of a random distribution of cells is shown (open circles).
doi:10.1371/journal.pone.0033005.g003
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Primary GBM cells were also not distributed randomly within

the culture dish but instead were clustered around endothelial cells

(Figure 3D). The distance between individual endothelial cells

and greater than 500 GBM cells, derived from independent

experiments utilizing three different primary isolates, was

measured. Nearly 80% of GBM cells were localized within

20 mm of an endothelial cell. The non-random nature of this

distribution indicated that primary GBM cells were also co-

localized with HBMECs.

Prior studies have shown that CXCR4 activation induces

chemotaxis and survival in U87 cells [14]. Given the recognized

role that the CXCL12-CXCR4 pathway plays in chemo-

attraction of multiple cell types (lymphocytes, neurons, tumor

cells [47]), we evaluated the hypothesis that GBM cells are

localized to the peri-endothelial cell domain in a CXCL12-

dependent fashion. We first cultured U87 cells with human

umbilical vein endothelial cells (HUVECs), which form similar

capillary-like networks in Matrigel but express significantly lower

levels of CXCL12 mRNA (Figure 4A) and protein (Figure S4A)

compared to HBMECs. Consistent with a dose-dependent

CXCL12 effect on U87 localization to the peri-endothelial cell

space, U87 cells were distributed in a random fashion within the

HUVEC lattice with fewer U87 cells in close apposition to

HUVECs compared to HBMECs (compare Figure 4B to Figure
3C). Consequently the mean distance between U87 and HUVECs

was significantly higher compared to that of HBMECs

(Figure 4C). To determine whether CXCL12 expression was

sufficient to endow HUVECs with a localizing effect similar to

HBMECs, we engineered HUVECs to express CXCL12.

HUVEC-CXCL12 cells release comparable levels of CXCL12

into the culture media as HBMECs (Figure S4A). Co-culture of

U87s with HUVEC-CXCL12 cells resulted in localization of

U87cells to the peri-endothelial cell space (Figure S4B, C). The

mean distance between U87 and HUVEC-CXCL12 cells was

similar to that of HBMECs (Figure 4D). These data indicate that

endothelial cell secretion of CXCL12 is sufficient to induce the

localization of CXCR4-expressing GBM cells.

To determine whether CXCR4 activation was necessary for the

co-localization of GBM cells with endothelial cells we treated U87-

HBMEC cultures with AMD3100. This resulted in the dispersal of

U87 cells from the peri-endothelial cell domain (Figure 5A and
5B). AMD3100 reduced the fraction of U87 cells within

40 microns of an endothelial cell (Figure 5C), and the mean

distance between U87 and HBMECs was increased from 40 to

nearly 60 mm in these experiments (Figure 5D). The resulting

distribution of U87 cells in AMD3100 treated cultures was no

longer different from the random distribution. As an additional

control, we evaluated the effects of AMD3100 on the mean

distance between U87 and HUVECs and found that in the

absence of CXCL12 secretion, AMD3100 had no effect on U87

cell distribution (Figure 5D). Together, the above data suggested

that endothelial cell-derived CXCL12 induced chemo-localization

of U87 cells to the peri-endothelial cell domain in a CXCR4

dependent fashion.

We next sought to determine whether inhibiting CXCR4 would

also alter the localization of primary GBM cells to the peri-

endothelial cell space. We treated three different primary

HBMEC-GBM co-cultures with AMD3100 and performed the

same localization analysis as described above. Similar to the results

presented in Figure 2, nearly 80% of primary GBM cells were

Figure 4. U87 localization to the peri-endothelial space is correlated with CXCL12 expression. (A) Quantitative PCR reveals that HUVECs
express significantly lower levels of CXCL12 than HBMECs. N = 3, ** = p,0.005 as determined by two-tailed t-test. (B) The distance between greater
than 1000 eGFP-expressing U87 cells and mCherry fluorescent protein-expressing HUVECs in co-culture was measured and the distribution was
plotted as the percentage of total cells in 20 micron increments (filled squares). Approximately 30% of the total U87 cells in the culture were within
40 microns of an endothelial cell (compare to Figure 3B). This distribution does not differ from a theoretical plot of a random distribution of cells
(open circles) (C) A statistically significant difference existed between the mean distance of U87 cells to HBMECs versus the mean difference between
U87 and HUVECs. * = p,0.05 as determined by two-tailed t-test for the means of four separate experiments involving approximately 330
measurements per endothelial co-culture per experiment. (D) When cultured with HUVECs that are engineered to over-express CXCL12, U87s show a
similar co-localization pattern (as seen with HBMECs) consistent with a significant reduction in mean distance when compared to co-cultures with
control HUVECs. * = p,0.05 as determined by two-tailed t-test for the means of two separate experiments involving approximately 300
measurements per endothelial co-culture per experiment.
doi:10.1371/journal.pone.0033005.g004
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localized within 20 microns of an endothelial cell in the untreated

control condition (Figure 6A). Treatment with AMD3100

(2.5 ng/ml, 24 h) resulted in a modest, but consistent and

significant (P,0.005, two-way ANOVA), change in GBM cell

distribution. Notably there was a decrease in the proportion of

cells within 20 microns of an endothelial cell (77+/20.33% vs.

69+/23%) and a commensurate increase in the proportion of

GBM cells at greater distances from the peri-endothelial cell

domain. The small but reproducible effect of CXCR4 antagonism

on GBM cell localization suggests that the CXCL12-CXCR4

pathway participates in localization of primary GBM cells to the

peri-endothelial cell domain but does not account for all of the

chemo-localization effect of endothelial cells on GBM cells.

Among the implications of peri-endothelial localization is the

potential for trophic interactions between endothelial cells and

GBM cells. To evaluate this possibility, U87 cells or primary GBM

specimens were added to HBMEC networks and cell number was

measured using bioluminescence imaging (for U87) or the number

of GFAP positive cells/well (for primary GBM) and quantified

using a computer-controlled epi-fluorescence microscope and

automated image analysis. Consistent with endothelial cells

providing trophic support for GBM cells, co-culture of either

U87 or primary GBM cell isolates with HBMECs in Matrigel

resulted in increased GBM cell number (Figure S5A–B). The

magnitude of the trophic effect ranged between 1.5 and greater

than twenty fold for the different primary GBM specimens when

compared to GBM cells grown on Matrigel alone.

To determine whether this trophic effect was mediated by

CXCL12, we generated lentivirus-encoding shRNA directed

against CXCL12, or encoding a scrambled shRNA control.

CXCL12 mRNA and protein expression was reduced in primary

HBMECs infected with either of two shRNAs directed against

CXCL12, but not in HBMECs infected with lentivirus encoding

the scrambled shRNA control (Figures S4 and S6). Hairpin

shRNA-L12-1 reduced CXCL12 expression to a significantly

lower level than shRNA-L12-2 and thus, only shRNA-L12-1 was

used for subsequent evaluations of the effect of reduced endothelial

cell CXCL12 expression on primary GBM growth.

Targeted reduction of CXCL12 expression with lentivirus

encoding shRNA had no effect on endothelial lattice formation in

Figure 5. U87 localization to the peri-endothelial space is
blocked by the CXCR4 antagonist AMD 3100. (A) GFP-expressing
U87 cells (green) are localized to mCherry-expressing HBMECs (red). (B)
Treatment of parallel co-cultures as in A with AMD 3100 results in
failure of U87 cells (green) to make consistent contact with endothelial
cells (red). Scale bar equals 25 microns. (C) The CXCR4 antagonist AMD
3100 redistributes U87 cells, decreasing the number of cells within the
nearest proximity to HBMECs and increasing the number of cells at
greater distance. * = p,0.05 as determined by two-way ANOVA. (D)
AMD 3100 increased the mean distance between U87 cells and HBMECs
but had no effect on the mean distance between U87 cells and HUVECs.
* = p,0.05 as determined by two-tailed t-test.
doi:10.1371/journal.pone.0033005.g005

Figure 6. The chemotactic and trophic effect of the peri-
endothelial space on primary GBMs is blocked by pharmaco-
logic or genetic inhibition of the CXCL12-CXCR4 pathway. (A)
The distance between GFAP positive GBM cells and mCherry fluorescent
protein-expressing HBMECs in co-culture was measured as in Figure 3.
Error bars represent SEM from three independent experiments
involving three different GBM isolates. Approximately 100 GBM (GFAP
positive) cells were counted in each condition. Nearly 80% of the GFAP
positive GBM cells in the culture were within 20 microns of an
endothelial cell. Treatment with AMD3100 resulted in a reduction in the
proportion of GBM cells in closest proximity to endothelial cells and an
increase in the proportion of cells at greater distances. P,0.005 by two-
way ANOVA. (B) Primary GBM cells co-cultured with HBMECs expressing
a scrambled shRNA (sh-RNA-sc) show increased growth after 72 hours
in culture, as measured by number of GFAP-positive tumor cells,
compared to growth on Matrigel alone. The trophic effect of HBMECs
on primary GBM cells is abrogated upon depletion of CXCL12
expression. N = 3, * = P,0.005 as determined by one-way ANOVA with
Dunnett’s post-test for multiple comparisons.
doi:10.1371/journal.pone.0033005.g006
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Matrigel (data not shown) suggesting that CXCL12 is not required

for this process in vitro. HBMECs infected with lentivirus encoding

scrambled shRNA induced a nearly twenty-fold increase in GBM

cell number compared to GBM mono-culture. Despite consistent

lattice formation, reduced expression of CXCL12 in HBMECs

completely abrogated the trophic effect of endothelial cells on

primary GBM cell growth (Figure 6B). Concordantly, culturing

of U87 GBM cells with HUVECs did not enhance tumor cell

growth (data not shown). Together, these data indicated that

endothelial cell-derived CXCL12 mediates a direct trophic effect

of endothelial cells on GBMs cells.

To determine whether CXCL12 effects were mediated by

CXCR4, we treated cultures with AMD3100 and measured tumor

cell growth by bioluminescence imaging. The trophic effect of

endothelial cells on primary GBM cells was inhibited by the

specific CXCR4 antagonist, AMD3100 (Figure S5A). Consistent

with prior studies in which AMD3100 and a second specific

CXCR4 antagonist AMD3465 only blocked CXCL12-induced

U87 cell growth [14,31], AMD3100 only inhibited primary GBM

cell growth when the GBM cells were co-cultured with HBMECs,

but not when they were in mono-culture. These data suggest that

endothelial cells generated CXCL12 is responsible for the CXCR4

mediated trophic effect on GBM cells. In accordance with this

conclusion, and consistent with published in vivo effects [14],

AMD3100 treatment increased GBM cell apoptosis as measured

by TUNEL staining (Figure S5B).

Recently, a second CXCL12 receptor, CXCR7, has been

reported to mediate survival effects in certain glioma cell lines

[34]. To determine whether CXCR7 mediates GBM cell survival

in response to endothelial cell-derived CXCL12 we evaluated

CXCR7 expression in U87-HBMEC co-cultures by immunohis-

tochemistry. Consistent with prior reports [48,49], HBMECs

demonstrated a membranous pattern of CXCR7 expression cells

(Figure S7A). In contrast, U87 cells exhibited little to no CXCR7

expression. To evaluate whether CXCR7 might also contribute to

the trophic effect of endothelial cells we compared the effects of

antagonizing both CXCL12 receptors CXCR4 and CXCR7 on

U87 cell growth. Inhibition of CXCR4 by AMD3100 completely

blocked HBMEC-induced enhanced growth. In contrast, the

effects of the selective CXCR7 antagonists CCX733 and CCX771

were indistinguishable from the inactive control compound

CCX704 (Figure S7B). Together these data suggest that in our

co-culture models, endothelial cell-derived CXCL12 exerts a

chemo-localization and a trophic effect on GBM cells through its

primary signaling receptor CXCR4.

Discussion

There is an urgent need to understand the biology of

microvascular endothelial cell-GBM interactions since they appear

to support tumor growth, spread and resistance to treatment

[6,7,16,39]. Practical experimental systems will be critical for

establishing the basic biology and for high throughput screening

for drugs capable of disrupting this interaction. The co-cultures

described here are a tractable and relevant experimental system, as

they recapitulate the chemo-localization and trophic effects of

human brain endothelial cells on primary GBM cells. This

simplified system is optimally suited for the detailed quantification

of tumor cell migration as well as the trophic effects resulting from

specific cell-cell interactions. In addition, uniform oxygenation in

the co-cultures allows experimental separation of the trophic

functions of endothelial cells away from their vascular functions

such as oxygenation. Further, the absence of vasculogenesis in the

co-cultures successfully isolates the contributions of CXCL12/

CXCR4 to growth regulation from their role in blood vessel

formation. The ability to distinguish between these functions will

be critical in interpreting and translating findings such as the

correlation between increased CXCL12 signaling and increased

vasculogenesis in an irradiated model of GBM xenografts [33].

Using the co-culture system, we identified CXCL12 as a

mediator of endothelial cell trophic functions. Similar to its effects

within germinal niches like the bone marrow [19,50,51,52] and

external granule cell layer of the developing cerebellum [22],

CXCL12 chemo-attracts brain tumor cells to the peri-endothelial

cell space and stimulates their growth within that domain. The

ability to target these endothelial cell functions could have

significant therapeutic implications. The peri-endothelial cell

space has been proposed to be a specialized brain tumor stem-

like cell niche [6,53] as well as a route for GBM invasion

[3,12,16,39]. While the existence of a distinct stem-like cell sub-

population in GBM is controversial [54], tumor-derived cells with

enhanced tumor-initiating activity have been repeatedly described

(reviewed in [55,56]. Among the properties of these specialized

cells appears to be enhanced resistance to radiation and

chemotherapy [7,9,57]. If resistance to radiation therapy and

chemotherapy are dependent upon localization to the peri-

endothelial cell space, then mobilization of brain tumor cells with

CXCR4 antagonists could be used in combination with radiation

or standard chemotherapy to greater effect. This mechanism could

in fact be the basis for the synergy observed between AMD3100

and BCNU in the treatment of intracranial U87 xenografts [58].

Similar observations were recently reported for acute myelogenous

leukemia in which antagonism of CXCL12 resulted in leukemic

blast mobilization from the bone marrow and enhanced anti-

leukemia effect of tyrosine kinase inhibitors [59]. The combination

of AMD3100 as a mobilizing agent for leukemic blasts and

standard chemotherapy with mitoxanthrone, etoposide and

cytarabine for the treatment of patients with relapsed or refractory

AML is currently being evaluated in clinical trials.

Further, it has been shown that CXCR4 mediates the

perivascular migration of GBM cells [16,39]. The finding that

tumor-associated endothelial cells express high levels of CXCL12

[13,14,39] supported the hypothesis that this characteristic feature

of GBM would involve CXCR4. The present findings advance this

hypothesis and provide additional rationale for pursuing CXCR4

antagonism in the treatment of GBM. Of particular importance

may be the combination of CXCR4 antagonism and anti-

angiogenic therapy. Anti-angiogenic therapy may decrease the

number of perivascular sites capable of supporting and protecting

brain tumor cells. Thus, combination therapy could provide both

a structural and functional disruption of the perivasclar niche.

In summary, primary GBM and HBMEC co-culture has

identified an important role for CXCL12 in cell-cell interactions

between GBM cells and endothelial cells. These data suggest that

endothelial cells have ‘‘extra-vascular’’ functions that can directly

drive tumor growth. Whether endothelial cell-derived molecules

like CXCL12 create a specialized niche in the perivascular space,

and how these molecules relate to the phenotype of stem-like cells

remains to be determined. What is clear is that targeting both

angiogenesis and endothelial cell function may represent a novel

and powerful approach in the treatment of malignant brain

tumors.

Supporting Information

Figure S1 Primary HBMECs Form Capillary-Like Net-
works in Matrigel. (A) Primary HBMECs grow as a monolayer

culture on uncoated coverslips (or plates) in endothelial cell growth
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media for 24 hours. Scale bar equals 50 mm. (B) HBMECs plated

at similar density to (A), 30 minutes after establishing a Matrigel

layer within the culture dish, become organized into a capillary-

like network. Scale bar equals 100 mm.

(TIF)

Figure S2 Localization of GBM cells to the Perivascular
space. (A) Algorithm for calculating random distribution of tumor

cells within HBMEC lattice. The lattice-work is assumed to

contain concentric circles whose fractional area is calculated as

shown. Fractional area is graphed as a function of distance from

endothelial cells (ECs) to determine how a random distribution of

tumor cells would appear. Red and gray bars on graph correspond

to red and gray donuts in cartoon. (B) A low magnification image

of an HBMEC lattice. (C) Tumor cells (green) localize to HBMEC

(red). (D) The distance between tumor cell nuclei and the nearest

endothelial cell body was measured using Axiovision software

(Zeiss).

(TIF)

Figure S3 Primary GBM cells make direct contacts with
HBMECs in vitro. (A) Twenty-four hours after establishing a

capillary-like network of mCherry-expressing HBMECs in Ma-

trigel, primary GBM cell isolates collected from three different

patients were added to the culture. 24 hours later, GFAP-positive

GBM cells were seen in physical contact with HBMECs. (B) A

GFAP positive GBM cell (green) extends a process to contact an

HBMEC (*). Also note the GFAP- negative GBM-derived cells,

identified by nuclear DAPI (blue) staining only, at a distance from

the mCherry expressing HBMEC cells. Scale bar = 50 mm in

panel A and 25 mm in panel D.

(TIF)

Figure S4 Manipulation of CXCL12 expression regu-
lates endothelial cell function. (A) The amount of CXCL12

secreted into the media by HUVECs (control or CXCL12 over-

expressing) and HBMECs (control or infected with CXCL12

shRNAs) were quantified using ELISA. CXCL12 over-expression

of HUVECs significantly increased the amount of chemokine

secreted to the media (*p,0.05, as determined by one-way

ANOVA and Newman-Keuls multiple comparison test). Super-

natant from HBMECs contained significantly higher amounts of

CXCL12 compared to HUVECs (#p,0.05, as determined by

one-way ANOVA and Newman-Keuls multiple comparison test).

CXCL12 knockdown reduced supernatant CXCL12 levels in

HBMECs. (B) U87 cells (expressing eGFP) preferentially coloca-

lize with CXCL12 over-expressing but not control (C) HUVECs

(expressing mCherry). Scale bar = 500 mm.

(TIF)

Figure S5 Primary HBMEC exert a trophic effect on
primary GBM cells that is blocked by AMD3100. (A) The

trophic effect of endothelial cells on luciferase-expressing U87 cells

was measured in four separate experiments by bioluminescence

imaging (BLI) of U87 luciferase activity after 3 days in co-culture.

In the absence of HBMECs, AMD3100 has no effect on total cell

number as measured by BLI. Co-culture with endothelial cells

results in a significant increase in BLI and this effect was blocked

by both AMD3100. P,0.05 as determined by one-way ANOVA

with Dunnett’s post-test for multiple comparisons. (B) Co-culture

with HBMEC in Matrigel (Mat) stimulates primary adult GBM

cell growth at 72 hours. The trophic effect is inhibited by

AMD3100 (AMD). Shown are the means and SEM of values

normalized from triplicate cultures involving a single primary

GBM isolate. ** = P,0.005 as determined by one-way ANOVA

with Dunnett’s post-test for multiple comparisons. Similar results

were obtained with two other primary GBM cell isolates. (C)

TUNEL assay in parallel primary GBM- endothelial cell co-

cultures as those described in (B) indicates that treatment with

AMD3100 increased GBM apoptosis (n = 3).

(TIF)

Figure S6 Lentiviruses encoding shRNA targeting
CXCL12 (shRNA-L12-1, 2) decrease CXCL12 mRNA
levels in primary HBMEC cells relative to HBMECs
infected with lentivirus encoding a scrambled control
shRNA (shRNA-sc). * = P,0.05 as determined by two-way

Student’s T-test, n = 3.

(TIF)

Figure S7 Trophic effects of endothelial cell-derived
CXCL12 are mediated through CXCR4. (A) CXCR7

expression in U87 GBM cells grown in co-culture with HBMECs

(top panels) or monoculture (bottom panels) was evaluated by

immunohistochemistry. IgG controls are shown on the left and

specific CXCR7 immunolocalization is on the right. U87 cells

express GFP and appear green. HBMECs exhibit a membranous

pattern of CXCR7 expression (arrow). In contrast, U87 cells

exhibit little or no CXCR7 expression. Scale bar = 50 mM. (B)

U87 cell growth was also measured in the presence of CXCR7

antagonists, CCX773 and CCX771, or the inactive control

compound CCX704. The effects of CCX733 and CCX771 were

indistinguishable from the control compound CCX704.

(TIF)
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