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Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver
fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to
shear stress waves throughMagnetic Resonance Elastography.The Local Interaction Simulation Approach is proposed for effective
modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance
Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major
advantage of the proposed approach is a significant reduction of computational effort.

1. Introduction

Mechanical properties of tissues are one of the most signif-
icant indicators used for detection of various abnormalities
in medical diagnosis. Tumors and other pathologies often
exhibit values of elastic moduli that are significantly different
fromhealthy tissues. It is well known that none of the classical
medical approaches, such as Computed Tomography (CT),
Magnetic Resonance Imaging (MRI), and Ultrasonography
(US), are able to detect mechanical properties of tissues
that are diagnosed by palpation [1, 2]. Elastography is used
extensively in diagnostic applications (e.g., liver fibrosis or
breast tumors detection [3–9]) due to flexibility and nonin-
vasiveness. Since abnormal tissues are often stiffer than the
normal ones, medical diagnosis can be achieved. Although
the method was developed in the late 1980s [10–12] the
major breakthrough came in the mid 1990s when a dynamic
approach to elastography was proposed [13]. A Motion-
Encoding Gradient (MEG) was introduced to a conventional
MRI system leading to Magnetic Resonance Elastography
(MRE) [13–17].

Modelling in elastography relies on direct and inverse
problems. The former relates to measurements of tis-
sue responses to applied stresses. The latter is related
to estimation of unknown mechanical properties from

measured mechanical responses. Both problems are formu-
lated using physical laws, which provide equations that relate
biomechanical properties, such as shear modulus, Poisson’s
ratio, viscosity, nonlinearity, and poroelasticity, to mea-
sured mechanical responses. Accurate models are required
to predict displacement responses to different mechanical
excitations to solve the inverse problem. For simple setups
the equations that describe the direct problem have been
solved analytically [18]. A similar approach used for irregular
domains of elastically heterogeneous tissues is not possible
in practice. Consequently, numerical simulations are used to
ease this task.Modelling is used inMRE applications in order
to create forward models that capture complex mechanisms
of wave propagation in soft tissues. Previous studies in this
field include various finite difference (FD) [17–19] and Finite
Element methods (FE) [15, 20–24]. FE modelling has been
used in previous studies for visualization of ultrasonic wave
propagation [25–31], elasticity reconstruction [21, 32], and
shear wave propagation analysis in gelatin phantoms [33–39].

The paper aims to develop a full three-dimensional (3D)
model of shear wave propagation in a gelatin phantom for
MRE applications. Some primary investigation has been
performed for the bulk wave propagation model based on
the Local Interaction Simulation Approach (LISA) [40]. In
contrast to the previous work, current investigation focuses
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on the guided wave propagation with rescaling procedure.
The major novelty of the presented work relates to the appli-
cation of the Local Interaction Simulation Approach (LISA)
for guidedwave propagation and a rescaling procedure for the
LISA is proposed for shear wave propagationmodelling.This
major novelty is considered to tackle numerical problems.

Then the LISA model is developed to examine density,
shear modulus, and shear wavelength in a gelatin phantom.
This study proposes the rescaling solution method in order
to avoid numerical problems, especially related to wave
amplitude. Numerical simulation results are compared with
FE simulation results and MRE experimental measurements
from a soft tissue mimicking an agarose gelatin phantom.

2. Theoretical Background

Elastic wave propagation in an isotropic linear medium is
governed by the momentum balance given as
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is the divergence of stress tensor, 𝑏
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volume force, and 𝑊̈
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represents particle acceleration vector.

The constitutive equation that relates stresses to strains in a
linear elastic solid is given as
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where 𝑊
𝑖
represents particle displacement components.

Combining (1)–(3) the equation of equilibrium, that is, [41],

𝜇∇
2
𝑊 + (𝜆 + 𝜇) ∇∇ ⋅ 𝑊 = 𝜌𝑊̈

𝜄
(4)

governs wave propagation in an infinite elastic space and
for practical problems must be amended by appropriate
boundary and initial conditions describing the problem.
Boundary conditions increase the complexity of the problem
since they give rise to the so-called guided wave propagation
problem, where global wave propagation patterns, that is,
modes, travel at different, and possibly frequency-dependent,
speeds, as explained in [41]. It is well known that the solution
to (4) can be found only for simple canonical problems.
Numerical simulations are used for more complex scenarios.

3. Numerical Models

This section describes numerical models used for shear wave
propagation in soft tissues. Firstly FEmodel was developed as
a reference.Then a LISAmodel is described.Themajor focus
is on a rescaling procedure that is used to avoid numerical
discrepancies.
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Figure 1: Elementary discretization scheme used for wave propaga-
tion modelling in the LISA 3D [42].

3.1. Finite Element Model. The FE model used in the current
investigations was developed using the Marc Mentat 2013
software package. Following the work presented in [36],
a 3D cylindrical container, with a diameter of 200mm
and thickness of 20mm, was modelled using gel phantom
material properties. The bottom of the cylinder was fixed
in the 𝑦 direction (see Figure 1). Altogether 36 000 elements
of 2 × 2mm radial and axial element size and 200 element
along the circle were used. The phantom was modelled as a
homogenous isotropic elastic solid with Poisson’s ratio ] =

0.495. Harmonic sinusoidal motion of 150Hz was applied
to the center of the top cylinder surface as an excitation.
Three different elastic moduli (𝐸) were investigated, that
is, 30, 60, and 120 kPa, to study the relationship between
shear wavelengths and shear moduli. Similarly, numerical
simulations were performed using three different material
density (𝜌) values, 0.5 × 10

3, 1 × 10
3, and 2 × 10

3 kg/m3, for
each Young’s modulus. Material damping was assumed to be
zero.

The shear wavelength (𝜆
𝑓
) in the FE model was obtained

by estimating the distances between wave peaks directly from
response waveforms to make a direct comparisons with the
results presented in [36].

3.2. Local Interaction Simulation Approach Model

3.2.1. Background of the LISA Model. The LISA, previously
used for wave propagation in complex media [42–49], has
been applied for MRE shear wave propagation modelling.
The algorithm of the LISA model is based on an FD
approximation of (4) which discretises any structure under
investigation into a grid of cells. Similar discretization is also
used in the time domain when modelling is performed. All
material properties are assumed to be constant within each
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cell butmaydiffer between cells.The algorithmcanbe derived
from the elastodynamic wave equation [42]

∇
𝜎

(𝐾∇
𝜀
𝑊) = 𝜌𝑊

𝑡𝑡
, (5)

where 𝑊 = [𝑢, V, 𝑤]
𝑇, 𝑊 is the vector of particle displace-

ments, 𝐾 is the stiffness matrix, ∇
𝜎
and ∇

𝜀
are the differential

operators matrices for stress and strain, respectively, and 𝜌

is the density. A comma before the subscript in (5) denotes
differentiation. The 𝐾 matrix contains stiffness components
𝐾
(𝑝)

𝑖𝑗
that depend on Young’s moduli and Poisson ratios. The

structure is discretised into parallelepiped cells for the 3D
LISA wave propagation simulation, as illustrated in Figure 1.
The junction of the eight cells characterizes the nodal point𝑃.
The second time derivatives across the eight cells are needed
to converge towards a common value Ω at the point 𝑃. In
order to calculate a spatial derivative in the eight surrounding
cells to 𝑃, the central difference scheme is utilized. Then to
obtain the solution, stress continuity across adjacent cells is
constrained.

The following iteration equations are acquired for each
displacement component for a general orthotropic case [42,
49]
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where Δ𝑥
𝑖
is grid spacing in 𝑖th direction, 𝑡 is the time

step, 𝛼(𝑖) denotes the 𝑖th column of the 𝛼 matrix of signs,
and displacement components are taken at time 𝑡 and point
(0, 0, 0) if not stated otherwise.The 𝑝 index in the summation
formula conveys the sign of the summed component. A
detailed derivation of LISA equations can be found in [42].
The local interaction nature of boundary conditions based
on matching conditions in the LISA model is the major
advantage over the FD-based methods, when used for wave
propagation. The so-called Sharp Interface Model (SIM) is
used to average physical properties at interface grid points,
which represent intersections of four elementary cells. When
wave propagation problems in complex media with complex
boundaries are studied, the SIM provides more accurate
results, as demonstrated in [42–47].

Shear wave propagation in the 3D cylinder, already
described in the previous section, was modelled using the
LISA approach. Numerical simulations involved the same
material properties, boundary conditions, and excitation
frequencies as in the FE model described in Section 3.1.
These parameters were set following previous investigations
reported in [36]. The 3D cylinder was meshed using 1 × 1 ×

1mm elements. Altogether 16 003 000 elements were used in
the LISA model.

3.2.2. Rescaling Procedure. When a numerical technique is
used, such as LISA, for wave propagation simulation, various
numerical errors must be accounted for. It is well known that
for certainmaterial parameter values elastic waves are quickly
damped out making results interpretation cumbersome.This
is illustrated in Figure 2(a), where the wave field along the
radial direction of the phantom is shown at a single time
instant. Clearly, elastic waves are quickly damped out and
determination of the wavelength becomes difficult. This
problem is a consequence of numerical model properties and
can be solved when certainmodel parameters aremodified to
avoid numerical discrepancies. Numerical model properties
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Figure 2: (a) The original shear waveform exhibiting attenuated amplitudes for the density 𝜌 = 0.5 × 10
3 kg/m3 at frequency 150Hz. (b)The

amplification factor based on different density.

can be investigated in details through the iteration equations
analysis. First, the severity of numerical damping can be
analysed by considering roots of characteristic polynomial
of a numerical scheme at hand, directly related to the
Courant-Friedrichs-Lewy stability condition [50]. The latter
is frequently invoked in the context of wave propagation
modelling as the model parameters are required to meet
certain restrictions for the analysis to be stable. This concept
can be also used to quantify scheme’s accuracy, as will be
shown next.

Soft tissues are highly demanding from computational
point of view. From physical perspective it is well known
that mainly transversally polarized waves propagate in these
structures [41]. When numerical modelling is used both
types of waves normally coexist. However, analyzingmaterial
properties characteristic to soft tissues (these properties are
extraordinary when compared to solid media) the difference
in longitudinal and shear wave velocities can be immediately
found, reaching the ratio of 10. As a consequence, the
shear wave component, which is of particular interest for
MRE, propagates under conditions far from the stability
limit. Namely, the roots associated with the characteristic
polynomial drive the waves to decay.

This drawback can be resolved twofold: by reformulating
constitutive relationships in order to eliminate the longitudi-
nal wave component, or by manipulating model parameters
to push the shear wave closer to the stability limit. In the
following work the second approach was employed as this
requires no intervention in the solver structure, maintaining
the flexibility of the method to model wider class of materials
(i.e., solid media and soft tissues).

The longitudinal and shear wave speeds can be expressed

𝑉
𝐿

= √
(𝜆 + 2𝜇)

𝜌

,

𝑉
𝑇

= √

𝜇

𝜌

.

(7)

These definitions show that the density is a parameter
that uniformly influences both longitudinal and shear wave

velocities. Hence, the approach presented in the paper aims
at improving the model properties by rescaling wave speeds.
Following the work presented in [36], scaled density is used
in numerical simulations. This procedure can be explained
using a 1D example of wave propagation. The major focus is
on the stability and amplitude accuracy of LISA.Theobjective
of this study is to obtain information about the effect of
density on the LISAmodel.The 1D finite difference equation,
involved in numerical simulations, can be expressed as

𝑢
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𝐶 = 𝑐

Δ𝑡

Δ𝑥

, (9)

where 𝑢 is the displacement, 𝑛 is the time step index, 𝑖 relates
to the node position, 𝐶 is known as the (dimensionless)
Courant (or Courant-Friedrichs-Lewy (CFL)) number, 𝑐 is
the wave velocity, and Δ𝑡, Δ𝑥 are related to the time step and
the element size, respectively. The stability analysis by means
of the Fourier transform is known as the von Neumann
analysis [50]. This analysis allows for expression of a gov-
erning equation as a recurrence relation that is particularly
useful for establishing stability conditions. The key idea is
the analysis of the amplification polynomial of the scheme,
which is obtained by applying the Fourier transform to the
governing FD equation. Once the amplification polynomial is
established, certain restrictions are put on its roots. Although
the analysis presented is for a 1D case, the entire procedure
can be easily extended to provide general stability conditions
for higher dimensions.

When (10) is used and the stability condition is obtained
for various parameters, stable and unstable conditions can be
analysed for various values of density. It is important to note
that it is beyond this paper to put all the equation and formula
involved in this analysis. Potential readers are referred to [50]
for further details. After obtaining the roots of amplification
polynomial which are conjugate pairs of the same complex
number, the magnitude is the same for both. The magnitude
of the roots of amplification factor can be expressed as

󵄩
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2

+ 1, (10)
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Figure 3: The shear waveform patterns: (a) density-scaled models and (b) after inverse rescaling.

where 𝑔 is the amplification factor, 𝐶 is courant number, 𝑠 =

sin(𝐾Δ𝑥/2), and 𝑘 is wave number.
The amplification factor that governs the numerical

damping is analysed in Figure 2(b). According to (10), the
amplification factor formula, an analysis becomes unstable
for 𝑔 > 1, since each consecutive displacement value is
increased. Perfect preservation of wave amplitude, that is,
without numerical damping, occurs for 𝑔 = 1. For real
applications, for example, involving longitudinal and shear
waves, 𝑔 is always less than 1 for at least one wave mode;
hence waveforms are always numerically distorted. The
results shown in Figure 2(b) indicate that when the density
decreases, the amplification factor increases (consistently
with (7) and (8)) and the instability can be reached in 1D finite
difference model.

Numerical simulations of the gel phantom using the
LISA approach were conducted and analysis was performed
to investigate the effect of density scaling parameter on
numerical stability for the 3D case. Various scaling values
were selected and respective wave velocities calculated. The
initial density was assumed as 𝜌 = 0.5 × 10

3 kg/m3. Then,
five different scaling parameters were selected as 𝑆

1
= 2 (𝜌 =

1 × 10
3 kg/m3), 𝑆

2
= 3 (𝜌 = 1.5 × 10

3 kg/m3), 𝑆
3

=

4 (𝜌 = 2 × 10
3 kg/m3), 𝑆

4
= 5 (𝜌 = 2.5 × 10

3 kg/m3), and
𝑆
5

= 6 (𝜌 = 3 × 10
3 kg/m3). The influence of the scaling on

model properties is summarised in Table 1. Therein, the limit
velocity for the model can be calculated as

𝑉lim =

Δ𝑥

Δ𝑡

=

0.001

0.05𝑒
6

= 20000

𝑚

𝑠

. (11)

Calculation of the amplification factor for a general 3D
case is cumbersome; hence it is not provided in the table.
However, the general conclusions can be inferred from the
CFL numbers as described next.

The results in Table 1 show that by increasing the density
wave velocities are reduced (see (7) and (8)). As a result the
values of the Courant number are also reduced. Figure 3(a)
shows LISA-based simulation results, that is, displacement
patterns for different rescaled densities. (Where in the figure

horizontal line corresponds to distance of wave propagation
form center.)

If the only influence on wave amplitude was due to ampli-
fication factor, amplitude drop should have been observed in
the simulation. Previous work on the effect of the courant
number on pulse distortion in 1D finite difference schemes
[51] confirmed these observations. Interestingly, the displace-
ment amplitude increases with the scaling parameter. The
latter increase is related to the amount and rate of energy
transfer through the excitation. Increased densities result in
larger kinetic energies delivered even for unchanged excita-
tions that are prescribed by displacements. This explains the
amplitude increase observed in Figure 3(a).

It is clear that once wave propagation is simulated with
scaled densities, an inverse spatial scaling procedure should
be applied to the results to retrieve proper responses. This
is accomplished by an inverse scaling procedure employed
for the space sensor waveforms. Again (7) and (8) were
employed and space (wavelength) signals were multiplied by
the square root of the relevant scaling factors. The results,
shown in Figure 3(b), illustrate that the wavelength of the
original signal is recovered after the rescaling procedure.

To illustrate the approach, dispersion curves for respec-
tive rescaled models were calculated and used to recover
the original waveforms. In the following analysis, the 𝐴

0

mode is considered, as it is the dominant mode in this
frequency range. In Figure 4, dispersion curves for three
different scaling parameters are given (𝑆 in figures correspond
by scaling factor). By applying the scaling factor to the
original density, it affects the dispersion curve, respectively,
which causes a certain change to the wave number of every
dispersion curve. The rescaling parameter, square root of 𝑆

– based scaling factor, is also then obtained by analyzing
dispersion curves plot between simulated original and scaled
density by comparing the ratio of wave number of scaling
density by wave number of original density and it proved
the efficiency of propose method. To show an example,
the waveform (density 𝜌 = 1 × 10

3 kg/m3) and one
rescaled waveform (𝜌 = 3 × 10

3 kg/m3) together with the
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Table 1: The effect of scaled density on wave propagation velocities and numerical stability.

Density Courant number
Longitudinal wave
velocity (𝑉

𝐿
) and

shear wave velocity
(𝑉
𝑇
) [m/s]

Scaling factor in
Figures 3(a) and

3(b)
Comments

𝜌 = 500 kg/m3, 𝐶 =

𝑉
𝑙

𝑉lim
= 0.3

𝑉
𝐿

= 6.0045𝑒
3

𝑉
𝑇

= 1.4286𝑒
3 Original density

Green line in Figure 4 relates to initial
(original) original density and is used

as reference; low amplitudes in
numerical simulations

𝜌
1
= 1000 kg/m3, 𝐶

1
=

𝑉
𝑙1

𝑉lim
= 0.212

𝑉
𝐿1

= 4.2458𝑒
3

𝑉
𝑇1

= 1.0102𝑒
3 𝑆

1
= 2

Wavelength was rescaled in Figure 3(b)
with the square root of the scaling

factor, that is, √2

𝜌
2
= 1500 kg/m3, 𝐶

2
=

𝑉
𝑙2

𝑉lim
= 0.173

𝑉
𝐿2

= 3.4667𝑒
3

𝑉
𝑇2

= 824.8232
𝑆
2
= 3

Wavelength was rescaled in Figure 3(b)
with the square root of the scaling

factor, that is, √3

𝜌
3
= 2000 kg/m3, 𝐶

3
=

𝑉
𝑙3

𝑉lim
= 0.150

𝑉
𝐿3

= 3.0022𝑒
3

𝑉
𝑇3

= 714.3179
𝑆
3
= 4

Wavelength was rescaled in Figure 3(b)
with the square root of the scaling

factor, that is, √4

𝜌
4
= 2500 kg/m3, 𝐶

4
=

𝑉
𝑙4

𝑉lim
= 0.13

𝑉
𝐿4

= 2.6853𝑒
3

𝑉
𝑇4

= 638.9053
𝑆
4
= 5

Wavelength was rescaled in Figure 3(b)
with the square root of the scaling

factor, that is, √5

𝜌
5
= 3000 kg/m3, 𝐶

5
=

𝑉
𝑙5

𝑉lim
= 0.12

𝑉
𝐿5

= 2.4513𝑒
3

𝑉
𝑇5

= 583.2381
𝑆
5
= 6

Wavelength was rescaled in Figure 3(b)
with the square root of the scaling

factor, that is, √6
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Figure 4: The dispersion plot for the original density and three 𝑆
1
,

𝑆
2
, and 𝑆

3
scaled densities.

corresponding dispersion curves are shown in Figure 5. The
wavelength for the original waveform is equal to 21mm
whereas the wavelength for the rescaled waveform is equal
to 12mm. The original waveform (shown in Figure 5(a)) can
be recovered from the rescaled waveform (Figure 5(c)) when
the latter is multiplied (scaled back) by the square root of the
scaling factor (i.e., square root of 3 in this case) and vice versa.
The results are shown in Figure 6. The analysis of dispersion
curves reinforces the condition that the guided not bulk wave
theory should be used in the case investigated, as discussed
further in Section 5.

In summary, two interesting observations can be made
after the analysis performed in this section. Firstly, the wave
amplitude increases when density is rescaled towards larger
values. Secondly, the inverse rescaling of waveforms allows
one to reproduce accurately the original wavelengths.

4. Magnetic Resonance Elastography:
Experimental Data

The MRE data from the experiments reported in [36] were
used as a reference in the current investigations.The phantom
used in the experiment was a 3D cylinder filled with 2%
agarose gel. The geometry of the cylinder was as follows:
diameter 150mm and height 20mm. The MRE tests were
conducted using the 1.5 T General Electric Signa CT scanner.
Thephantomwas placed in a head coil and an electromechan-
ical driver was placed on the top surface of the phantom in
order to generate shear waves corresponding to the excitation
frequency of 150Hz.The experimental setup used is shown in
Figure 7.

The propagation of elastic waves in the phantom was
imaged with an MRE pulse sequence sensitive to motion in
the horizontal direction.The shear wavelength was estimated
manually by calculating the distances between the adjacent
wave peaks. Also, the mean of shear wavelength was mea-
sured by averaging the wavelength over the four phase offsets.
Subsequently, for isotropic elastic infinite solid, an estimate
of the local shear modulus 𝐺 can be obtained from the local
estimate of wavelength 𝜆 as [13]

𝜆 =

1

𝑓

√

𝐺

𝜌

,

𝐺 =

𝐸

2 (1 + ])
.

(12)

The shear wavelength 𝜆 for phantom estimated by MRE was
38.00 ± 2.12mm at 150Hz. This corresponds to the mean
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Figure 5: Numerical simulations of shear wave propagation: (a) original waveform (density 𝜌 = 1 × 10
3 kg/m3); (b) dispersion curves

corresponding to the original waveform; (c) rescaled waveform (density 𝜌 = 3 × 10
3 kg/m3); (d) dispersion curves corresponding to the

rescaled waveform.
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Figure 6: Simulated shear waveforms: (a) after rescaling from 𝑆
3
to 𝑆
1
; (b) after rescaling from 𝑆

1
to 𝑆
3
.

value of 28.5 kPa for the shear modulus 𝐺. The shear mod-
ulus 𝐺 was also estimated using a dynamic multifrequency
shear test with the DMA 2980 machine for polymer testing
to obtain the value of 30 kPa. The density was estimated
experimentally as 𝜌 = 1.0 × 10

3 kg/m3.

5. Numerical Simulation Results

Numerical simulations of shear wave propagation in the
phantom described in Section 4 were performed using FE
and LISA models. The results are presented in this section.
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Figure 7: The experimental setup used for MRE tests: I. phantom;
II. applicator of the electromechanical driver; III. electromechanical
driver; IV. head coil [36].

5.1. Shear Wave Propagation in Soft Tissue. Simulated FE,
LISA, and experimental MRE shear wave propagation pat-
terns are presented in Figures 8(a), 8(b), and 8(c), respec-
tively.The simulated results were obtained for Young’s modu-
lus𝐸 = 90 kPa and the density 𝜌 = 1.0×10

3 kg/m3.The den-
sity scaling was applied in LISA models to avoid numerical
problems related to excessive wave attenuation. Subsequently,
the rescaling procedurewas used in postprocessing to recover
proper waveforms. The results in Figure 8 show that the
simulated and experimental wave patterns reveal the same
wavelengths. Small differences between FE and LISA models
can be attributed to different formulations of the FE and LISA
equations used and differences in meshes.

Subsequently, the out-of-plane displacement component
responses were acquired from the simulated (FE and LISA
models before and after scaling) and experimental (MRE
measurements) data.The results, presented in Figure 9, show
good agreement between simulated and experimental dis-
placements. It is also important to note that after scaling
the amplitude of the LISA model is improved. Next, the
shear wavelength was computed from the distance between
two successive peaks (or valleys). The wavelengths were
estimated as 𝜆

𝑓
= 37.5mm and 𝜆

𝑙
= 37mm for the simulated

FE and LISA models, respectively. These results correspond
quite well with the MRE-based experimental value of the
wavelength 𝜆

𝑚
= 38mm. However, the computational effort

of 10 seconds the LISAmodel compares favorably if compared
with the 2640 seconds for the FE model.

Following these investigations, simulated shear wave-
lengths, calculated for different values of elastic moduli and
density, were compared with the relevant analytical values
calculated from (7) and (8) for the bulk wave propagation
problem. Four different elastic moduli, that is, 30, 60, 90, and
120 kPa, and three different densities, that is, 0.5×10

3, 1×10
3,

and 2 × 10
3 kg/m3, were investigated. Figure 10 presents the

results for the 150Hz excitation frequency. Here, the three
continuous solid, dashed, and dotted curves give the values
of shear wavelengths calculated from (12) for infinitemedium
propagation model.

Although the results are quite consistent for lower values
of elastic moduli, significant discrepancies between numeri-
cally (FE and LISA) and analytically (bulk wave propagation
solution) estimated results can be observed for higher values

of elastic moduli (corresponding to larger wavelengths),
particularly for lower densities. These discrepancies are fur-
ther discussed in the next section.

5.2. Guided Wave Propagation in Soft Tissues. Equations (12)
provide the relationships between excitation frequency,wave-
length, and elastic constants for an infinite elastic space.Thus
any estimation of wavelengths, as discussed in the previous
sections, and consequently estimation of elastic properties
based on these wavelengths is accurate only for the infinite
space assumption. This assumption can be approximately
fulfilled for the following two conditions: (1) wavelength esti-
mates are made sufficiently far from the object’s boundaries;
(2) wavelengths are small when compared with distances
from the boundaries. Both conditions can be achieved when
excitation frequencies are selected to obtain sufficiently short
wavelengths. However, near the boundaries wavelength esti-
mations will not be accurate, unless the effect of the interfaces
is taken into account.

Figure 11 shows the through-thickness cross-section of
the wave propagation displacement field for the analysed
phantom model. The results, obtained for the 150Hz exci-
tation frequency, show that the displacement varies across
the thickness of the phantom, from a finite value (top) to
zero (bottom). This nonuniform displacement distribution
indicates that the wave field is strongly affected by the (top
and bottom) boundaries; as a result the (global) wavelength
is different from the wavelength for the assumed theoretical
infinite space case.

These numerically estimated values were compared in
Figure 10with the theoretical values obtained for the assumed
infinite space. The results show that the numerical and
analytical results start to diverge for wavelengths larger
than 20 ÷ 30mm. This corresponds to the thickness of
the phantom. Thus the analysed wave propagation field in
the phantom corresponds to the guided wave field rather
than to the bulk wave field (assumed in (12)). Guided wave
propagation involves partial waves, that is, waves propagating
in an infinite space that interact with the (top and bottom)
boundaries. These partial waves undergo multiple reflections
andmode conversions forming global displacement patterns,
that is, wave modes. Therefore, wavelength estimation in
the analysed model should involve the relevant dispersion
equations for guided waves rather than (7) and (8) for
bulk waves. This problem can be solved semianalytically or
numerically, as illustrated in [48]. A semianalytical approach,
based on the LISA iteration equations, was used in the
current paper for wavelength estimation. The vertical (𝑦)
displacement component at the bottom surface of the phan-
tom was constrained. The results for various Young’s moduli
and densities are presented in Figure 12. This time, the
wavelengths estimated from the guided wave propagation
model are compared with the relevant wavelengths estimated
from the FE infinite space model (i.e., from (12)). When
the results are analysed two distinct wavelength ranges can
be distinguished in Figure 12. The semianalytical solution
for guided wave propagation compares very well with the
bulk wave model for wavelengths shorter than 20 ÷ 30mm.
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(a) (b) (c)

Figure 8: Shear wave propagation patterns for the agarose gel phantom: (a) FE mode [40]; (b) LISA model; (c) MRE experiment [36].
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Figure 9: Shear wave propagation, comparison of displacement
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and MRE measurements.
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In contrast, the results for the guided and unbounded media
differ significantly for longer wavelengths. The results in
Figures 11 and 12 indicate that the guided wave propagation
model rather than the bulkwave propagationmodel (that was
originally employed in [36]) should be used for wavelength
estimation in the case investigated.
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Figure 13: Five different model boundary condition, for both the
FE and semianalytical LISAmodels; (1) 20mm 𝑦 fixed, (2) 20mm 𝑥

fixed, (3) 20mm free, (4) 40mm 𝑦 fixed, (5) 40mm free (for Young’s
modulus 𝐸 = 90 kPa and density 𝜌 = 1.0 × 10

3 kg/m3).

Since guided wave propagation is inevitably associated
with wave interactions with boundaries, the effect of bound-
ary conditions was investigated. Two different boundary
conditions, namely, fixed and free ends, were examined.
Altogether five different model scenarios, for both the
FE and semianalytical LISA models, were analysed: (1)
20mm thick phantom with bottom surface fixed in the 𝑦-
direction; (2) 20mm thick phantom with the 𝑥-component
fixed; (3) 20mm thick phantom with the free boundaries;
(4) 40mm thick phantom with the 𝑦-direction fixed; and
(5) 40mm thick phantom with the free boundaries. The
relevant calculations were performed for Young’s modulus
𝐸 = 90 kPa and density 𝜌 = 1.0 × 10

3 kg/m3. All
numerically simulated results are presented in Figure 13 and
compared with the semianalytical guided wave results. The
comparison of the results obtained for the 20mm thick
phantom between the first three model scenarios investi-
gated shows that the estimated wavelength increases when
the boundary is fixed. Significantly different responses are
obtained particularly for the 𝑦-constrained direction. This
can be attributed to the dominant shear wave propagating
in the phantom. In other words analysed displacements
are mainly in the 𝑦-direction and thus the response is
more sensitive to this type of boundary condition; thus, a
substantial increase in the wavelength can be observed for
the model with the 𝑦-displacement component constrained,
as expected.

When the 40mm thick phantom is analysed, the wave-
length is larger for free conditions, if compared with the
relevant 20mm thick phantom in the semianalytical model.
The value of wavelength is then further increased by the
constraint in the 𝑦-direction (comparison of scenarios (4)
and (5), in the 40mm case) but an opposite trend was
observed for the FE model when boundaries are changed
from the free to the constrained in 𝑦-direction. How-
ever, it is important to note the wavelength was calcu-
lated in this case from the peak distances and was less
accurate than the semianalytical solution to the dispersion
relation.

6. Conclusions

A 3D rescaled LISA model has been proposed for shear
wave propagation analysis. Numerical simulations have been
performed to analyze the shear wavelength, that is, the
primary parameter characterizing shear modulus, in order
to examine several factors that influence shear modulus
estimation in homogenous phantoms.

The results show that rescaled LISA can be used very
efficiently for shear wave propagation modelling in MRE
investigations. Good results agreements have been achieved
between the LISA-based, FE model, and experimental MRE
measurements.Themajor advantage of the proposed rescaled
LISA method is computational efficiency. Significant reduc-
tions of computational effort have been achieved when
compared with the classical FE modelling approach. The
computational time was reduced more than 260 times for the
case investigated.

The results also demonstrate that shear wavelength esti-
mated from the presented LISA and FEmodels are reasonably
close to the theoretical calculations, for homogenous elastic
cylindrical phantoms investigated, for shorter wavelengths
(i.e, for lower Young’smoduli and high densities). In contrast,
the solutions based on guided wave propagation are more
accurate for longer wavelengths. Also by the rescaling pro-
cedure which is presented in this paper, the wave amplitude
problems related to numerical errors in soft tissuesmodelling
can be avoided. This analysis can serve as an indicator
of interfacial conditions for complex wave propagation in
biological tissues.
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