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Resting-state
electroencephalographic
correlates of cognitive reserve:
Moderating the age-related
worsening in cognitive function
Ana Buján*, Adriana Sampaio and Diego Pinal

Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School
of Psychology, University of Minho, Braga, Portugal

This exploratory study aimed to investigate the resting-state

electroencephalographic (rsEEG) correlates of the cognitive reserve from

a life span perspective. Current source density (CSD) and lagged-linear

connectivity (LLC) measures were assessed to this aim. We firstly explored the

relationship between rsEEG measures for the different frequency bands and

a socio-behavioral proxy of cognitive reserve, the Cognitive Reserve Index

(CRI). Secondly, we applied moderation analyses to assess whether any of

the correlated rsEEG measures showed a moderating role in the relationship

between age and cognitive function. Moderate negative correlations were

found between the CRI and occipital CSD of delta and beta 2. Moreover,

inter- and intrahemispheric LLC measures were correlated with the CRI,

showing a negative association with delta and positive associations with

alpha 1, beta 1, and beta 2. Among those correlated measures, just two rsEEG

variables were significant moderators of the relationship between age and

cognition: occipital delta CSD and right hemispheric beta 2 LLC between

occipital and limbic regions. The effect of age on cognitive performance

was stronger for higher values of both measures. Therefore, lower values of

occipital delta CSD and lower beta 2 LLC between right occipital and limbic

regions might protect or compensate for the effects of age on cognition.

Results of this exploratory study might be helpful to allocate more preventive

efforts to curb the progression of cognitive decline in adults with less CR,

possibly characterized by these rsEEG parameters at a neural level. However,

given the exploratory nature of this study, more conclusive work on these

rsEEG measures is needed to firmly establish their role in the cognition–

age relationship, for example, verifying if these measures moderate the

relationship between brain structure and cognition.
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Introduction

An aging population is rapidly increasing. In Europe, people
aged 65 or over constituted 20.8% of the total population
in 2021 (Eurostat, 2022). Although this increase in life
expectancy is a priori a positive fact, age is the primary
risk factor for developing a neurodegenerative disease and its
associated cognitive impairment (Hou et al., 2019). In 2018,
50 million people were diagnosed with dementia worldwide
(Patterson, 2018). Research into factors that can protect against
cognitive impairment and its progression plays a crucial role in
maintaining the quality of life and preventing dependence in
older adults.

Different neuroprotective mechanisms have been proved to
moderate the relationship between age and cognitive status.
Indeed, for the last twenty years, much has been studied about
the neural mechanisms of resilience to cognitive impairment
in the aging brain, mainly in the context of neurocognitive
syndromes such as Alzheimer’s disease (AD). Investigation of
cognitively healthy older adults is also a fruitful avenue to
provide information about the neural resilience mechanisms
able to curb the onset or the progression of cognitive deficits as
shown by the works of the Cambridge Centre for Ageing and
Neuroscience (Cam-CAN) group (Chan et al., 2018; Borgeest
et al., 2020). However, such studies on healthy aging are
still scarce (see Bartrés-Faz and Arenaza-Urquijo, 2011, for a
review). In this frame, resilience has been defined as a better-
than-expected cognitive performance relative to the degree of
pathology in a given individual; so, a way to cope with the effect
of pathology on cognition (Arenaza-Urquijo and Vemuri, 2020).
Resilience is a general term to refer to different neuroprotective
mechanisms, including various reserve-related processes such
as cognitive reserve, brain reserve, brain maintenance, or
compensation (Stern et al., 2020). Among them, the most
investigated entity has been cognitive reserve (CR), referring to
an active process indexing the flexibility of cognitive and neural
processes that helps to explain the differential vulnerability
of cognitive function to age-related changes and/or to brain
pathology (Barulli and Stern, 2013; Stern et al., 2020).

Quantifying CR is a matter of constant reviews and
developments as it is challenging to assess it directly. Most
measures are derived from socio-behavioral indexes used
as indirect proxies, such as educational or occupational
attainment, intelligence, leisure activities, and other lifetime
experiences (Stern, 2002; Lojo-Seoane et al., 2014). Also,
composite measures including different proxies of CR have been
used to indirectly measure reserve (Nucci et al., 2012). However,
all these measures do not tackle the whole variability behind
CR (Marqués et al., 2016). Therefore, an effort to unravel the
neural correlates underlying CR has been the target of several
studies. In this context, CR is proposed to be supported by
more adaptable functional brain processes that constitute a more
direct and objective measure of CR than the socio-behavioral
indexes mentioned above (Steffener and Stern, 2012).

In this vein, brain imaging techniques, both structural
(magnetic resonance imaging - MRI) and functional [functional
MRI (fMRI) and positron emission tomography (PET)], have
been used to investigate the potential neural correlates of CR
along the age-related cognitive continuum. Structural MRI
has been mainly employed to search for anatomical correlates
of brain reserve, considered the more genetic and passive
component of such reserve (i.e., brain volume, number of
neurons, and synapses. . . see Bartrés-Faz and Arenaza-Urquijo,
2011 for a review; Arenaza-Urquijo et al., 2013). An interesting
approach from structural MRI is the development of residual
measures of CR that have led to significant contributions in
the field (Reed et al., 2010; Zahodne et al., 2013, 2015; Habeck
et al., 2017; Lee et al., 2019). Regarding fMRI and PET, both are
valuable tools for looking for functional correlates of cognitive
reserve, i.e., brain networks. In general, these investigations have
shown an inverse association between regional blood flow in
fMRI and reserve measurements in healthy older adults during
cognitive tasks, demonstrating increased neural efficiency in
individuals with higher CR (Bartrés-Faz and Arenaza-Urquijo,
2011).

Resting-state fMRI is particularly useful when studying
older adults since it avoids demanding tasks that may be
confounded by potential cognitive or motor deficits (Hausman
et al., 2020). Generic resting-state networks have been proposed
as a promising measure of brain flexibility and CR, mainly
through the study of the functional connectivity (FC) within
and between brain networks (Bastin et al., 2012; Wook Yoo
et al., 2015; Lindbergh et al., 2019). Further, this is considered
as a more accurate approach than studying specific networks
for a given task, providing that activated networks may be too
specific and dependent on the precise brain regions involved
in the task (Stern et al., 2020). Older age has been associated
with weaker FC within brain networks compared to FC patterns
in younger adults but with stronger functional connections
between networks (Grady et al., 2016). Arenaza-Urquijo et al.
(2013) found that education, as a proxy of CR, had a positive
association with the FC between brain areas such as the anterior
cingulate cortex and the hippocampus as well as the inferior
frontal lobe, posterior cingulate cortex, and angular gyrus. As
a common result, the FC between brain networks is increased
for high CR participants both in healthy adults and adults with
cognitive impairment (see Anthony and Lin, 2018 for a review).

Alternatively, neurophysiological measures through
electroencephalography (EEG) and magnetoencephalography
(MEG) have proven to be a promising, almost inexpensive
method to study the CR neural correlates. (M)EEG is
particularly useful, given its relatively non-invasive nature
and high temporal resolution. Especially relevant in the
context of FC, the oscillatory brain activity is thought to be
a key index of the coordinated activity in long-range brain
networks (Moezzi et al., 2019). Hence, synchronization of EEG
oscillations at the same or different frequency bands between
distant brain regions is considered as a mechanism promoting
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information flow between those regions (Siegel et al., 2012).
Therefore, brain oscillations can be taken as an index of brain
network organization and, then, suitable to research the neural
mechanisms supporting CR.

Although the literature on the EEG correlates of CR
in healthy aging is not as prolific as with other imaging
techniques, several findings suggest that EEG is sensitive to
the electrophysiological changes associated with various CR
proxies (Fleck et al., 2019). Some studies have tried to associate
different resting-state EEG and MEG measures with CR (see
Šneidere et al., 2020 and Balart-Sánchez et al., 2021, for reviews).
For instance, Grandy et al. (2013) found that individual alpha
peak frequency was highly correlated with the general factor of
intelligence but without differences between younger and older
adults. Fleck et al. (2017), using a CR composite assembled with
years of education and verbal intelligence scores, investigated
the differences in FC as reflected by rsEEG coherence between
older and younger people with high and low CR. They observed
higher levels of CR were associated with greater overall brain
coherence in older participants, but the opposite pattern in
the younger ones. Babiloni et al. (2021, 2020b) have studied
rsEEG and its association with educational attainment in three
different samples: cognitively normal older adults, older adults
with subjective memory complaints (SMC), and older adults
with amnestic mild cognitive impairment (MCI). For older
adults with SMC and negative amyloid PET, higher CR (i.e.,
education) was related to higher alpha rhythms in posterior
areas. In those SMC participants with positive amyloid, higher
CR was related to smaller posterior alpha rhythms (Babiloni
et al., 2020b). Finally, comparing healthy older adults and
patients with amnestic-MCI, Babiloni et al. (2021) showed that
higher CR may be related to changes in rsEEG posterior alpha
rhythms in healthy aging and MCI patients. They interpreted the
observed results in terms of neuroprotective and compensatory
mechanisms of CR. Some rsMEG studies have suggested specific
oscillatory MEG signatures of CR. In particular, higher CR
is related to higher gamma activity (Yang and Lin, 2020;
Griffa et al., 2021), as well as to lower power in the delta
band and higher alpha power for the oldest-old (Griffa et al.,
2021). In addition, lower CR has been associated with positive
gamma asymmetry in the occipital region (Yang and Lin,
2020).

Considering all the results provided by both imaging and
(M)EEG studies, it seems that CR can be reliably identified at
a neural level. Moreover, Steffener and Stern’s (2012) model
establishes that CR can be derived either from socio-behavioral
proxies or from neural measures. However, to the best of our
knowledge, no studies have investigated that specific neural
processes or networks can act as correlates of CR moderating
the relationship between age and cognitive function.

The current perspectives regarding research on cognitive
reserve have underlined the importance of studying aging
following a life span approach to get reliable measures that
reflect individual differences in brain structure and function

built over the years (Arenaza-Urquijo and Vemuri, 2020; Stern
et al., 2020). The reasoning behind it is that cognitive reserve-
related variables collected at different points in the life span
can predict cognitive function later in life (Steffener and
Stern, 2012). Ideally, this approach should be longitudinal by
measuring CR and cognitive function at different ages, from
early to late adulthood. This could provide a range of different
cognitive profiles that can be tied to age-related changes in
cognitive reserve. So, chronological age seen from this life span
approach can be taken as a measure of life course–related
brain changes impacting cognitive outcomes. Therefore, in this
study, we pursue to identify potential indices to propose more
objective and neural-based correlates of CR through the rsEEG
assessment in a broad age range sample (from 18 to 82 years
old).

To achieve our main aim, rsEEG variables were derived
from power spectral density and connectivity measures for
the main EEG frequency bands in humans (delta, theta, alpha
1, alpha 2, beta 1, and beta 2) since previous studies have
found differences between high and low CR participants in
some of these parameters (Fleck et al., 2017, 2019; Babiloni
et al., 2020b, 2021). Further, based on the recommendations
of Stern et al. (2020) for the study of CR, we implemented
the following statistical plan: (1) bivariate correlation analyses
between a composite socio-behavioral proxy [Cognitive Reserve
Index (CRI); Nucci et al., 2012] and rsEEG variables, given that
the expression of the neural variables underlying CR has to be
associated with a socio-behavioral proxy of reserve; and, (2)
moderation analyses with the rsEEG variables that correlated
with the socio-behavioral proxy (i.e., CRI) as moderators of
the relationship between age and cognitive status, since the
brain processes or networks that underlie CR must moderate
the effect of brain changes in cognition. In contrast with the
recommendations by Stern et al. (2020), no structural measures
of brain change were collected from the participants in this
study. However, as we stated above, we adopted a life span
approach from early to late adulthood, considering age as a
proxy of life course–related brain changes, given its role as a
risk factor that impacts cognitive outcomes (Collaboratory on
Research Definitions for Reserve and Resilience in Cognitive
Aging and Dementia, 2022).

Therefore, following the conceptual research model
proposed by Steffener and Stern (2012), this study aimed
to analyze resting-state EEG measures as putative neural-
based correlates of cognitive reserve. In this model, cognitive
reserve is operationalized by behavioral, cognitive, or neural
measures that can help maintain cognitive performance by
moderating its relationship with age. Due to the significant
deviations from current recommendations on CR research
and the paucity of studies using EEG as a measure of CR,
we have conceived this study as highly exploratory, which
precludes us from establishing specific hypotheses. Indeed, this
study aims to generate hypotheses to be explored in future
research.
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Materials and methods

Participants

Advertisements and informative talks were used to aid in
recruiting young and middle-aged adults among University
of Minho staff and students, as well as healthy older adults
among users from different cultural associations and day-care
centers in Portugal’s North region. Data were collected from
79 volunteers, of whom 56 participants met the inclusion
criteria and composed the final sample. Selected participants
(age range between 18 and 82 years), thus, met the following
criteria: (1) intact or well-corrected sensory function (self-
reported); (2) perform independently in instrumental activities
of daily living according to the Portuguese version of the Lawton
and Brody scale (Lawton and Brody, 1969; Reis et al., 2012);
and, (3) absence of significant neurocognitive impairment as
assessed through the Mini-Mental State Examination (MMSE;
Folstein et al., 1975). Note that cutoff scores were adapted
according to the participants’ years of education as established
in the Portuguese version of the MMSE (illiterate: ≤15; from
1 to 11 years of formal education: ≤22; more than 11 years
of formal education: ≤27; Santana et al., 2016). The initial
screening also ensured that participants had no history of stroke,
transient ischemic attacks, head injury, Parkinson’s disease, or
other neurological and psychiatric disorders. Participants who
were taking psychoactive medications or medications for sleep
promotion were excluded.

Table 1 summarizes the demographic (age, sex, and
educational attainment), cognitive (MMSE score, CANTAB
subtests, and CANTAB composite score), and CRI (scores for
the total index and the three subindexes of the Cognitive Reserve
Index Questionnaire, CRIq, see below for details) characteristics
of the final sample. In addition, Supplementary Table 1 shows
the correlations of age with the demographic and cognitive
variables. Except for the CRI Education subindex and the total
CRI, all variables were significantly correlated with age. The
relationship between age and cognitive status, as reflected by the
five CANTAB subtests used and the calculated composite score,
is illustrated in the scatterplots in Figure 1.

The study protocol was approved by the Institutional Review
Board of the University of Minho (CE.CVS 095/2018) and
conformed with the principles embodied in the Declaration
of Helsinki. Before data collection, all participants were
informed about the study and signed the corresponding
informed consent form.

Cognitive reserve and
neuropsychological assessments

The CRIq (Nucci et al., 2012) was administered to assess
CR. The CRIq comprehensively estimates the amount of CR

accumulated by individuals throughout their lives by collecting
information related to three typical proxies of CR, i.e., school
(educational level), work (type and number of years of paid
work), and leisure activities (how often the individual perform
different activities such as reading newspapers, performing
house chores, driving, using new technologies, social activities,
and going to the cinema or the theater). An individual score or
index is obtained for each of the three domains (CRI Education,
CRI Working Activity, and CRI Leisure). Additionally, a total
score (CRI) for the whole questionnaire can also be calculated
and classified into one out of five categories: (1) low (CRI ≤ 70
points); (2) medium-low (CRI between 71 and 84 points); (3)
average (CRI between 85 and 114 points); (4) medium-high
(CRI between 115 and 129 points); and (5) high (CRI ≥ 130
points).

Regarding the cognitive function assessment, several
subtests of the CANTAB (Cambridge Cognition, 2019) were
applied. This computerized battery has demonstrated high
sensitivity to detect changes in neuropsychological performance
in the aging brain, both healthy and pathological (Junkkila
et al., 2012; Juncos-Rabadán et al., 2014; Marsico et al., 2014).
Although there are some studies devoted to the creation of
normative data for specific CANTAB tests and establishing
cutoff scores for cognitive impairment in the older population
(Robbins et al., 1994; De Luca et al., 2003; Abbott et al., 2019),
up-to-date there are no normative data for the Portuguese
population. Our battery included tests to measure:

Psychomotor speed: the Reaction Time test (RTI),
where the participant must hold a button at the bottom
of the screen and react as soon as possible to release
this bottom and select one out of five circles presented
above whenever a yellow dot appears in one of them.
The outcome measure in this study was the median of
the movement time.

Memory: the Paired Associates Learning test (PAL) consists
in learning the location of a series of patterns displayed
behind boxes and, afterward, remembering where a specific
pattern was initially located. The outcome measure used in
this study was the total number of errors made by the
participant. Also, the Spatial Span test (SSP), where a sequence
of squares changing in color has to be remembered in the
same order as they changed, with a progressive increase in
the number of squares to be remembered. The outcome
measure was the forward span length (the longest sequence
successfully recalled).

Executive function: the Spatial Working Memory test
(SWM) for which the participant must sequentially search for
yellow “tokens” in each of several boxes. Planning and strategic
thinking are needed as a box that had already contained a
token cannot contain another one in the same trial. The selected
outcome measure was the total number of errors (i.e., selecting
boxes that have already been found to be empty and revisiting
boxes that have already been found to contain a token). The
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TABLE 1 Demographic and cognitive characteristics [mean (SD)/ranges or %] for the total sample and the three groups of age.

Variables Total sample (n = 56) Young adults (n = 25) Middle-age adults (n = 9) Older adults (n = 22)

Age mean 46.50 (24.33)/18–82 21.32 (4.10)/18–35 54.56 (10.68)/36–64 71.82 (5.82)/65–82

Sex (% female) 87.50 92.00 88.90 81.80

Education years 11.42 (5.58)/0–24 14.74 (2.71)/12–23 12.56 (7.02)/4–24 7.18 (4.68)/0–17

MMSE score 28.86 (1.46)/23–30 29.48 (0.77)/27–30 28.78 (1.09)/27–30 28.18 (1.87)/23–30

CANTAB RTI 298.12 (79.08)/169–622 269.06 (67.75)/169–376.5 317.22 (118.91)/224–622 323.32 (62.60)/224–474.5

CANTAB PAL 17.13 (17.32)/0–56 4.00 (8.21)/0–40 24.22 (16.27)/6–49 29.14 (15.17)/14–56

CANTAB SSP 5.88 (1.66)/2–9 7.08 (1.26)/5–9 5.22 (1.30)/3–7 4.77 (1.27)/2–6

CANTAB SWM 16.11 (9.68)/0–35 10.20 (9.02)/0–28 17.89 (8.42)/1–29 22.09 (6.70)/13–35

CANTAB MTT 254.88 (148.85)/-101–656 211.50 (136.32)/32–563 259.44 (105.03)/124–503 302.32 (178.85)/-101–656

CANTAB composite −1.65–1.10 0.55 (0.36)/-1.65–0.74 −0.25 (0.70)/-1.61–0.07 −0.52 (0.55)/-1.65–1.10

Total CRI 99.5 (14.11)/78–138 94.88 (9.37)/85–124 107.89 (15.99)/82–126 101.32 (16.29)/78–138

CRI education 98.98 (18.55)/77–151 98.72 (17.61)/80–151 105.78 (20.45)/80–134 96.50 (19.00)/77–140

CRI working activity 101.13 (12.24)/81–135 94.88 (3.28)/91–107 109.00 (15.72)/81–128 105.00 (14.05)/85–135

CRI Leisure 98.80 (11.49)/70–134 94.68 (4.40)/90–109 103.11 (13.82)/91–134 101.73 (14.61)/70–127

FIGURE 1

Scatterplots with Pearson’s r for the relationship between age and cognitive function measured through the CANTAB subtests and the
composite score. PAL, Paired Associates Learning test; SSP, Spatial Span test; RTI, Reaction Time test; SWM, Spatial Working Memory test; MMT,
Multitasking Test.

Multitasking Test (MTT), where the participant has to indicate
on which side of the screen an arrow appears or in which
direction it is pointing according to a cue at the top of the screen
(location vs. direction conditions). The task has single-task
blocks, when the rule is consistent across trials, as well as
multitasking blocks, when the cue changes from trial to trial
in a randomized order. The outcome for this test was the

median of the multitasking cost; that is, the difference between
the median latency of response (from stimulus appearance to
button press) during multitasking blocks and that of single-
task blocks.

In order to have a single measure of cognition, a CANTAB
cognitive composite score was derived by computing the z scores
for each of the five subtests and averaging across the five scores.
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Electroencephalographic recordings
and signal preprocessing

At least 3 min of EEG data were recorded from
each participant while sitting comfortably and relaxed with
eyes closed using an ActiveTwo Biosemi system (Biosemi,
Amsterdam, the Netherlands) with 64 active electrodes inserted
in an elastic cap according to the international 10-10
system. A Common Mode Sense (CMS) and Driven Right
Leg (DRL) montage of two electrodes located around the
vertex was used as a reference. Electrode offset was kept
below 30 mV. EEG data were filtered online between 0.01
and 100 Hz and digitized at a sampling rate of 512 Hz.
Simultaneously with EEG recordings, ocular movements were
recorded with two electrodes located supra and infra-orbitally
to the left eye and another pair situated at the lateral
canthi of each eye.

After signal storage, rsEEG data from the 64 channels were
preprocessed with EEGLab (Delorme and Makeig, 2004). First,
the data were re-referenced to the nose tip, and a digital band-
pass filter of 0.1–40 Hz was applied. Each participant’s EEG
was visually inspected, and automated detection and correction
of bad electrodes and bad data periods were applied using the
Clean Raw Data EEGlab plug-in.1 An independent component
analysis algorithm was then applied to extract independent
components in the remaining data. ICLabel plug-in (Pion-
Tonachini et al., 2019) was used to detect residual artifacts in the
independent components, which were eventually removed from
the data. Afterward, the removed channels were interpolated,
data were re-referenced to an average reference, and 2 s
epochs were created. Those epochs still presenting artifacts
were removed according to different criteria (abnormal values
of ± 100 µV, abnormal trends with a maximum slope of 75
µV, presence of improbable data and abnormal distribution
with a single channel limit of 5 SDs, and abnormal spectral
power in frequencies from 0 to 2 Hz (50 to −50 dB) and
from 20 to 40 Hz (25 to −100 dB). Finally, as quality control,
the power spectral density (PSD) was calculated through the
p-welch function from the Signal Processing Toolbox, using
Welch’s overlapped segment averaging estimator and windowed
with a Hamming window. Those recordings with a minimum
of 1 min of artifact-free data (Babiloni et al., 2020a) and
standard spectra waveform in the eyes-closed resting condition
were selected for posterior processing with exact low-resolution
brain electromagnetic tomography (eLORETA; Pascual-Marqui,
2007a) to estimate the cortical sources of spectral density with
a resolution of 0.5 Hz in six fixed bands: (1) delta (2–4 Hz);
(2) theta (4.5–7.5 Hz); 3) alpha 1 (8–10 Hz); (4) alpha 2
(10.5–13 Hz); (5) beta 1 (13.5–20.5 Hz); and, (6) beta 2 (21–
30 Hz). Despite being previously associated with CR in MEG

1 https://github.com/sccn/clean_rawdata

studies, gamma activity (30.5–40 Hz) analyses are not included
in this work. Source estimation of gamma rhythms has been
shown to perform better when using MEG as compared to
EEG signals (Mideksa et al., 2015). Further, gamma rhythms
are difficult to record at the scalp (Nuñez and Srinivasan,
2010; Muthukumaraswamy, 2013), since this activity is typically
highly artifacted by persistent EMG activity stemming from
head and neck muscles’ tension (Goncharova et al., 2003;
Whitham et al., 2008; Kropotov, 2016) as well as frequent
microsaccades (Yuval-Greenberg et al., 2008; Yuval-Greenberg
and Deouell, 2010) and even nasal breathing frequency (Tort
et al., 2021). Nonetheless, the interested reader can find
results from preliminary gamma analyses in the Supplementary
Information Point 1.

The average rsEEG data length used to obtain the spectral
values was 2.35 min, corresponding to a mean of 70 epochs per
participant (SD: 0.39 min/11.64 epochs).

eLORETA is a genuine inverse solution (not merely a
linear imaging method) with exact, zero error localization in
the presence of measurement and structured biological noise
(Pascual-Marqui, 2007a). Computations were made in a realistic
head model (Fuchs et al., 2002), using the neuroanatomic
Montreal Neurological Institute template (MNI152; Mazziotta
et al., 2001), with the three-dimensional solution space restricted
to cortical gray matter. The intracerebral volume was partitioned
in 6,239 voxels at 5-mm spatial resolution. The first processing
step in eLORETA was to compute EEG cross-spectra from the
raw recordings using the 2-s epochs exported from EEGlab.
Afterward, the cortical generators of surface oscillatory activity
using the cross-spectra were computed. eLORETA solutions
estimate current source density (CSD) values at x, y, and z
vectors of any brain voxel able to predict EEG spectral power
density at all scalp electrodes selecting the maximally smoothed
solution among the possible infinite reconstructions of the active
generators through a regularization procedure. This solution
was normalized by the computation of the eLORETA CSD at
each voxel averaged across all frequencies and all voxels. Finally,
following the procedures by Babiloni et al. (2016), eLORETA
solutions were averaged across all voxels in a given cortical
macro-region of interest (ROI): frontal (Brodmann areas—BA
−: 8, 9, 10, 11, 44, 45, 46, 47), central (BA: 1, 2, 3, 4, 6), parietal
(BA: 5, 7, 30, 39, 40, 43), occipital (BA: 17, 18, 19), temporal
(BA: 20, 21, 22, 37, 38, 41, 24), and limbic (BA: 31, 32, 33, 34,
35, 36) ROIs were considered. We estimated the current density
of cortical sources as it provides a reference-free measurement
with attenuated head volume conductor effects (Babiloni et al.,
2016).

In addition, the eLORETA algorithm was also employed
to obtain a measure of functional connectivity. Specifically,
we calculated lagged-linear connectivity (LLC) as a measure
of interdependence of rsEEG sources, given that it estimates
linear inverse source connectivity while removing the artificially
high zero-lag instantaneous interactions inherent to the low
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spatial resolution of the EEG tomography (Pascual-Marqui,
2007b). Although previous methods explore the connections
between all possible pairs of locations, this “network approach”
can test the joint dependence of several locations (Pascual-
Marqui, 2007c). Hence, for each frequency band (i.e., delta,
theta, alpha 1, alpha 2, beta 1, beta 2), the LLC was computed
for the same six ROIs as the CSD (i.e., frontal, central, parietal,
occipital, temporal, and limbic). We calculated both inter-
and intrahemispheric LLC. The interhemispheric LLC was
calculated between all voxels of the six ROIs of each hemisphere
with the corresponding ones of the other hemisphere. For the
intrahemispheric analysis, the LLC estimates were computed
for all voxels of a particular ROI with all voxels of another
ROI of the same hemisphere (i.e., frontal–central, frontal–
parietal, frontal–temporal, frontal–occipital, frontal–limbic,
central–parietal, central–temporal, central–occipital, central–
limbic, parietal–temporal, parietal–occipital, parietal–limbic,
temporal–occipital, temporal–limbic, and occipital–limbic for
the right and the left hemispheres).

Data analysis

Before the main statistical session, an exploratory analysis
of the data was carried out. There were no missing data for
the demographic and health variables, the CRIq, or the EEG
variables. However, for the CANTAB subtests, some missing
values were present (RTI, PAL, and SWM = 19.6% missing; SSP
and MMT = 21.4% missing). These missing data were addressed
by multiple imputations, creating 25 imputed datasets through a
predictive mean matching procedure implemented in IBM SPSS
(Version 27, IBM Corp, 2020).

In addition, given the percentage of missing data for the
CANTAB subscales, to check that the multiple imputation
process had worked properly, we compared the distribution
of the variables from the original sample without imputations
with the distribution of the same variables after the multiple
imputation process. To that end, we conducted a one-way
ANOVA, which pointed to the absence of significant mean
differences between the two conditions for any of the CANTAB
subscales (see Supplementary Information Point 2).

As expected, most of the rsEEG variables (i.e., eLORETA
solutions) had a skewed distribution, and they were transformed
to a logarithmic scale (log-10) (Babiloni et al., 2020b). No
outliers2 were detected for CRIq, CANTAB, or rsEEG variables.

Descriptive and correlational analyses for demographic and
neuropsychological variables were performed. Two types of
inferential analyses were conducted. Firstly, the association

2 Any data value was considered an outlier if it lies outside of the
following ranges:
• 3rd quartile + 3*interquartile range.
• 1st quartile − 3*interquartile range.

between the proxy measure of CR and the rsEEG variables was
tested through a series of bivariate correlations between CRI
and each of the 252 rsEEG variables (36 CSD variables, 36
interhemispheric LLC variables, and 180 intrahemispheric LLC
variables). The correlation coefficients are reported as Pearson’s
r values. Given the exploratory nature of this study, instead
of using the Bonferroni correction on associated p values to
assess statistical significance, we have considered for further
analyses only those correlations with at least a medium effect
size (r ≥ 0.30; Cohen, 1988). Additional correlational analyses
between rsEEG variables and cognitive outcomes (MMSE and
CANTAB measures) as well as between rsEEG variables and
CRI measures are out of the scope of this work but are publicly
available at the Open Science Framework (OSF) register for this
work (see data availability statement).

Secondly, to address whether rsEEG variables can be
used as direct measures of CR, a moderation analysis using
the regression-based approach in Hayes’ (2017) PROCESS
macro (Version 3.5) for IBM SPSS was conducted (Model 1;
see Figure 2). Age was used as a continuous independent
variable (X), and the CANTAB composite was introduced as
the dependent variable (Y). Those rsEEG variables showing
moderate effect size correlations with total CRI were entered as
continuous moderator variables (M) and age × rsEEG variables
as the interaction term (X × M). In addition, moderation
analyses were also conducted with the CRI as well as each
of the three CR subscales of the CRIq as moderators (M)
of the relationship between age (X) and cognitive status (Y)
to check whether these CR indices are reliable proxies of
CR. Moreover, additional moderation analyses were performed
using each of the five CANTAB subscales as dependent
variables (Y). Sex was entered as a covariate in all the
moderation analyses. Both the independent variable (age) and
the moderators (rsEEG variables and CRIq scores) were mean-
centered. Regarding the multiple comparisons problem in
moderation analyses, the PROCESS macro adopts a multivariate
linear regression that uses a bootstrapping methodology to
calculate the confidence intervals for the regression coefficients.
Although this solution does not entirely rule out type I errors,
it provides an efficient way to ensure that the inferences are
accurate (Hayes, 2017). Therefore, bootstrapped 95% confidence
intervals (BootLLCI-BootULCI) are presented along with the
regression coefficients.

To probe the existence of a significant interaction, an
analysis of simple slopes is included in the PROCESS macro.
Thus, the conditional effect of X (age) on Y (CANTAB
composite score) at relatively low (16th percentile), moderate
(50th percentile), and relatively high (84th percentile) values
of M (rsEEG measures) were evaluated through this pick-
a-point procedure (Hayes, 2017). In addition, to overcome
the arbitrariness of the pick-a-point approach, the Johnson–
Neyman (J-N) technique also implemented in PROCESS was
used in this study to probe the significant moderation. This
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FIGURE 2

Conceptual representation of the simple moderation model.

technique derives the values of the moderator to identify the
“region of significance” of the effect of X on Y. These values
of M demarcate the points along the continuum of M where
the conditional effect of X on Y transitions between statistically
significant and not significant levels (Hayes, 2017).

Results

Bivariate correlations between
Cognitive Reserve Index and
resting-state electroencephalographic
variables

Moderate effect sizes were found for correlations
between the CRI and several rsEEG CSD (i.e., normalized
eLORETA solutions) for different frequency bands (Table 2).
Negative correlations between CRI and delta and beta 2
CSD in the occipital region showed a moderate effect size
(Figure 3).

As regard to the LLC (i.e., connectivity) measures, moderate
effect sizes were found for correlations between total CRI and
inter- and intrahemispheric variables in different frequency
bands (Table 2). Positive correlations were observed between
CRI and beta 1 band interhemispheric LLC in temporal and
occipital regions (Figure 4).

A moderate negative correlation was found between CRI
and delta band intrahemispheric LLC involving parietal and
limbic regions in the right hemisphere (Table 2). Positive
correlations with moderate effect size were observed between
CRI and intrahemispheric connections in the right hemisphere
for: (1) beta 1 band LLC between frontal and occipital, as
well as between central and occipital ROIs; (2) for beta 2
LLC between occipital and limbic ROIs (Table 2; Figure 5).
Regarding the left hemisphere, positive correlations with
moderate effect size were observed between CRI and: (1) alpha
1 LLC between frontal and temporal ROIs; (2) beta 2 LLC
between frontal and temporal, frontal and occipital, parietal
and temporal, as well as temporal and occipital ROIs (Table 2;
Figure 6).

TABLE 2 Pearson’s correlation coefficients and 95% confident
intervals for moderate effect sizes of correlation between CRI and
rsEEG variables.

rsEEG variables Correlation coefficient 95% CI

CSD

Delta occipital −0.36 −0.60, −0.08

Beta 2 occipital −0.35 −0.35, −0.13

Interhemispherical LCC

Beta 1 temporal 0.40 0.12, 0.60

Beta 1 occipital 0.35 0.004, 0.58

Right intrahemispherical LCC

Delta parietal–limbic −0.44 −0.62, −0.22

Beta 1 frontal–occipital 0.37 0.08, 0.61

Beta 1 central–occipital 0.30 0.02, 0.51

Beta 2 occipital–limbic 0.30 0.08, 0.51

Left intrahemispherical LCC

Alpha 1 frontal–temporal 0.30 −0.02, 0.55

Beta 1 frontal–temporal 0.30 0.05, 0.49

Beta 1 frontal–occipital 0.34 0.04, 0.55

Beta 1 parietal–temporal 0.34 0.05, 0.56

Beta 1 temporal–occipital 0.35 0.05, 0.57

Moderation analyses

For those rsEEG variables with a moderate size
correlation with total CRI, moderation analyses were
performed. Just two of the 13 variables significantly
interacted with age to moderate cognitive status: the CSD
of the delta band in the occipital ROI and the LLC of
the beta 2 band in the right hemisphere between occipital
and limbic regions.

For the CSD of delta activity in the occipital region, the
overall regression model was statistically significant, R2 = 0.61,
F(4, 51) = 19.62, p < 0.001. As expected, a negative effect
of Age on CANTAB score was significant, b = −0.02,
t(51) = −8.25, 95% BootLLCI = −0.028-BootULCI = −0.017;
p < 0.001, and although the effect of delta CSD was not
significant, b = −0.67, t(51) = −1.96, BootLLCI = −1.27-
BootULCI = 0.025; p = 0.06, the age × delta CSD interaction
was significant, b = −0.04, t(51) = −2.47, BootLLCI = −0.065-
BootULCI = −0.009; p < 0.05; 1R2 = 0.05, F(1,51) = 6.59,
indicating a moderator effect of delta CSD in the occipital region
on the relationship between age and cognition. The covariate sex
had no effect, b = 0.19, t(51) = 1.04, 95% BootLLCI = −0.25-
BootULCI = 0.62; p = 0.30. The simple slope analysis indicated
that the conditional effect of age on cognitive performance
was statistically significant at any level of delta CSD in the
occipital region (see Table 3 and Figure 7A). However, the
J-N analyses revealed that below the delta CSD value of -
0.32, the effect was not significant (Figure 7B). Nevertheless,
just 9% of the cases (5 participants) were below that cutoff
value. As shown in Figure 7A, the effect of age on CANTAB
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FIGURE 3

LORETA images and scatterplots with Pearson’s r for moderate correlations between CSD estimates and the Cognitive Reserve Index (r ≥ 0.30).
The two correlations were negative (blue tones).

FIGURE 4

Graphs and scatterplots with Pearson’s r representing the connections (LLC measures) showing moderate size correlations between
interhemispheric LLC estimates and the Cognitive Reserve Index (r ≥ 0.30). The two correlations were positive (red lines).

score is stronger for higher levels of delta CSD in the occipital
region. Hence, the worsening of cognitive function with age
increases as the CSD of delta at the occipital region also
increases.

The intrahemispheric LLC between occipital and limbic
regions for beta 2 activity in the right hemisphere was also

a significant moderator of the effect of age on cognitive
performance, R2 = 0.58, F(4, 51) = 17.83, p < 0.001. The
effect of age was significant, b = −0.02, t(51) = −7.88,
BootLLCI = −0.03-BootULCI = −0.02, p < 0.001, but the effect
of beta 2 intrahemispheric LLC was not, b = 0.05, t(51) = 0.21,
BootLLCI = −0.41-BootULCI = 0.53, p = 0.83. The interaction
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FIGURE 5

Graphs and scatterplots with Pearson’s r representing the connections (LLC measures) showing moderate size correlations between right
intrahemispheric LLC estimates and the Cognitive Reserve Index (r ≥ 0.30). The correlation was negative for the delta band (blue line), whereas
for beta 1 and beta 2 bands, the correlations were positive (red lines).

term between age and beta 2 intrahemispheric LLC was
significant, b = −0.03, t(51) = −2.63, BootLLCI = −0.04-
BootULCI = −0.005, p < 0.05; 1R2 = 0.06, F(1,51) = 6.92.
The covariate sex had no effect, b = 0.18, t(51) = 0.94, 95%
BootLLCI = −0.19-BootULCI = 0.57; p = 0.35. Again, the
conditional effect was significant for the three values of beta 2
LLC (see Table 3 and Figure 7A). The J-N analysis established
a single cutoff value for significance at -0.43, being the lower
values not significant (Figure 7B). However, these low values
were only present for 7% of the data (4 participants). As in the
case of delta CSD, the effect of age on CANTAB score is stronger
for higher intrahemispheric LLC of beta 2 between occipital and
limbic regions. Thus, showing an increasingly negative effect of
age on cognitive performance as LLC of beta 2 between these
right posterior regions increases.

Statistics for the rest of the non-
significant moderation models are presented in
Supplementary Table 2.

Moderation analyses with the CRIq indices (total CRI,
CRI Education, CRI Working activities, and CRI Leisure)
as moderators failed to reach statistical significance for
each of the possible interactions with age (see statistics
data in Supplementary Table 3). In addition, we also
tested the moderation analyses using the different CANTAB
subscales as dependent variables. Significant moderations were
observed in the relationship between age and SSP performance
(see Supplementary Table 4.1). Thus, such association was
significantly moderated by: (1) occipital delta CSD, so the
higher delta activity, the higher the age-related worsening of
SSP performance; (2) the interhemispheric LLC for temporal
beta 1 activity, so the stronger the connectivity, the lower the
age-related worsening of SSP performance; and, (3) the right
intrahemispheric LLC between frontal and occipital regions
for beta 1 activity, so the stronger the connectivity, the
lower the age-related worsening of SSP performance. Likewise,
significant moderations were observed in the relationship
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FIGURE 6

Graphs and scatterplots with Pearson’s r representing the connections (LLC measures) showing moderate size correlations between left
intrahemispheric LLC estimates and the Cognitive Reserve Index (r ≥ 0.30). The significant correlations were positive for alpha 1 and beta 1 (red
lines).

TABLE 3 Low (16th percentile), moderate (50th percentile), and relatively high (84th percentile) values of the significant moderators along
with statistics.

Moderator M values Effect SE t P LLCI ULCI

Occipital delta CSD −0.230 −0.014 0.004 −3.191 0.002 −0.023 −0.005

0.005 −0.023 0.003 −8.330 0.000 −0.028 −0.017

0.197 −0.030 0.004 −7.785 0.000 0.038 −0.022

Right occipital–limbic beta 2 LLC −0.214 −0.016 0.004 −4.629 0.000 −0.023 −0.009

−0.019 −0.021 0.003 −7.688 0.000 −0.027 −0.016

0.341 −0.031 0.005 −6.844 0.000 −0.040 −0.022

between age and SWM performance (see Supplementary
Table 4.2). Such association was significantly moderated by
right beta 2 intrahemispheric LLC between occipital and limbic
regions, so the stronger the connectivity, the higher the age-
related worsening of SWM performance. The statistics for the
non-significant models can be checked in the results files in
the OSF repository.

Discussion

This study aimed to analyze resting-state EEG measures
(i.e., LORETA cortical sources’ current density and connectivity)
as possible objective neural-based correlates of cognitive
reserve following the model proposed by Steffener and
Stern (2012). In this conceptual research model, cognitive
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FIGURE 7

(A) Visual representation of the analysis of the simple slope for the two significant moderators of the relationship between age and cognitive
function (CANTAB composite score). Data are plotted with regression-based slopes corresponding to the conditional effect of age on cognitive
function at low (16th percentile), moderate (50th percentile), and relatively high (84th percentile) levels of estimated rsEEG measures (delta
occipital CSD and right occipital–limbic beta 2 LLC). (B) Region of significance derived from the J-N technique. The region of significance is
depicted as the values of the moderator corresponding to points where a conditional effect of 0 is outside of the confidence band (dotted
lines). In other words, the value of the moderator for which a value of 0 is not within the confidence interval. The value from which the
confidence region is outside 0 is -0.32 for occipital delta CSD and −0.43 for right occipital–limbic beta 2 LLC (dashed line). Both visual
representations can be interpreted in the same way; for both measures, the higher the values, the higher the age-related cognitive worsening.

reserve is operationalized by behavioral, cognitive, or neural
measures that can help maintain cognitive performance by
moderating its relationship with age. Therefore, we analyzed the
relationship between rsEEG variables, CR, age, and cognitive
performance in two statistical sessions: (1) Correlational
analysis, to identify those rsEEG measures with at least a
moderate size association with a socio-behavioral proxy of
CR, the CR index (Nucci et al., 2012); and, (2) moderation
analysis, to analyze whether any of those rsEEG variables
that correlate with the CRI, were also able to moderate the
effect of age on cognition. The results showed that many
rsEEG measures presented at least a moderate correlation,
either positive or negative, with the CRI. Still, just two of
them were able to moderate the relationship between age and
cognitive performance. Delta CSD in the occipital region and
beta 2 LLC in the right hemisphere between occipital and
limbic regions are suggested as possible correlates of cognitive
reserve.

Correlational analysis

Numerous neuroimaging studies have employed the
correlational methodology to build potential associations
between CR and structural or functional brain measures. In
line with our results, in resting-state fMRI studies, higher CR
has been associated not only with increased brain functions
(i.e., stronger FC of anterior cingulate cortex with default mode
network (DMN) regions, greater local efficiency, and clustering
in cuneus and occipital regions) but also with decreased
activity (i.e., lower metabolism in DMN and dorsal attention
network regions) (see Anthony and Lin, 2018 for a review).
The few rsEEG correlational studies performed up to date have
shown no correlations at all (Amodio et al., 2017) or positive
correlations (Grandy et al., 2013) with CR.

Despite the scarcity of rsEEG studies following the
correlational approach, many studies have compared
rsEEG variables between high and low CR groups.
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Sánchez-López et al. (2018) found less delta and theta activity
in participants with high levels of physical activity, considered
a protective factor for the cognitive function that has been
sometimes proposed as a proxy of cognitive reserve (Dik
et al., 2003; Fleck et al., 2019). In addition, an increase in
delta oscillatory activity has been associated with cognitive
dysfunction (Babiloni et al., 2006). In this line, in this study,
an inverse correlation between the CSD of delta activity in the
occipital region and the CRI was observed, so the higher the
CRI, the lower the posterior delta activity. Thus, these low levels
of delta might be considered as part of a neuroprotective or
compensatory mechanism against cognitive decline. Further
support for this assumption comes from the moderation
analyses’ results, as discussed below.

A negative correlation between the CRI and the CSD of
beta 2 was also observed in the occipital region. In some
studies, decreased brain activity in higher CR participants
has been related to more efficient neural mechanisms, even
in resting-state. For example, Bastin et al. (2012) found
that a higher degree of education and verbal intelligence
was associated with less metabolism of the DMN and
dorsal attention network regions, concluding this may be
a mechanism to optimize resting-state brain functioning.
Moreover, Rogala et al. (2020) have found that resting-
state beta 2 activity averaged over all electrodes negatively
correlated with behavioral performance. An increase in
beta 2 activity for lower CRI values might likely reflect
an unsuccessful compensatory mechanism reflecting higher
and sustained cognitive effort in accordance with López
et al. (2014). This result is probably pointing to a non-
efficient organization of the functional networks. However,
contrary to this tentative hypothesis, our connectivity results
revealed a positive correlation between the CRI and the right
intrahemispheric beta 2 LLC between occipital and limbic
regions.

Inter- and intrahemispheric connectivity are considered
measures of integration of the two cerebral hemispheres
and hemispheric specialization, respectively. Further, they are
paramount for good cognitive functioning (Liu et al., 2018;
Chang et al., 2019). So, it seems coherent that higher CR was
related to a more efficient integration and segregation between
and within both hemispheres. In that sense, we observed that
as the CRI increased, interhemispheric connectivity for beta
1 in temporal and occipital regions also increased. Similarly,
intrahemispheric LLC in the right hemisphere for beta 1
between the frontal and occipital regions, and between central
and occipital regions, were also positively correlated with
CRI. In the left hemisphere, alpha 1 LLC between frontal
and temporal regions and beta 1 LLC between frontal and
temporal regions, frontal and occipital regions, and the temporal
region and parietal and occipital regions also showed a positive
correlation with CRI. These results are further in line with
previous evidence of resting-state fMRI studies showing greater

between network connectivity for high than low CR older
adults (Anthony and Lin, 2018) as well as with the higher
overall brain coherence in older high reserve participants
than those with lower reserve (Fleck et al., 2017). In their
2017 study, Fleck and coworkers found a reversed relationship
between overall brain coherence and CR when comparing the
younger with the older adults in their sample (age range:
45–64 years of age), in a posterior study taking age as a
continuous variable (range age 35–75) and using LLC instead
of coherence, they did not found any significant effect of
age (Fleck et al., 2019). However, these authors still observed
important differences in LLC between high and low CR groups,
with high social CR related to greater local and long-range
LLC in theta and low alpha bands, and high cognitive CR
associated with greater low alpha long-range LLC between
the occipital and other cortical regions. The latter results are
aligned with our results, indicating positive correlations between
LLC measures and CR. As Fleck and coworkers, we believe
that higher connectivity may reflect a neural compensation
mechanism to cope with age-related brain structure and
cognition declines. Furthermore, this results may indicate that
such mechanisms are consistent across the adult life span, which
fits within the current neurocognitive scaffolding theories of
aging (Park and Reuter-Lorenz, 2009; Reuter-Lorenz and Park,
2014).

Nevertheless, as we noted above, increased FC is not always
associated with better network functioning, both in resting-state
and task-related activity (Buldú et al., 2011; Speer and Soldan,
2015). Our results are no exception, and we observed negative
correlations between CRI and intrahemispheric LLC measures
for delta, namely, the weaker the LLC for delta in the right
hemisphere between parietal and limbic regions, the higher the
CRI. Usually, such findings are interpreted in terms of better
neural efficiency and organization of brain activity in high CR
individuals compared with those with lower CR. Thus, our
results may, as well as those of previous studies (see, for example,
Fleck et al., 2017), indicate the coexistence of compensation
mechanisms, as highlighted in the previous paragraph, together
with better neural efficiency and reduced need for cognitive
effort as reflected in the aforementioned negative correlations.

Alternatively, this complex pattern of positive and negative
correlations between LLC and CRI may reflect differences
in resting-state networks such as the DMN, dorsal attention
network, and the frontoparietal network that have been
previously shown to be anticorrelated in their activity (Fox
et al., 2005). These resting-state functional networks have been
associated with the different frequency bands studied in this
work (see Mantini et al., 2007; Hlinka et al., 2010; Neuner
et al., 2014; Gorantla et al., 2020). Therefore, future studies
potentially combining fMRI and EEG methods are needed to
explore whether there is a dissociated pattern of relationships
between those anticorrelated resting state networks and the
observed EEG connectivity correlates of CR.
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Moderation analysis

We performed moderation analyses with the rsEEG
variables that showed a moderate correlation with CRI as
moderators of the age-related prediction on cognitive scores
(CANTAB composite). Out of the thirteen variables tested, just
delta CSD in the occipital region and right beta 2 LLC between
occipital and limbic regions were significant moderators of
this relationship. More specifically, the negative relationship
between age and cognitive performance observed in our sample
was attenuated among people with less occipital delta activity
and lower levels of right beta 2 LLC between occipital and
limbic regions. As a tentative hypothesis, this might mean
that CR could be manifested as a more efficient network with
weaker activation. People with lower CR probably showed
intensified activations as an attempted, although unsuccessful,
compensatory mechanism.

As mentioned above, an increase in delta activity, especially
in posterior areas, has been associated with cognitive
impairment and reported in some pathological conditions
such as AD (Babiloni et al., 2004, 2006; Benwell et al., 2020),
strokes (Cassidy et al., 2020), vascular dementia (Babiloni
et al., 2006; van Straaten et al., 2012), and Parkinson’s
disease with cognitive impairment (Caviness et al., 2011;
Fonseca et al., 2013). Therefore, this mechanism is probably
related to a derangement in the functional thalamocortical
connectivity due to neuropathology or neuroinflammatory
processes (Babiloni et al., 2018). Further, resting-state delta
CSD might be used as an objective index of CR since the
available evidence, including our results, seems to confirm that
higher delta activity could reflect cognitive vulnerability. In
addition, this result is also in agreement with the results
of Griffa et al. (2021) for the oldest-old participants,
showing lower delta activity in a high compared to a low
CR group.

A more paradoxical result was the moderation effect of
the beta 2 LLC between occipital and limbic regions in the
right hemisphere. The moderation analysis showed a more
negative impact of age on the cognitive score as the beta 2
LLC increased, contrary to the positive correlation between
occipital CSD in this frequency and CRI. This contradictory
pattern seems to be due to the inclusion of the factor age and
the interaction term in the moderation analyses. The effect of
beta 2 LLC on CANTAB score was positive in the regression
model (i.e., the higher the beta 2 LLC, the higher the CANTAB
score), but when interacting with age, the effect turned negative.
Although this relationship seemed the inverse at younger ages
(i.e., better CANTAB scores at higher values of beta 2 LLC),
as age increased, higher levels of beta 2 LLC seemed to lead
to a worsened cognitive function. There are well-documented
age-related differences in rsEEG variables in the literature, even
in the field of CR. For example, Fleck et al. (2017) found
higher coherence during eyes-closed for older adults (i.e., adults

between 59 and 65 years of age) with high CR than for those
with low CR, whereas the opposite pattern was found for their
younger participants (i.e., adults between 45 and 58 years of
age).

A negative correlation between beta 2 activity and behavioral
performance has been previously observed by Rogala et al.
(2020). They consider it an electrophysiological signature of
the strength of long-range frontoparietal and fronto-occipital
connections. In accordance with our tentative hypothesis
regarding the CSD of beta 2, Rogala et al. (2020) suggested
that weaker beta 2 oscillations in long-range networks might
represent an enhanced capacity of network reconfiguration and,
then, higher efficiency. Moreover, Santarnecchi et al. (2014)
found a positive correlation between cognitive abilities and
global resting-state network efficiency, characterized by weak
levels of connectivity linking distant brain lobes between and
within hemispheres. In addition, the functional meaning of
high beta in the EEG literature has been related to anxiety and
a “busy” brain (Thompson and Thompson, 2006). Therefore,
a tentative hypothesis for these lower levels of connectivity
in the beta 2 band as a reflection of high levels of neural
efficiency can be related to low levels of anxiety and a
more regulated brain, which in turn, performs cognitively
better.

Moderation analyses were also conducted using each of
the five CANTAB subscales as dependent variables instead
of the composite score. The obtained results were somehow
confirmatory of the general results. However, the CANTAB
subscales are highly correlated, so the results should be taken
cautiously. In detail, the analyses for the Spatial Span test (SSP),
a measure of recent memory, showed that occipital delta CSD
moderated the relationship between age and SSP performance:
as occipital delta CSD increases, the age-related decline for SSP
performance also increases, just like the results observed for
the CANTAB composite score. Besides this confirmatory result,
the interhemispheric LLC for temporal beta 1 and the right
intrahemispheric LLC between frontal and occipital regions for
beta 1 were also significant moderators of this relationship, with
greater connectivity associated with a lower age-related decline
in cognition. These results, again, point to the potential existence
of compensatory mechanisms that are reflected in increased
connectivity in high- than low-CR individuals (see Fleck et al.,
2017, 2019 for similar interpretations).

In addition, for the Spatial Working Memory test (SWM),
a measure of executive function, moderation results were the
same as for the composite CANTAB score. Therefore, a more
negative effect of age on executive function was observed as
the beta 2 intrahemispheric LLC increased. Taken together,
results of the analyses with the different CANTAB subtests,
may indicate the coexistence of compensatory mechanisms
and increased neural efficiency processes in the resting-state
brain electrical activity of high CR individuals, in line with the
manuscript’s main results. Nevertheless, these results suggest
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that the performance in different cognitive domains is supported
by distinct neural correlates of CR. In that vein, previous
studies have shown that CR may be associated with specific
cognitive domains while unrelated to other domains (Lavrencic
et al., 2018; Rodriguez et al., 2019) depending on the selected
CR proxies, the cognitive tasks employed (Darby et al., 2017)
or the individual experiences (Sandry et al., 2016). Therefore,
future studies are warranted to deepen the understanding of
the observed neural correlates of CR and their relationship with
different cognitive domains assessed through several tasks.

Finally, it is important to highlight the absence of
moderation effects on the relationship between age and
cognitive function by the CRI measures (total index, Education,
Working activity, and Leisure subindices). To consider them
reliable correlates of CR, they would be expected to moderate
the age and cognitive function relationship. One reason that
could explain this discrepancy is that these indices may reflect
the amount of CR acquired during a person’s lifetime (Nucci
et al., 2012) but not the CR itself. This also happens with other
socio-behavioral proxies of CR, such as education. Thus, the
effect of these cumulative factors would be finally translated into
more efficient neural processing and brain networks, reflecting
the objective pathways of CR. Consequently, as proposed by
Steffener and Stern (2012), CR may be supported by more
adaptable functional brain processes that constitute a more
direct and objective measure of CR than socio-behavioral
indexes. Further, following a life span approach including young
adults in the sample may have obscured the moderation effect
that these indices may have between age and cognition when
studied in older populations alone, given the CR is still building
up. Therefore, the rsEEG markers observed in this study may
be considered a more sensitive measure of CR-related neural
changes and flexibility than paper and pencil measures such as
the CRI.

In sum, many studies have proposed different neural
measures as neural correlates of CR; however, as far as we know,
none of them have tested the rsEEG variables as moderators in
the relationship between age and cognitive status. Most of them
have used the rsEEG measures as independent variables and split
the sample into age and CR-based groups to perform ANOVAs.
This approach presents limitations stemming from the use of an
arbitrary median score to build the CR groups. Unlike previous
studies, the strategy of the current work was not to compare
age groups but instead to take the factor of age as a continuous
measure. This life span approach, including participants from
18 to 82 years old, with higher ages indicating possible higher
physiological neural deterioration, allows us to establish which
rsEEG variables may be taken as probable protective or risk
markers for accelerated cognitive decline as age increases. This,
in turn, justifies to some extent the absence of a structural
measure of brain integrity.

Moreover, this study followed a correlational and
regressional approach and considered CR as the ability to

recruit brain networks more efficiently. In light of the reviewed
evidence, CR might be reflected by increases or decreases in
activity and functional connections across the brain. Indeed,
current results showed that as age increases, higher levels of
occipital delta CSD and stronger LLC between medial and
posterior regions for beta 2 may indicate a less effective way to
recruit networks in people with lower levels of CR.

Although this results add valuable information to the
research of aging and CR, they are not free from limitations
and shortcomings. First, the large number of studied variables
in this study increases the probability of a type I error,
and, as such, some of our results could be false positives.
However, given the study’s exploratory nature, which aims
to generate hypotheses to be systematically and thoroughly
evaluated in future studies, we adopted a rather lenient strategy
regarding the problem of multiple comparisons. Second, there
was a considerable amount of missing data for a dependent
variable (i.e., CANTAB), which was subjected to a multiple
imputation procedure. Although this is not the most desirable
situation, a statistical comparison of CANTAB subtests’ score
between the sample with imputed values and the sample
without imputed values showed no significant differences,
thus ensuring that the variable distributions were similar
before and after the imputation procedure. Third, the lack
of a measure of brain status did not allow us to align our
results with the current research recommendations in the
field of cognitive reserve (Stern et al., 2020). Hence, cross-
sectional nature and lack of control of the study over these
brain status variables make it possible that some results were
influenced by factors such as brain amyloid burden, differences
in brain volume, and the presence of genetic vulnerabilities.
So, the insight into CR is somewhat limited. However, we
have tried to minimize this limitation by taking a life span
perspective and considering age as a risk factor for brain
changes in order to be able to suggest hypotheses and guide
subsequent studies. Fourth, the sample size may not be enough
to draw firm conclusions, and more middle-aged participants
should be included in future studies to make the age range
smoother. Another possible shortcoming of the sample is
that it is primarily female, which can impose limitations on
the generalizability of the presented results. It is well-known
that there are differences between women and men in brain
aging, and there have also been previous findings on gender
differences in CR studies (see, for example, Fleck et al., 2019).
However, in this study, the variable sex was not a significant
covariate in the moderation analyses. Finally, the lack of
a defined and homogeneous protocol to study rsEEG and
CR make the different studies not highly comparable since
several methodological differences arose: the type of proxy
measure used to obtain an estimation of CR, the different
ways to calculate band amplitude or power and connectivity,
the construction of the ROI(s) for the analyses, the statistical
strategies, etc.
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Conclusion

In this study, we aimed to find possible neural correlates
of CR that can be used as objective measures of CR instead of
indirect proxies, such as educational attainment or intelligence
measures. To this end, we analyzed dozens of measures
of rsEEG, including eLORETA solutions for cortical current
density sources and connectivity, as moderators on age-related
changes in cognitive function. Moderation analyses showed that
lower delta activity in the occipital region and lower connectivity
of beta 2 in the right hemisphere between occipital and limbic
regions could index compensatory mechanisms and increase
neural efficiency to maintain high cognitive performance during
the aging process. Therefore, these patterns of rsEEG activity
might be considered as putative neural correlates of the
cognitive reserve to be deeply studied with more statistical
control. As stated before, this study is highly exploratory with
many variables under study, aiming to generate hypotheses
to be refuted in future projects. This type of objective neural
measure could be useful in the future to prevent the appearance
of cognitive impairment, allocating more preventive efforts to
those adults with rsEEG markers of low CR.
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