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Abstract: The acrosome of the spermatozoa is required for fertilization and in the raw ejaculate
the percentage of viable acrosome-intact spermatozoa, the acrosomal status, is higher among men
with good semen quality. Here we investigated if the acrosomal status of the processed semen
preparations used at a fertility clinic can also be informative and whether it is associated with
fecundity. The acrosomal status was measured by image cytometry on purified semen samples from
couples during in vitro fertilization (IVF) (n = 99) and intracytoplasmic sperm injection (ICSI) (n = 107)
treatment. Purified frozen-thawed donor samples were also analyzed (n = 199). In purified semen
preparations the acrosomal status was significantly higher among sperm donors (p = 5.3 × 10−8)
and men from IVF couples (p = 2.2 × 10−5) when compared to men from ICSI couples. A significant
difference was also found between female, male and mixed factor infertility (p = 0.003). No association
with lifestyle factors was found. In frozen-thawed donor samples, a significant positive (r = 0.16,
p = 0.025) association with the number of pregnancies per sold straw was observed together with an
area under the curve of 75.3%, when comparing the top and bottom deciles. Our results indicate that
the acrosomal status may be a valuable parameter for personalizing fertility treatments and might be
a good predictor of pregnancy success among normozoospermic men.
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1. Introduction

The number of couples seeking help for infertility is increasing worldwide [1–3]. In 2018,
approximately 1 out of 10 Danish children was born after fertility treatment [4]. In approximately half
of the infertile couples, low semen quality seems to be a critical factor [5]. Consequently, evaluation of
semen quality is important in the clinical work-up of infertile couples and contributes to the clinical
decision tree for choosing the type of treatment, i.e., intrauterine insemination (IUI), in vitro fertilization
(IVF) or intracytoplasmic sperm injection (ICSI). IUI is the least invasive treatment and can be used if
the male partner presents with good semen quality. On the contrary, ICSI treatment is often the choice
when the semen quality is poor or if fertilization fails during IVF. For some couples, semen quality is,
however, too poor and donation of sperm is needed to obtain pregnancy. Thus, both the use of assisted
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reproduction and the demand for donor sperm have increased in the past decades [4,6]. However,
despite increased use of donor sperm and significant advances in assisted reproductive techniques
(ART), especially ICSI, many couples remain childless. The Danish fertility clinics reported in 2018
that only 22% of all ART treatments (IVF and ICSI) and 11.6% of the IUI treatments resulted in a live
birth [4].

Semen quality is usually evaluated manually by determination of classical semen parameters like
sperm concentration, morphology and motility [7]. However, the predictive value for fertility is limited
if the semen quality is not extremely affected [8]. Other factors, such as the integrity of the sperm DNA,
chemical and immunological factors in the seminal fluid, the ability to respond to stimuli in the female
tract and multiple unknown factors play a role in fertilization [9–11]. Only human spermatozoa with
an intact acrosome that are capable of undergoing acrosome reaction can penetrate the zona pellucida
and fertilize the oocyte [12]. Thus, an important parameter could be the ability of the spermatozoa to
undergo acrosomal exocytosis at the right time and place. Lectins like Pisum Sativum Agglutinin (PSA)
bind selectively to the acrosomal matrix and can be used to test for the presence of the acrosome [13,14].
Traditionally, assays to investigate the functionality of the acrosome involve quite laborious manual
procedures, and they have not been used in the clinic or in larger clinical studies. Recently, we have
developed an assay based on image cytometry, which allows automatization and easy determination
of the percentage of viable acrosome-intact spermatozoa in an ejaculate, an indicator of the acrosomal
status [15,16]. This assay exploits the advantage of PSA coupled to fluorescein isothiocyanate (FITC)
to flow via membrane pores into the acrosomal compartment of reacting acrosomes and to stabilize
the acrosomal matrix allowing easy detection of spermatozoa undergoing the acrosome reaction [17].
Addition of Propidium Iodide (PI) further allows discrimination between viable and non-viable
spermatozoa [15], whereby dead or dying spermatozoa with destabilized membranes can be masked.
Hence, when PI and PSA are used in combination, the percentage of viable acrosome-intact spermatozoa
- the acrosomal status - can be determined.

In the fertility clinic, semen samples are purified in order to obtain a fraction of concentrated,
high-quality spermatozoa free from round cells and seminal fluid. Spermatozoa with abnormal
morphology are, at least to some extent, excluded in the purified fraction [18,19]. The question remains
whether this purification also eliminates e.g. the observed difference in the acrosomal status in raw
ejaculates of men from couples in IVF and ICSI treatment [15].

The objective of this study was to investigate the acrosomal status of the spermatozoa directly
used in fertility treatment, i.e., density gradient purified semen preparations from infertile couples
and purified-frozen-thawed preparations from sperm donors. We aim to test if differences in
the acrosomal status exist between men from couples in IVF and ICSI treatment and between men
from couples with different causes of infertility. We further aimed to test whether the acrosomal status
could be associated with lifestyle factors of the infertile couples and fecundity among semen donors.

2. Experimental Section

2.1. Study Population

To investigate the acrosomal status among infertile couples a total of 240 HIV- and hepatitis-negative
semen samples from infertile couples in fertility treatment were obtained on a random basis over a
period of 1.5 years. Only samples with a surplus of spermatozoa after treatment could be included.
Thirty-four semen samples were excluded for quality reasons (too few cells, see below). The remaining
semen samples were from couples treated with IVF (n = 99) and ICSI (n = 107). At the Fertility Clinic,
Rigshospitalet, couples were assigned to IVF or ICSI based on standardized criteria, i.e., couples with
no tubal factor infertility and with a minimum of two million progressive motile spermatozoa after
purification are referred to IUI; in cases of tubal factor infertility, or one or more failed IUI cycles, couples
are referred to IVF. Couples with <two million progressive motile spermatozoa after purification or
one or more failed IVF cycles are referred to ICSI [20]. Cycle information including treatment type,
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treatment number, semen analysis, aspirated oocytes, fertilization and pregnancy details was extracted
on a per-cycle-basis from the national clinical database: DMDC Journal (Dansk Medicinsk Datacenter
ApS). Furthermore, information on the consumption of alcohol, smoking, body mass index (BMI),
and infertility diagnosis was extracted for both partners.

To investigate the acrosomal status among semen donors, 209 frozen-thawed and randomly
selected samples from 146 sperm donors from the European Sperm Bank were included. Data regarding
sold straws, the number of reported pregnancies, BMI and age were obtained from the European
Sperm Bank databases. The number of reported pregnancies per sold straw was used as a measure
of fecundity. Only data on the number of pregnancies and the number of straws sold per donor
was available and no information was available about the kind of treatment and the women being
treated. To eliminate bias driven by single female factors, a lower cut off of 25 sold straws per donor
was chosen because this assumed that the donor had been used in the treatment of more than three
different women. Ten acrosomal status measurements were excluded due to fewer than 25 sold straws.
The remaining 199 donor semen samples were from 138 unique donors. As freezing and thawing affect
the viability of spermatozoa and, hence, the acrosomal status, 48 randomly selected density gradient
purified samples from donors also had acrosomal status measured before freezing to allow the direct
comparison of acrosomal status between sperm donors and samples from men from infertile couples.

To investigate the variation of acrosomal status over time, a subset of donors (n = 8) had
the acrosomal status of the raw samples measured repetitively (range: 3–24 times) over a period of
11 months.

2.2. Collection and Processing of Semen Samples

Semen samples were produced by masturbation and ejaculated into clean, wide-mouthed plastic
containers after at least 48 h of abstinence. Samples from men from infertile couples were produced
at home and delivered within 2 h after ejaculation at the fertility clinic in the morning of the day in
which oocyte aspiration for the partner was planned. Samples from sperm donors were produced at
the European Sperm Bank. The raw samples were evaluated according to WHO criteria for ejaculate
volume, sperm concentration and progressive motility by standard procedures at both locations.
Evaluations were performed in duplicates. Semen samples from men from infertile couples were
purified by density gradient centrifugation (PureCeption, SAGE Media, Trumbull, CT, USA), washed in
Quinn’s Sperm Washing Medium (CooperSurgical, Maaloev, Denmark) three times (350× g) and diluted
to 3 mill/mL progressive motile spermatozoa for IVF treatment and 1 mill/mL progressive motile
spermatozoa for ICSI treatment. After completed IVF or ICSI procedures, the remaining processed
samples were collected and acrosomal status measured (see below). Semen samples from sperm donors
were processed by density gradient centrifugation (Sil-Select, FertiPro, Beernem, Belgium) and washed
in FertiCult Flush (FertiPro, Beernem, Belgium). After processing the samples were diluted in freeze
medium (SpermFreeze SSP, FertiPro, Beernem, Belgium) and analyzed before cryopreservation. After
freezing, a control was thawed and the number of progressively motile spermatozoa cells per milliliter
was counted before the acrosomal status was measured (see below).

2.3. Measurement of Acrosomal Status

The assay for the acrosomal status (the percentage of viable acrosome-intact spermatozoa) is
described in detail elsewhere [15,16]. A few modifications to the published protocol were made.
In brief, the purified semen samples were washed twice in Dulbecco’s phosphate-buffered saline (PBS,
ThermoFisher Scientific, Roskilde, Denmark) (700× g, 10 min). The spermatozoa pellet was resuspended
in a staining solution containing (final concentrations): 5 µg/mL fluorescein isothiocyanate conjugated
Pisum sativum agglutinin (FITC-PSA, Sigma-Aldrich, Soeborg, Denmark), 0.5 µg/mL propidium iodide
(PI, ChemoMetec A/S, Alleroed, Denmark), and 10µg/mL Hoechst-33342 (H342, ChemoMetec, Alleroed,
Denmark) in PBS and incubated for 30 min at 37 ◦C. A thorough mix was made by pipetting, a 50 µL
aliquot was drawn and spermatozoa were immobilized with 100 µL of a solution containing 0.37%
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(v/v) formaldehyde and 0.6 M NaHCO3 in distilled water. The immobilized sample was immediately
loaded in an A2TM NC-Slide (ChemoMetec, Alleroed, Denmark) and assessed by image cytometry
using NucleoCounter® NC-3000TM (ChemoMetec, Alleroed, Denmark). Gates were established
that separated viable acrosome-intact (PSA-, PI-), viable acrosome-reacted (PSA+, PI-), and dead
spermatozoa (PSA+/-, PI+) based on PSA- and PI-intensity. H342-staining was used to mask objects
containing DNA (cells) in the image segmentation. At least 5000 objects or 20 images were analysed
per sample. Further details are available in [15,16].

For quality reasons, purified semen samples with a low number of spermatozoa were excluded
(n = 34, all men from infertile couples). These samples had less than 1500 objects included in the major
cell population, which normally appears when analyzing H342 stained sperm cells, on a plot of H342
intensity and H342 area.

The total number of progressive motile spermatozoa with intact acrosomes (TMAI) was calculated
by multiplying the acrosomal status with the total number of progressive motile spermatozoa, assuming
that only a fraction of the progressive motile spermatozoa has an intact acrosome.

2.4. Statistical Analysis

Results were analyzed with the statistical software R, version 3.5.2 (http://cran.r-project.org/).
A non-parametric Wilcoxon rank-sum test was used for pairwise comparison of groups and a
non-parametric Kruskal-Wallis test was used to test differences when more than two groups were
compared. The acrosomal status is not normally distributed [15] and hence we report medians rather
than means.

The average deviation from the individual mean across all donors was calculated by subtracting
each measurement from the mean of all measurements per donor and taking the average of all donors.
The coefficient of variation was calculated as the standard deviation divided by the mean.

A Pearson’s correlation was applied to analyze the association between frozen-thawed donor
sperm samples and pregnancies per sold straw.

The R package pROC [21] was used for the analysis of receiver operating characteristics (ROC).
For analysis of the number of IVF cycles, the data were dichotomized into groups of whether only one
cycle of IVF was performed or whether two or more cycles were performed and only measurements with
more than 20% viable acrosome-intact spermatozoa were considered. For ROC analysis of pregnancies
per sold straw, the data were dichotomized into groups representing the top and bottom decile.
A paired ‘roc.test’ using the “delong” method was used to test for differences between ROC curves.

In general, a p-value of 0.05 was considered significant. Box Plots depict the median and interquartile
ranges, and the whiskers mark 1.5× the interquartile range.

2.5. Ethical Approval

Use of semen from men from infertile couples was approved by the Danish Data Protection
Agency (j.no.: 2012-58- 0004) and The National Committee on Health Research Ethics (H-16036581).
All sperm donors have given their written consent that their samples can be used for research in
accordance with Danish law (LBK 902 23/08/2019 §25).

3. Results

3.1. Comparison between Sperm Donors, IVF and ICSI Couples

Table 1 outlines the study populations, their lifestyle factors, standard semen quality parameters,
and the acrosomal status in purified semen samples from men in couples undergoing IVF treatment,
ICSI treatment and from donors. The fresh purified donor samples had a higher median acrosomal
status (58.8%) compared to men from couples in IVF (52.5%) and ICSI (43.7%) treatment (Figure 1A,
p = 3.1 × 10−8). The difference was highly significant between donors and men from ICSI couples
(p = 5.3 × 10−8) and between men from couples in IVF and ICSI treatment (p = 2.2 × 10−5). This was

http://cran.r-project.org/
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also significant for the total number of progressive motile spermatozoa with intact acrosomes (TMAI)
(Figure 1B).

Table 1. Study populations.

Group IVF ICSI Sperm Donors p-Value

Samples/men 99/99 107/107 199/138
Fresh purified samples 99 107 48
Frozen-thawed samples - - 199

Cycle number 1.0 (1–6) 2.0 (1–6) Unknown 1.3 × 10−5

Infertility cause

Male Factor 10 49 -
Female Factor 62 30 -
Mixed factor 26 27 -

Unknown 1 1 -
Lifestyle factors

Uxor age (years) 33.0 (22–43) 33.0 (24–43) Unknown 0.492
Vir age (years) 34.0 (23–58) 35.0 (27–57) 26.0 (18–41) *** 0.541

Uxor BMI 22.5 (17.4–34.4)
n = 82

22.8 (17.3–33.6)
n = 87 Unknown 0.552

Uxor alcohol
(units per week)

0.0 (0.0–6.0)
n = 75

1.0 (0.0–8.0)
n = 82 Unknown 0.006

Uxor smoking
(cigarettes per day)

0.0 (0.0–10.0)
n = 77

0.0 (0.0–15.0)
n = 82 Unknown 0.501

Vir BMI 23.8 (22.0–29.0)
n = 8

25.7 (22.2–35.2)
n = 18 23.8 (18.0–37.9) * 0.317

Vir alcohol
(units per week)

1.0 (0.0–14.0)
n = 33

4.5 (0.0–21.0)
n = 44 Unknown 0.006

Vir smoking
(cigarettes per day)

0.0 (0.0–15.0)
n = 37

0.0 (0.0–17.0)
n = 45 Unknown 0.041

Semen samples

Ejaculate volume (mL) 3.0 (0.5–7.5) 3.0 (0.5–7.0) 3.5 (0.7–10.2) *** 0.500

Spermatozoa concentration (mill/mL) 67.0 (10.0–250.0) 15.0 (0.1–118.0)
n = 106

104.9 (30.6–539.1) ***
n = 154 <2.2 × 10−16

Progressive motile spermatozoa (mill/mL) 40.0 (4.0–150.0)
n = 98 5.0 (0.0–50.0) 56.8 (11.3–305.6) ***

n = 154 <2.2 × 10−16

Percentage viable acrosome-intact after
processing (%) 52.5 (1.6–87.5) 43.7 (2.0–76.5) 58.8 (36.0–79.0) ***

n = 48 2.2 × 10−5

Note: Data are presented as median (range) and n = number of data points if different from number indicated
in the top row. The p-values indicated in the right column compare IVF and ICSI couples with a non-parametric
Wilcoxon rank-sum test. All three groups are compared with a non-parametric Kruskal-Wallis test as indicated by
an asterisk next to donor data: * p ≤ 0.05 and *** p ≤ 0.001.
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= 48; IVF (red): n = 99; ICSI (green): n = 107). The boxplots depict the median and interquartile ranges, 
and the whiskers mark 1.5x the interquartile range. 

ROC curve analysis of acrosomal status with respect to the number of IVF cycles (first vs. second 
or more cycles) showed a median specificity of 55% and sensitivity of 76% at a threshold of 61% viable 
acrosome-intact spermatozoa. The area under the curve (AUC) was 65% for viable acrosome-intact, 
compared to 48% for progressive motile spermatozoa (non-significant; Supplementary Figure S1). 

3.2. Association with the Primary Cause of Infertility 

The median acrosomal status of men in couples with primary female infertility was higher 
(51.1%) than for men in couples with mixed (44.0%) and male (44.0%) causes (Figure 2A, p = 0.003). 
The difference was significant between men from couples with female and mixed causes (p = 0.012) 
and between female and male causes (p = 0.0021). A similar difference was observed when TMAI was 
analyzed (Figure 2B). The statistically significant difference between IVF and ICSI couples (Figure 1) 
was lost when couples with male or female factors were analyzed alone but remained significant (p 
= 0.0022) for couples with mixed factor infertility.  

In addition, we observed a significant difference between IVF and ICSI men with a female 
partner below 35 years of age (p = 2.0 × 10−5), but this became non-significant for men with partners 
above 35 years of age (p = 0.12; Figure 2C,D). There was no significant difference between the couples 
with female age above or below 35 with regards to the primary cause of infertility but, as expected, a 
difference in the male partners median age was observed (32 versus 39 years). There was no 
significant difference in the male age between the IVF and ICSI groups for the couples with a female 
age below 35 years. 

Figure 1. Acrosomal status of sperm donors and couples in in vitro fertilization (IVF) or intracytoplasmic
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sperm injection (ICSI) treatment. (A) Percentage of viable acrosome-intact spermatozoa in fresh
purified semen samples, and (B) total number of progressive motile spermatozoa with intact acrosomes
(TMAI) in fresh purified semen samples (sperm donors (blue): n = 48; IVF (red): n = 99; ICSI (green):
n = 107). The boxplots depict the median and interquartile ranges, and the whiskers mark 1.5×
the interquartile range.

ROC curve analysis of acrosomal status with respect to the number of IVF cycles (first vs. second
or more cycles) showed a median specificity of 55% and sensitivity of 76% at a threshold of 61% viable
acrosome-intact spermatozoa. The area under the curve (AUC) was 65% for viable acrosome-intact,
compared to 48% for progressive motile spermatozoa (non-significant; Supplementary Figure S1).

3.2. Association with the Primary Cause of Infertility

The median acrosomal status of men in couples with primary female infertility was higher
(51.1%) than for men in couples with mixed (44.0%) and male (44.0%) causes (Figure 2A, p = 0.003).
The difference was significant between men from couples with female and mixed causes (p = 0.012)
and between female and male causes (p = 0.0021). A similar difference was observed when TMAI was
analyzed (Figure 2B). The statistically significant difference between IVF and ICSI couples (Figure 1)
was lost when couples with male or female factors were analyzed alone but remained significant
(p = 0.0022) for couples with mixed factor infertility.
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Figure 2. Acrosomal status in relation to the primary cause of infertility and female age. Couples going
through fertility treatment were grouped into female, male or mixed causes of infertility. (A) Percentage
of viable acrosome-intact spermatozoa in fresh purified semen samples versus the primary cause of
infertility. (B) The total number of progressive motile spermatozoa with intact acrosomes (TMAI)
in fresh purified semen samples versus the primary cause of infertility (female causes (blue) n = 92,
mixed causes (red) n = 53, male causes (green) n = 59). Percentage of viable acrosome-intact spermatozoa
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in fresh purified semen samples versus (C) the type of fertility treatment for couples with women
<35 years of age (IVF (blue): n = 61; ICSI (red) n = 66) and (D) the type of fertility treatment for couples
with women ≥35 years of age (IVF (blue) n = 38, ICSI (red) n = 41). The boxplots depict the median
and interquartile ranges, and the whiskers mark 1.5× the interquartile range.

In addition, we observed a significant difference between IVF and ICSI men with a female partner
below 35 years of age (p = 2.0 × 10−5), but this became non-significant for men with partners above
35 years of age (p = 0.12; Figure 2C,D). There was no significant difference between the couples
with female age above or below 35 with regards to the primary cause of infertility but, as expected,
a difference in the male partners median age was observed (32 versus 39 years). There was no significant
difference in the male age between the IVF and ICSI groups for the couples with a female age below
35 years.

3.3. The Influence of Lifestyle and Intra-Individual Variation

We did not observe an association with any lifestyle parameters and acrosomal status. The age
of the male partner showed a negative but non-significant correlation to the acrosomal status
(Supplementary Figure S2). Further, measurements of individual levels of acrosomal status over
time showed a mean individual variation of 44% (range: 5–87%; Figure 3A). The average deviation
from the individual mean across all donors was 0.0% (median: 1.18% and range: −41–22%) with an
interquartile range of −4.6% to 5.5% (Figure 3B) and a mean coefficient of variation (variation relative
to the mean) of 8.5% (range: 2.9–13.5%).
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Figure 3. Intra-individual variation of acrosomal status in raw ejaculates of donors analyzed over time
(A) Acrosomal status in repeated samples over time from eight donors (indicated by eight different
colors). (B) The intra-individual variation is shown as a deviation (%) from the mean for each donor
(depicted by the same colors). The boxplots depict the median and interquartile ranges, and the whiskers
mark 1.5× the interquartile range. The average interquartile range of % deviation for all donors (−4.6%
to 5.5%) is marked by dashed lines.

3.4. Association with Fecundity

We observed a positive significant correlation between the number of pregnancies per sold straw
(fecundity) and the concentration of progressive motile sperm (r = 0.18, p = 0.013, Figure 4A) as well as
the percentage of viable acrosome-intact spermatozoa (r = 0.16, p = 0.025, Figure 4B). The correlation
was also significant for the total number of progressive motile spermatozoa with intact acrosomes
(r = 0.23, p = 0.0011, Figure 4C).
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Figure 4. Correlations between frozen-thawed donor sperm samples (n = 199) and the number of
pregnancies per sold straw: (A) concentration of progressive motile spermatozoa, (B) percentage of
viable acrosome-intact spermatozoa and (C) the total number of progressive motile spermatozoa with
intact acrosomes (TMAI). The blue line is the best-fitted regression line with 95% confidence intervals in
grey and the Pearson correlation coefficient (R) and p-value (p) are indicated in each plot. (D) ROC curve
analysis of pregnancies per sold straw (top decile pregnancies per sold straw vs. the bottom decile) versus
acrosomal status (red line) and progressive motile spermatozoa (blue line) of frozen-thawed samples.
The p-value indicates the difference between the receiver operating characteristics (ROC) curves.

ROC curve analysis of the acrosomal status of frozen-thawed samples with respect to pregnancies
per sold straw (top decile vs. the bottom decile) showed two optimal thresholds with a median
specificity of 81/76% and sensitivity of 71/76% at a threshold of 24% viable acrosome-intact spermatozoa.
The AUC was 75% for viable acrosome-intact, compared to 55% for progressive motile spermatozoa
(the difference between the ROC curves was nearly significant p = 0.054; Figure 4D).

4. Discussion

This study shows a significant difference in the acrosomal status of samples from men in couples
treated by IVF and ICSI even after density gradient purification of the spermatozoa. Our results
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indicate that the percentage of viable acrosome-intact spermatozoa may be an important parameter
when selecting the most appropriate kind of fertility treatment.

Our study adds information to our previous study [15] on the acrosomal status of raw ejaculates.
In raw ejaculates we earlier found that the acrosomal status was lowest in men later undergoing ICSI
compared to IUI [15]. In the present study, the semen samples were the purified samples that were
used on the same day for either IVF or ICSI treatment. The density gradient purification discards
spermatozoa with poor morphology and non-viable spermatozoa [18], which could affect the observed
association in the previous study. However, despite the purification, we still observed that the samples
used for ICSI treatment had a significantly lower acrosomal status compared to all other groups
investigated. Thus, the purification does not appear to affect the relative distribution of spermatozoa
with or without an intact acrosome. We did not observe a significant difference among purified
samples from sperm donors and couples in IVF treatment. However, this was somewhat expected as
couples mainly are referred to IVF due to female factor infertility and thus this group also includes
normozoospermic men. Our study included a reasonable number of IVF and ICSI couples but using
even larger cohorts could have increased the power of the associations and decreased the influence
of confounding factors. The acrosomal status may be less important for ICSI treatments as zona
pellucida penetration and membrane fusion are bypassed, but important for IUI/IVF. Especially,
couples with no clear male or female factor infertility and several failed IUI/IVF attempts could benefit
from early measurement of acrosomal status that could direct these couples to ICSI and in this way
advise the physicians at fertility clinics in the choice of optimal treatment of a couple as an add-on to
the classical semen parameters.

However, also among sperm donors with good semen quality, we found an association of
acrosomal status with the rate of pregnancies per sold straw, indicating that the acrosomal status
is important for fecundity. Among sperm donors, both the total number of progressively motile
spermatozoa, the acrosomal status and the combination of both (TMAI) showed a significant association
with the reported rate of pregnancies per sold straw. ROC curve analysis revealed that acrosomal
status is better than the total number of progressive motile spermatozoa in discriminating between
the probability of a high number of pregnancies per sold straw compared to a low number. This is in
line with other studies that have found that the total number of progressive motile spermatozoa is not a
good predictor of donor IUI success [22–24]. It can be discussed whether the translation of the number
of pregnancies per sold straw into overall fecundity is applicable. Nevertheless, the measurement of
acrosomal status may be a relevant future tool for donor choice to optimize treatment success among
women requesting sperm donation. However, additional studies are needed to specifically address
the added predictive value of the acrosomal status and/or TMAI compared to the currently accepted
measure, i.e., the total number of progressively motile spermatozoa.

Earlier studies on the importance of the acrosome are mainly related to the acrosomal
responsiveness, i.e., the ability of the acrosome to react to stimuli, such as an ionophore or progesterone,
and release its content by exocytosis [25–28]. Acrosomal responsiveness is, however, a different matter
of concern as it only relates to the proportion of spermatozoa that still retain an intact acrosome.
Assessment of acrosomal responsiveness is a time-consuming procedure due to both purification
and capacitation steps and therefore not possible to perform in the routine semen laboratory nor
in fertility clinics. Furthermore, the acrosome responsiveness has mainly been assessed either by
microscopy [7,29,30] or flow cytometry [17,31,32]. The first procedure is laborious and subjective,
and the latter procedure depends on the availability of advanced equipment and highly skilled
technicians. In contrast, the image cytometer, as applied in the present study, is easy to use because
the samples are analyzed in a closed and virtually maintenance free system and requires limited
training [15].

It is known that chemicals in our environment, like UV-filters, can induce acrosomal exocytosis [25,26].
Such a mode of action may contribute (via the male partner) to the observed decline in fertility which has
been described in many countries. Our study population was probably too small to adequately address
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the question of whether or not lifestyle factors, such as BMI, alcohol and smoking may also have an
influence on acrosomal status. Male age has been found to have an effect on some of the classical sperm
parameters and sperm DNA fragmentation [27–29]; however, we were not able to show a significant
correlation between acrosomal status and the age of the male partner, which again may be due to the size
of study population. The age of the female partner has a significant impact on the chances of pregnancy
and also on the type of fertility treatment chosen [30,31]. Our study showed a difference in acrosomal
status between couples in IVF and ICSI treatment when isolating couples in which the female partner
was below 35 years of age. This difference was not found for couples in which the female partner was
above 35 of age. Other studies have suggested an increased capacity of female oocytes <35 years of age
which may compensate for reduced semen quality [32]. Our data is likely to reflect that the treatment
choice for infertile women above 35 years of age is more often ICSI than IVF, irrespective of the semen
quality of the male partner. However, for the couples in which the female partners were below 35 years of
age measurement of acrosomal status may also be an informative parameter in the choice of treatment,
potentially avoiding failed IVF attempts and creating an option to further individualize the treatment.

The acrosomal status is likely to be dynamic but repeated measurements over time, somewhat
surprisingly, showed a relatively small coefficient of variation indicating a small intra-individual
variation. A small intra-individual variation may offer the opportunity to perform the assessment of
acrosomal status in the clinical workup of the male partner prior to the day of treatment, where time
is limited. In contrast, a small intra-individual variation also implies that there may be limited
room for intervention, e.g., to change lifestyle or environmental parameters that negatively influence
the acrosomal status. We did nevertheless observe single outlier measurements from several of
the donors and a limitation of our study was that repeated analysis was only performed on eight
donors. Repeated measurements on more individuals and linkage to changes in lifestyle are needed
to establish if associations exist between lifestyle and the acrosomal status, as observed for some of
the classical sperm parameters and sperm DNA fragmentation [33–36].

In conclusion, we observed a statistically significant difference between the acrosomal status of
purified semen samples from sperm donors and men from couples in IVF and ICSI treatment as well
as between the primary cause of infertility. The individual acrosomal status was relatively stable over
time and was associated with fecundity among sperm donors. The acrosomal status could maybe
help to give a better picture of male fertility if measured in combination with already established
measures. Larger cohorts are needed to validate potential associations of the acrosomal status with
lifestyle and environmental factors.
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