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ABSTRACT: HCV NS5A inhibitors are the backbone of directly acting antiviral treatments against the hepatitis C virus (HCV).
While these therapies are generally highly curative, they are less effective in some specific HCV patient populations. In the search for
broader-acting HCV NS5A inhibitors that address these needs, we explored conformational restrictions imposed by the [7,5]-
azabicyclic lactam moiety incorporated into daclatasvir (1) and related HCV NS5A inhibitors. Unexpectedly, compound 5 was
identified as a potent HCV genotype 1a and 1b inhibitor. Molecular modeling of 5 bound to HCV genotype 1a suggested that the
use of the conformationally restricted lactam moiety might have resulted in reorientation of its N-terminal carbamate to expose a
new interaction with the NS5A pocket located between amino acids P97 and Y93, which was not easily accessible to 1. The results
also suggest new chemistry directions that exploit the interactions with the P97−Y93 site toward new and potentially improved HCV
NS5A inhibitors.
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The hepatitis C virus (HCV) is a 9.6 kb positive-strand
RNA virus that can cause chronic liver disease, cirrhosis,

and hepatocellular carcinoma (primary liver cancer). The
World Health Organization estimated that at least 170 million
people worldwide were infected with HCV and that in 2016
about 400 000 people died from hepatocellular carcinoma.1

HCV is a blood-borne virus that is transmitted primarily
through unsafe injection practices, transfusion of unscreened
blood, and unsafe sexual contacts. The HCV genome contains
seven genotypes (1−7) and more than 90 subtypes and
encodes 10 proteins, some structural (core, E1 glycoprotein,
E2) and some nonstructural (p7, NS2, NS3, NS4A, NS4B,
NS5A, NS5B).2,3 The NS5A protein, which is active as a
homodimer, consists of three domains, of which domain 1 is
the most structured and essential for HCV genome
replication.4 The FDA-approved dual, triple, and quad
regimens combine NS5A inhibitors with other directly acting
agents (DAAs) and provide high levels of virologic cure in
most patients.5,6 However, these treatments are less effective in
patients with cirrhosis, in genotype 1a (gt1a) patients
undergoing interferon-free treatment, and in interferon non-

responders, thus arguing for the continued need to discover
improved pharmaceutical options for these populations.7−9

We previously reported the discovery of the clinical NS5A
inhibitor GSK2336805 (JNJ-5614845) and the conformation-
ally constrained NS5A inhibitor GSK2818713 (Figure 1).6,10,11

Conformational constraints can enhance potency and reduce
metabolic liability.10a,12 In a continued effort to explore this
approach toward discovery of improved HCV NS5A inhibitors,
we decided to incorporate the [7,5]-azabicyclic lactam motif as
a dipeptide mimetic into 1 and related compounds and
synthesized analogues 2−13 (Tables 1−3 and Schemes
1−3).12,13a−e,14
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With fixed position 3S, four sets of diastereomers were
produced to explore the effect of both R and S chirality at
positions 6 and 9a on the potency in the HCV replicon assay
(Figure 1 and Table 1). Compared with daclatasvir (1), the

potency of 2 (6S,9aS) decreased slightly against gt1b and
significantly (∼221-fold) against gt1a. A similar potency profile
was observed for 3 (6R,9aS), but isomer 4 (6R,9aR) regained
gt1a and gt1b potency compared with 2 (∼27-fold and ∼2-
fold, respectively). These gains were further enhanced in
inhibitor 5 (6S,9aR), which was essentially equipotent to 1
against gt1b and only ∼6 times less potent against gt1a. The
finding that 5 was a subnanomolar HCV inhibitor contrasted
with data published elsewhere after our work was completed,13f

which prompted us to disclose details of our discoveries.
Another interesting finding is that while R chirality at

position 9a is required for high gt1a potency, the chirality at

position 6 turned out to be much less consequential, which
contrasts with the well-established structure−activity relation-
ship (SAR) in the linear (1) series, where S chirality is required
(Table 1). Such divergent SARs can indicate a profound
conformational change in the bicyclic series (see Modeling
Studies).15

The lactam-imposed constraints were further evaluated on
the framework of two other NS5A inhibitors. GSK2236805
(gt1b EC50 = 0.011 nM and gt1a EC50 = 0.010 nM; Figure 1)
has a superior potency profile compared with 1 resulting from
interactions of the ketal moiety with NS5A.10a Compared with
GSK2236805, bicyclic inhibitors 6−9 exhibited slight potency
loss on gt1b and a significant one on gt1a (Table 2).10 Similar
to the SAR of 2−5, the 6R,9aR isomer (8) and the 6S,9aR
isomer (9) exhibited the best potency against HCV gt1a.
In another very potent series, where the carbamate moiety is

replaced with a tertiary amine,16 the SAR of resulting lactams
10−13 again mirrored the one observed for 2−5, with 13
(6S,9aR) being the most potent in this group (Table 3).11,16

The absolute potencies in this series were lower than for 2−9,
(e.g., 13 was 16-fold less potent than 5 against gt1a).

Figure 1. Conversion of 1 into bicyclic 5.

Table 1. SAR of Bicyclic Compounds 2−5

aAll values are averages of at least three independent experiments.

Table 2. SAR of Bicyclic Compounds 6−9

aAll values are averages of at least three independent experiments.
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Modeling Studies. To rationalize the impact of the
bicyclic constraints, we performed molecular modeling studies
of analogues. The published structures of NS5A genotypes 1a
(PDB ID 4CL1)17 and 1b (PDB ID 3FQQ)18 were used to
generate models of NS5A in two dimeric states, and their
interactions with 1 and 5 were modeled using the docking
software Glide.19−22 The generated low-energy poses, in which
5 had the expected higher (worse) docking score than 1 to
gt1a NS5A protein (−6.925 vs −7.737 kcal/mol, respectively),
were consistent with the experimental data. The most

significant difference between 1 and 5 docked to gt1a appears
to be the loss of favorable hydrophobic interactions between
the isopropyl of 1 and I52 of NS5A (Figure 2, bottom left of
each panel and inset). Another consequence of the new
conformational preference in 5 is reorientation of its methyl
carbamate group away from the typically utilized solvent-
exposed edge of P97 inward toward a hydrophobic cleft
located between P97 of one monomer and Y93 of the other.
This pocket is not easily accessible and thus is not utilized by
the low-energy conformers of 1 (Figure 2, inset). The
interaction of carbamate 5 with the new site is unoptimized,
and further chemical modifications of 5 should improve its
potency. For example, modeling showed that replacement of
the carbamate in 5 with phenyl, difluorophenyl, thiophene, and
pyrrole amides significantly increased the affinity of such
compounds, as shown by their lower (improved) docking
scores versus 1 (−8.434, −8.523, −8.166, and −7.989 vs
−7.737 kcal/mol, respectively), as a result of optimized
interactions of the aromatic groups with P97−Y93 (Supple-
mental Figure 1). On the other hand, modeling of the same
amides replacing the methyl carbamate in 1 indicated that they
were not able to interact strongly with the P97−Y93 pocket, as
reflected by their higher docking scores vs the same amides in
the bicyclic series (−7.024 vs −8.434, −6.883 vs −8.523,
−7.544 vs −8.166, and −7.567 vs −7.989 kcal/mol for the
phenyl, difluorophenyl, thiophene, and pyrrole amides,
respectively; Supplemental Table 1).

Syntheses. Syntheses of [7,5]-Fused Bicyclic Acids 30−33
and 44−47. The [7,5]-fused cis-bicyclic acids 30−33 were
synthesized from (S)-5-oxopyrrolidine-2-carboxylic acid 14
(Scheme 1a).23,24 Briefly, 14 was converted to its tert-butyl
ester 15 with tBuOAc and HClO4, after which the −NH group
was Cbz-protected and the amide was reduced with LiBHEt3
to yield alcohol 17 in 62% yield. 17 was then converted into
methoxy derivative (S)-18 with TsOH/MeOH. The requisite
cis-allyl intermediate (S,R)-19 was secured by allylation of (S)-

Table 3. SAR of Bicyclic Compounds 10−13

aAll values are averages of at least three independent experiments.

Figure 2. Model of compounds 1 and 5 bound to gt1a. Compounds 1 (magenta) and 5 (green) are modeled to bind at the dimeric interface of
gt1a (cartoons and stick, left; surface representation, right). The backbone cartoons are colored by chain. While the common substructures have the
same pose and make the same interactions (hydrogen bonds are represented as yellow dashes, aromatic hydrogen-bonding interactions as magenta
dashes, π−π interactions as cyan dashes, and cation−π interactions as green dashes), the bicyclic moiety is modeled to interact differently. The inset
features an alternate projection of the bicyclic ring to highlight the loss of interaction between the isopropyl group (darker magenta) and I52
modeled with compound 1 while showing that the bicyclic ring (dark green) constrains the methyl group of the carbamate of compound 5 into a
new orientation inward toward the P97−Y93 pocket.
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18 with allyltributylstannane/BF3·OEt2, and 9-BBN-mediated
hydroboration of the allyl moiety in (S,R)-19 and subsequent
oxidation furnished alcohol 20 in 81% yield. Oxidation of 20
using PCC afforded the key intermediate cis-aldehyde 21 in
80% yield, and subsequent Horner−Emmons olefination with
(±)-benzyloxycarbonyl-α-phosphonoglycine trimethyl ester
furnished 22 in 89% yield. Boc protection of the Cbz
carbamate and hydrolysis of 23 afforded acrylic acid 24.
Catalytic hydrogenation of 24 and cyclization of 25 gave a 1:1
mixture of diastereomers, which could be separated to yield the
desired pure bicyclic (S,R,S)-26 and (S,S,S)-27 (dr > 98%).24

Deprotection of 26 and 27 to obtain the respective amines 28
and 29 was then followed by their conversion to carbamates 30
and 32, whereas N,N-dimethyl-substituted 31 and 33 were
obtained by reductive alkylation of 28 and 29, respectively,
with formaldehyde. The overall yields for 30−33 were 0.12−

0.17% over 14 steps from 14. The trans-bicyclic acid
diastereomers 44−47 were synthesized in a similar fashion
(dr > 98%) (Scheme 1b).23,24 Key intermediate trans-(S,R)-34
was obtained by reacting (S)-18 with 4-bromobut-1-ene/Mg
and CuBr·Me2S, paving way for the syntheses of trans-bicyclic
(S,R,R)-44, (S,R,R)-45, (S,S,R)-46, and (S,S,R)-47 in overall
yields of 2.5−5.1% over nine steps from 18.

General Syntheses of Bicyclic Inhibitors 2−5. Inhibitors
2−5 were synthesized in 1.2−5.3% overall yield in eight steps
starting from 4810a by coupling of amine 54 with bicyclic acids
32, 30, 45, and 47 (Scheme 1) followed by imidazole
cyclization (Scheme 2) as described in our previous work.10a

Attempts to couple amine 54 with the bicyclic acids required
T3P as a coupling agent to secure 55a−55d, which were then
subjected to imidazole cyclization to yield targets 2−5.

Scheme 1. Syntheses of (a) [7,5]-Fused cis-Bicyclic Acids 30−33a and (b) [7,5]-Fused trans-Bicyclic Acids 44−47b

aReagents and conditions: (a) HClO4,
tBuOAc, rt, 12 h, 50%; (b) (i) NaH, THF, 0 °C, 1 h, (ii) Cbz-Cl, rt, 12 h, 50%; (c) LiBHEt3, THF, −78 °C,

1 h, 63%; (d) TsOH, MeOH, rt, 24 h, 52%; (e) allyltributylstannane, BF3·OEt2, −78 °C to rt, 3 h, 18%; (f) (i) 9-BBN, THF, rt, 12 h, (ii) H2O2, 3
N NaOH, rt, 2 h, 81%; (g) PCC, CH2Cl2, rt, 2 h, 80%; (h) (i) (±)-benzyloxycarbonyl-α-phosphonoglycine trimethyl ester, tBuOK, CH2Cl2, −78
°C, 30 min, (ii) 21, CH2Cl2, −78 °C, 4 h, rt, 12 h, 88%; (i) Boc2O, THF, DMAP, rt, 12 h, 90%; (j) 1 N NaOH, MeOH, rt, 12 h, 66%; (k) Pd/C,
MeOH, H2, rt, 4 h, quant.; (l) EDC, HOBt, Et3N, DMAP, CH2Cl2, rt, 12 h, 37−39%; (m) TFA, CH2Cl2, rt, 2 h, quant.; (n) methyl chloroformate,
dioxane, 1 N NaOH, rt, 12 h, 85−88%; (o) HCHO, 1 N HCl, Pd/C, MeOH, H2, rt, 12 h, 64%. bReagents and conditions: (a) (i) 4-bromobut-1-
ene, Mg, THF, reflux, 1.5 h, (ii) CuBr·Me2S, THF, −78 °C, 2.5 h, 55%; (b) NaIO4, THF, H2O, OsO4, rt, 2 h, 83%; (c) (i) (±)-benzyloxycarbonyl-
α-phosphonoglycine trimethyl ester, tBuOK, CH2Cl2, −78 °C, 30 min, (ii) aldehyde, CH2Cl2, −78 °C, 4 h, rt, 12 h, 86%; (d) Boc2O, THF, DMAP,
rt, 12 h, 87%; (e) 1 N NaOH, MeOH, rt, 12 h, 80%; (f) Pd/C, MeOH, H2, rt, 4 h, 93%; (g) EDC, HOBt, Et3N, DMAP, CH2Cl2, rt, 12 h, 23−25%;
(h) TFA, CH2Cl2, rt, 2 h, quant.; (i) methyl chloroformate, dioxane, 1 N NaOH, rt, 12 h, 43−54%; (j) HCHO, 1 N HCl, Pd/C, MeOH, H2, rt, 12
h, 60−80%.
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General Syntheses of Bicyclic Inhibitors 6−13. Com-
pounds 6−13 were synthesized analogously to 2−5 in overall
yields of 1.4−2.1% starting from 56 (Scheme 3).10a,11e

Coupling of intermediate 61 with sterically hindered bicyclic
acids (32, 30, 45, and 47) required elevated temperatures (50
°C) to furnish the desired amides 62a−h, and subsequent
imidazole cyclization secured 6−13.
In the search for improved HCV NS5A-based replication

inhibitors, we examined conformational restrictions imposed
by the [7,5]-azabicyclic lactam in the HCV NS5A inhibitor
series and unexpectedly found bicyclic 5 to be nearly
equipotent against HCV gt1b and only moderately less potent
(∼6×) against gt1a versus daclatasvir (1).13f Detailed
molecular modeling of NS5A gt1a-docked 5 allowed us to
postulate the binding mode for 5, in which the N-terminal
substituent in 5 is reoriented toward a new site located
between gt1a NS5A P97 and Y93 that is hard for 1 to access.
Furthermore, aromatic amides were modeled to develop strong
interactions with P97−Y93, suggesting facile ways to
potentially improve the inhibitory potency against HCV by
these analogues. Bicyclic rings of various sizes and substitutions
in conjunction with the postulated amides create a substantial
new chemistry space for further systematic explorations. It is
tempting to examine whether molecules in this space can

bridge the unmet medical needs of patients that are not well
served with current NS5A-based therapies, such as resistant or
hard-to-treat HCV infections.9 The results of our explorations
in this space will be communicated in due time.
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