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Abstract: The aim of the present study was to bring additional evidence regarding a biopredictive
dissolution medium containing 1% sodium lauryl sulphate (SLS) to predict the in vivo behavior of
carbamazepine (CBZ) products. Twelve healthy volunteers took one immediate release (IR) dose
of either test and reference formulations in a bioequivalence study (BE). Dissolution profiles were
carried-out using the medium. Level A in vitro–in vivo correlations (IVIVC) were established using
both one-step and two-step approaches as well as exploring the time-scaling approach to account
for the differences in dissolution rate in vitro versus in vivo. A detailed step by step calculation was
provided to clearly illustrate all the procedures. The results show additional evidence that the medium
containing 1% SLS can be classified as a universal biopredictive dissolution tool, and that both of
the approaches used to develop the IVIVC (one and two-steps) provide good in vivo predictability.
Therefore, this biopredictive medium could be a highly relevant tool in Latin-American countries to
ensure and check the quality of their CBZ marketed products for which BE studies were not requested
by their regulatory health authorities.

Keywords: carbamazepine; in vitro in vivo correlation; dissolution; biopredictive; bioequivalence;
biowaiver

1. Introduction

Carbamazepine (CBZ) is a drug widely used in the treatment of epilepsy and trigeminal neuralgia.
CBZ is a Biopharmaceutics Classification System (BCS) class II drug with a low aqueous solubility and
high permeability [1]. Therefore, the drug is poorly soluble in aqueous media [2]. Besides its poor
aqueous solubility, other attributes such as a narrow therapeutic index and relatively high variability
have been recognized as obstacles for CBZ product development for bioequivalence proposals [3].

In vitro–in vivo correlations (IVIVC) are widely used tools in biopharmaceutic research in order to
speed up the product development for quantifying the in vivo release, evaluating formulation-related
effects on absorption and as a tool for setting in vitro dissolution specifications [4,5]. The FDA
recognizes four levels of IVIVC: Level A, B, C, and multiple Level C. The most desired is the Level
A category of IVIVC. It is defined as a point-to-point relationship between in vitro dissolution and
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the in vivo response, such as plasma drug concentration or amount of drug absorbed [4]. Level A
regression may be complicated due to differences in time scales as well as the lack of coincident
times of similar release in vitro and in vivo [6,7]. Discrepancies between in vivo and in vitro times are
observed by faster in vitro dissolution compared to in vivo release or by differences in shape between
the two curves. In both cases, a direct relationship between in vitro and vivo data cannot be set up
simply. The most used approach to determine time scaling is the so-called Levy plot. Times at which
in vivo and in vitro the same percentage is absorbed and dissolved, respectively, are plotted in the
Levy plot [7,8].

However, the major objective of a validated IVIVC is to use in vitro dissolution data to predict
in vivo performance, serving as a surrogate for an in vivo bioequivalence (BE) study, e.g., supporting
a biowaiver approach. In classical two-stage approaches, fraction dissolved, obtained from in vitro
dissolution profiles is typically used together with corresponding in vivo fraction absorbed obtained by
deconvolution of observed plasma concentrations [6]. On the other hand, the one-stage approach uses
the in vitro dissolution data and pharmacokinetic characteristics of the drug to obtain the adequate
link function of the plasma drug concentrations, directly by convolution [9].

Some authors have already described a universal (for CBZ) biopredictive feature of dissolution
medium containing 1% sodium lauryl sulphate (SLS), which is available in the USP Pharmacopeia [10,11].
This medium has been used for quality control proposal and additionally as a biorelevant dissolution
medium since Kovaĉević, I. et al. [1] performed gastrointestinal simulations as well as established
IVIVC for both immediate and modified release formulations of CBZ. Additionally, González-García,
I. et al. [12] recently applied the IVIVC approach using the USP medium described above,
showing the biopredictive feature of this medium, which causes the immediate release of formulations
with conventional excipients, even if different batches and in vivo/in vitro studies are combined.
The biopredictive dissolution method is defined by Suarez-Sharp et al. [13] as a set of testing conditions
in which in vitro dissolution profiles can predict the pharmacokinetic profiles.

The aim of the present study was to perform an IVIVC for two CBZ immediate release formulations
(used in a pilot BE study) using both a one-step and two-steps approaches as well as to explore the
time-scaling approach to account for the differences in dissolution rate in vitro versus in vivo. A detailed
step by step calculation was provided to clearly illustrate all the procedures. Moreover, this paper
intends to bring additional evidence of using of IVIVC-based biowaiver for BCS class II drugs.

2. Materials and Methods

2.1. Formulations

CBZ 400-mg tablets (test formulation) and Tegretol® (reference formulation) were purchased in
the local Brazilian market.

2.2. Bioanalytical Method

Plasma concentrations of CBZ were determined using liquid chromatography with tandem
mass spectrometry assay—LC-MS/MS (Waters) with electrospray ionization source in positive mode.
Carbamazepine-d8 was used as internal standard. The chromatographic separation was performed
at 40 ◦C using a column X-Bridge C18 (4.6 × 50 mm, 3.5 µm) and flow rate of 0.50 mL/min.
The quantification was performed by using multiple reaction monitoring (MRM) mode of the
transitions at m/z 237.051 > 194.240 and m/z 244.600 > 202.300 for CBZ and carbamazepine-d8,
respectively. The analytes were extracted from plasma using protein precipitation with methanol as
solvent. The mobile phase used was 0.1% formic acid and methanol at a 35:65 ratio (v/v) and the
injection volume was 5 µL and the total run time set as 4 min.

The bioanalytical method was validated in compliance with ANVISA guidance for bioanalytical
method validation [14] and FDA Bioanalytical Method Validation Guidance for Industry [15].
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2.3. Bioequivalence Study

The bioequivalence study was approved by the Research Ethics Committee (protocol number
3.085.454). All procedures were conducted in the Clinical Trials Center in accordance with the principles
of Good Clinical Practice guidelines [16], the Declaration of Helsinki [17], and Resolution 466/2012
(Ministério da Saúde, Brazil) [18,19]. Written informed consent from all participants was obtained
prior to the enrollment.

All participants were aged between 18 and 50 years with a body mass index between 18.5 and
29.9 kg/m2. All subjects showed good health conditions or the absence of significant diseases after
assessment of medical history, verification of vital signs, physical examination, electrocardiogram
and routine laboratory tests. The study design was randomized, single dose, fasting, two-period,
two-sequence crossover with a 14-days washout period. Twelve adult healthy subjects of both genders
were enrolled in the study and eleven (6 women and 5 men) subjects completed the two study periods.
The blood samples (7.5 mL each) were obtained at 0 h (pre-dose) and at 1.00, 2.00, 3.00, 3.50, 4.00,
4.50, 5.00, 5.50, 6.00, 8.00, 10.0, 12.0, 24.0, 48.0 and 72.0 h post-dose during each period. Each blood
sample was collected in EDTA tubes as anticoagulant at each time point. Collected blood samples
were centrifuged immediately (3500 rpm for 10 min at 4 ◦C) and plasma was separated and stored
frozen at −20 ◦C with appropriate labeling until sample analysis.

2.4. Pharmacokinetic and Fraction Absorbed Analysis

The pharmacokinetic parameters were obtained from the curves of plasma concentration versus
time for CBZ and statistically compared for determination of bioequivalence, using Phoenix WinNonlin
software version 8.0 (Bioequivalence Wizard module). The area under the curve from zero to the last
quantifiable concentration (AUCt) was calculated by the trapezoidal method, and the area under the
curve from zero to infinity (AUC∞) was calculated by the formula AUCt+ (Cn/kel), where Cn was
the last quantifiable plasma concentration. Due to the long elimination half-life (t1/2) of CBZ, it was
considered area under the curve (AUC) truncated (72 h). The elimination rate constant (kel) was
determined by the elimination phase of the graph of log plasma concentration versus time. The t1/2

was defined using the equation t1/2 = Ln(2)/kel. The maximum plasma drug concentration (Cmax) was
obtained directly from the experimental data, as well as the time of the occurrence of Cmax (tmax).

Bioequivalence assessment was based on predefined acceptance criteria of 80.00–125.00% for
the 90% confidence interval for the ratio of the test and reference products for the log-transformed
data of AUC and Cmax, as recommended by (19), and FDA [20]. An ANOVA was performed for the
primary parameters estimated (Cmax and AUC) to evaluate formulation, sequence, and period as fixed
effects and to estimate the residual variance to construct the confidence intervals [21]. More detailed
calculations are reported in Appendix A.

The drug absorption was estimated using numerical deconvolution method from Wagner–Nelson.
This mass balance method, with First order elimination, was employed because it is the most suitable for
one-compartment drugs and has been shown to adequately describe the pharmacokinetic absorption
profile of CBZ:

Fabs =
At

A∞
=

Ct + kel×AUCt

kel×AUC∞
(1)

Equation (1) is the Wagner–Nelson equation that represents the fraction absorbed of the bioavailable
dose at time t. Fabs is the fraction absorbed; At is the drug amount absorbed at time t; A∞ is the drug
amount absorbed at infinite time, Ct is the drug concentration at time t; kel is the elimination rate
coefficient; AUCt is the area under the curve from time zero to the last quantifiable concentration and
AUC∞ is the area under the curve from zero to infinity.

2.5. In Vitro Dissolution Testing and Modelling

Dissolution study was performed in the PhEur/USP rotating paddle apparatus at 75 rpm using
900 mL of dissolution medium. The medium was a 1% sodium lauryl sulfate (SLS) aqueous solution.
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Dissolution study was performed with the same batches used in the in vivo study. CBZ concentrations
on the dissolution samples were analyzed by HPLC. Samples of 5mL were taken at 5, 10, 15, 30, 60 and
120 min. The experiment was performed with twelve tablets for each formulation.

First order and Weibull models were fitted to the data (fractions dissolved, Fdiss) of each formulation.
Weibull equation

Fdiss = 100·
(
1− e(−

(tβ)
α )

)
(2)

where Fdiss are fractions dissolved and β and α are the Weibull parameters
First order equation

Fdiss = 100·
(
1− e(−kd·t)

)
(3)

where kd is the dissolution rate constant. First order equation is a particular case of Weibull model
when β = 1; then kd = 1/α

The best model was selected based on the correlation coefficient of experimental versus predicted
values, the Akaike’s information criteria (AIC), and the residual variance comparison with Snedecor’s
F tests [22,23].

Fitting procedures were performed in Excel with DDsolver add-in [24].
With the Weibull parameters of each profile, it is possible to calculate the time needed for the

dissolution of any desired fraction dissolved with Equation (4):

tvitro =
β

√
α ∗ (−1) ∗ ln

100− Fabs
100

(4)

where β and α are the Weibull parameters (from Equation (2)) and Fabs the corresponding fraction
absorbed (dissolved) in vivo.

2.6. IVIVC Two-Step Aproach

In the two-step approach fractions dissolved and absorbed at the same time points are correlated.
The scheme of the calculations for the two-step approach is represented in Figure 1.Pharmaceutics 2020, 12, x FOR PEER REVIEW 5 of 22 
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Figure 1. Steps describing the calculations to establish a two-step in vitro–in vivo correlations (IVIVC)
when in vivo and in vitro dissolution processes take place at different rate and in consequence the time
scale is different.
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As the time scale was different on the in vitro and the in vivo assays, a Levy plot was
necessary. To construct the Levy plot, a dissolution model is fitted to fraction dissolved data
(step 1). Fraction-absorbed values were interpolated into the dissolution model and the equivalent
in vitro times were obtained with Equation (4) and the Weibull parameters from each dissolution
profile (step 2). In vitro and in vivo times were represented together and the Levy plot correlation
parameters estimated (in the present paper, a linear one) (step 3). In vivo times were included up
to 24 h for the test formulation and up to 12 h for the reference as later on the relationship was no
longer univocal.

With the Levy equation, the in vitro sampling times were converted to their equivalent in vivo
times (step 4). The objective of this procedure is to have the dissolution profile and the absorption
profile in the same time-scale to check if they are directly superimposable.

As the dissolution in vitro profiles are scaled with the equivalent in vivo time, the Weibull model
was fitted again to the data to obtain the scaled Weibull parameters (step 5).

The new Weibull parameters were used to estimate the fraction dissolved at the original in vivo
times (step 7) so that, finally, fractions absorbed and dissolved at the same times could be plotted and
the IVIVC linear relationship characterized (step 8).

To determine the predictability of the IVIVC correlation, predicted fractions absorbed (y) from the
linear IVIVC (using the fractions dissolved (x)) were back-transformed into plasma concentrations
using the following equation from Gohel et al. [25].

Ct+1 =

( 2·∆Fabs·D
Vd

)
+ Ct·(2−Kel·∆t)

(2 + Kel·∆t)
(5)

where Ct+1 is the plasma concentration at time (t + 1) and then Ct is the plasma concentration in
the previous sampling time, t. ∆t is the time interval between a sampling time and the next one
and Fabs are the predicted fractions absorbed from the IVIVC correlation. D is the CBZ dose, kel the
elimination rate constant and Vd the apparent distribution volume. This Vd values was estimated with
the following equation.

Vd =
D

(AUC∞0 ·kel)
(6)

kel (0.0159 h−1) and AUC (area under the curve from time zero to infinity) (371,958.8 ng/mL∗h)
values were the average values from both formulations. The estimated or apparent Vd (Distribution
volume divided by the bioavailability F (Vd/F)) was 67,698 mL.

2.7. IVIVC One-Step Approach

In the one-step approach, the fractions dissolved from test and reference were directly convoluted
with the adequate scale factors with the pharmacokinetic parameters of CBZ (kel and Vd) to estimate
plasma levels.

A system of differential equations was set up to simultaneously fit fractions dissolved (to a Weibull
equation as described previously) and plasma levels.

Four differential equations were defined, two for each formulation, representing the fraction
dissolved (dFdissx/dt) and the plasma levels (dCx/dt) where x is reference or test

dFdissTest
dt

=
(
betaTest× Fdissmax×

(
tbetaTest−1

))
× e(

(−(tbetaTest))
al f aTest )

)/al f aTest (7)

dFdissRe f
dt

=
(
betaRe f × Fdissmax×

(
tbetaRe f−1

))
× e(

(−(tbetaRe f ))
al f aRe f )

)/al f aRe f (8)

where Fdissmax is the maximum dissolved fraction which was fixed to 1 (100%); betaTest, alfaTest, betaRef
and alfaRef were the parameters of the Weibull equation for the in vitro dissolution for both Test and



Pharmaceutics 2020, 12, 558 6 of 21

Reference formulations respectively. These two differential equations are simply the derivatives of
Equation (2).

In order to estimate the plasma levels, the differential equation describing how drug amounts
in the body change with time (dMass/dt) is designed taking into account the input rate and the
elimination rate.

In a one-compartment pharmacokinetic model with First order elimination, the elimination rate
in terms of drug mass is kel*Mass. The input rate into the system is limited by the drug dissolution
(that is drug cannot be absorbed until dissolved), thus dissolution rate (defined by the two previous
equations) corresponds to the input rate into the system (body). There are two modifications needed
to estimate the in vivo input rate. In Equations (7) and (8), the dissolution rate is defined in terms of
fractions dissolved, then to estimate the in vivo mass dissolved the previous equations are multiplied
by the dose to get the input rate.

dMassTest
dt

=
(
Dose× betaTvivo×

(
tbetaTvivo−1

))
× e(

(−(tbetaTvivo))
al f aTvivo )

)/al f aTvivo− kel×MassTest (9)

dMassRe f
dt

=
(
Dose× betaRvivo×

(
tbetaRvivo−1

))
× e(

(−(tbetaRvivo))
al f aRvivo )

)/al f aRvivo− kel×MassRe f (10)

The Weibull parameters for the in vivo dissolution of the Test formulation were betaTvivo and
alfaTvivo. betaRvivo and alfaRvivo were the Weibull parameters for the in vivo dissolution of the
Reference formulation. MassTest and MassRef correspond to the amounts in plasma of CBZ from Test
and Reference formulation and kel was the elimination rate constant.

Finally, amounts in plasma (Mass) are transformed in plasma levels dividing the amounts by the
distribution volume (Vd) previously defined.

The link between in vitro and in vivo dissolution was established through a scaling factor (as in
the two-step approach) of the Weibull parameters. The scaling factors (scalfa and scbeta) must be the
same for both formulations.

al f aTvivo = scal f a× al f aTest (11)

al f aRvivo = scal f a× al f aRe f (12)

betaTvivo = scbeta× betaTest (13)

betaRvivo = scbeta× betaRe f (14)

Fitting procedures were carried out with Phoenix WinNonlin (version 8.0) and Berkeley Madonna
9.1.19 with similar results. Codes in both software are provided in the Appendix A.

3. Results and Discussion

Figure 1 shows the average plasma levels for both assayed formulations (test and reference).
Figure A1 in the Appendix A represents the individual plasma levels, and Figure A2 includes the
average levels with error bars.

When the Tmax variability across individuals is very high (due to, for instance, a highly variable
lag time (Tlag)), it could be possible that the average plasma profile does not represent the individual
behavior, which complicates the development of an IVIVC. Nevertheless, if the Tlag and Tmax of all
subjects and of the mean curves are close together (as it is the case in the present data), the use of a
mean curve will not dramatically modify the results [6]. Consequently, it was decided that average
plasma levels for deconvolution would be used.

As there is no intravenous CBZ data available, we could not identify the pharmacokinetic
compartmental model of the drug. Nevertheless, in the literature, CBZ oral profiles have been
successfully described with a one-compartment model with reasonable accuracy [26–28].
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For that reason, the Wagner–Nelson deconvolution method was selected to estimate
bioavailable fractions.

Figure 2 represents the fractions absorbed (actually bioavailable fractions) obtained by the Wagner–
Nelson method. The plot is restricted up to 40 h to clearly show the differences on the initial times.
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In spite of the fact that the CBZ true compartmental pharmacokinetic model might be a
two-compartment one, due to its lipophilicity ad long half-life, the Wagner–Nelson mass balance
did not detect any relevant bias. As it can be observed in Figure 3, the fractions absorbed smoothly
increase up to 100% without surpassing this value, as it is frequent when the procedure is applied to a
two-compartment drug. This fact confirms the suitability of the one-compartment pharmacokinetic
model to describe the CBZ absorption profile.Pharmaceutics 2020, 12, x FOR PEER REVIEW 8 of 22 

 

 

Figure 3. Bioavailable fractions (usually described as Fractions absorbed) obtained by Wagner–
Nelson analysis from reference and test formulations. 

3.1. Bioequivalence Results 

Table 1 summarized the results of the pilot bioequivalence study (N = 11). 

Table 1. Summary results of the pilot bioequivalence study (N = 11). 

Parameter * Geometric Mean Ratio % 90% CI Power (1-Beta) % CVws % 
Cmax 126.54 118.33–135.31 99.9 8.55 

AUCt 117.42 110.88–124.34 99.9 7.31 
AUCinf 111.60 104.34–119.37 99.9 8.59 

* Parameters logarithmically Ln-transformed. Cmax, maximum plasma concentration; AUCt, area 
under the concentration-time curve from 0 to 96 h; AUCinf, area under the concentration–time curve 
extrapolated to infinity; CI, confidence interval; CVws, coefficient of variation within subject. Detailed 
equations for calculations of parameters (geometric mean ratio, CI and CVws are included in 
Appendix). 

Statistical analysis of the bioequivalence study was performed with the adequate procedures for 
an average bioequivalence cross over design (two periods, two sequences, two formulations). The 
observed residual variability was low (less than 20%) thus the confidence interval calculation did not 
need any correction and the acceptance range was 0.8 to 1.25.  

As it could be expected for a class II drug (low solubility, high permeability), the observed failure 
is on the pharmacokinetic parameter associated with the rate of absorption, Cmax. In a low solubility 
drug, the dissolution process can be the limiting factor for absorption, consequently formulation 
factors (as excipients) and drug factors (as particle size) affecting dissolution rate can influence Cmax. 
As long as the dissolution of both formulations is completed during transit time, the extent of 
absorption, due to the high permeability, will be complete and similar (reflected in equivalent AUC 
values). In summary, Table 1 reflects the bioequivalence failure in absorption rate conditioned by the 
drug products dissimilar in vivo dissolution, leading to different input rates in the systemic 
circulation.  

3.2. Modeling Dissolution Data 

First order and Weibull dissolution models were fitted to the in vitro dissolution data, but the 
best fit was obtained with the Weibull model. Table 2 summarizes the kinetic parameters and several 
indexes of goodness of fit. As it can be seen for both formulations, the Weibull model provided a 
statistically significant better fit. 

Figure 3. Bioavailable fractions (usually described as Fractions absorbed) obtained by Wagner–Nelson
analysis from reference and test formulations.

3.1. Bioequivalence Results

Table 1 summarized the results of the pilot bioequivalence study (N = 11).
Statistical analysis of the bioequivalence study was performed with the adequate procedures

for an average bioequivalence cross over design (two periods, two sequences, two formulations).
The observed residual variability was low (less than 20%) thus the confidence interval calculation did
not need any correction and the acceptance range was 0.8 to 1.25.

As it could be expected for a class II drug (low solubility, high permeability), the observed failure
is on the pharmacokinetic parameter associated with the rate of absorption, Cmax. In a low solubility
drug, the dissolution process can be the limiting factor for absorption, consequently formulation factors
(as excipients) and drug factors (as particle size) affecting dissolution rate can influence Cmax. As long
as the dissolution of both formulations is completed during transit time, the extent of absorption,
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due to the high permeability, will be complete and similar (reflected in equivalent AUC values).
In summary, Table 1 reflects the bioequivalence failure in absorption rate conditioned by the drug
products dissimilar in vivo dissolution, leading to different input rates in the systemic circulation.

Table 1. Summary results of the pilot bioequivalence study (N = 11).

Parameter * Geometric Mean Ratio % 90% CI Power (1-Beta) % CVws %

Cmax 126.54 118.33–135.31 99.9 8.55

AUCt 117.42 110.88–124.34 99.9 7.31

AUCinf 111.60 104.34–119.37 99.9 8.59

* Parameters logarithmically Ln-transformed. Cmax, maximum plasma concentration; AUCt, area under the
concentration-time curve from 0 to 96 h; AUCinf, area under the concentration–time curve extrapolated to infinity;
CI, confidence interval; CVws, coefficient of variation within subject. Detailed equations for calculations of
parameters (geometric mean ratio, CI and CVws are included in Appendix A).

3.2. Modeling Dissolution Data

First order and Weibull dissolution models were fitted to the in vitro dissolution data, but the
best fit was obtained with the Weibull model. Table 2 summarizes the kinetic parameters and several
indexes of goodness of fit. As it can be seen for both formulations, the Weibull model provided a
statistically significant better fit.

Table 2. Fitted parameters of Weibull function and First order model to the in vitro dissolution data.
Indexes of goodness of fit: R_obs_pred: correlation coefficient of experimental versus predicted
values. AIC: Akaike’s information criteria. SS: sum of squared residuals. Df: degrees of freedom
estimated as number of data minus number of parameters. Ftab: tabulated F value for 0.05 probability.
Fcal: calculated F value.

Parameter
Weibull First Order

Test Reference Test Reference

α 0.418 0.787 / /

β 0.687 0.47 / /

kd(h−1) / / 3.837 2.122

R_obs-pre 0.996 0.994 0.995 0.982

AIC 22.972 22.246 33.532 43.880

SS 23.618 20.926 191.575 1074.971

df 4 4 5 5

Ftab(0.05;1:4) 7.709

Fcalc Test 28.445 Fcal > Ftab Weibull model is the best

Fcalc Ref 201.482 Fcal > Ftab Weibull model is the best

Correlation coefficients of the Weibull model were higher than the ones obtained with the First
order model. AIC values were lower for the more complex model, indicating a better fit than the simple
model. The sum of squared residuals was clearly smaller for the Weibull function. When residual
variances (Sum of squared corrected by their degrees of freedom) were compared through F test,
the comparison indicated a statistically significant improvement with the Weibull model versus the
First order equation. As the best model was the same for both formulations, it also indicated a similar
dissolution mechanism.

The dissolution media and method used in this study were selected based on previous
reports, indicating its biopredictive ability and previously developed IVIVC. Taking into account the
reported values for CBZ solubility (2.96 mg/mL in deionized water containing 1% of SLS [29] and
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3.412 ± 0.13 mg/mL in the same media [30]) 900 mL of media does not provide sink conditions for a
400 mg tablet. The maintenance of sink conditions is, in general, required in quality control media,
but for IVIVC, non-sink conditions can be of application. In actuality, non-sink conditions can be
more reflective of the in vivo environment in which the available volume for dissolution is less than
500 mL [31]. Other authors have recently proposed a non-sink dissolution permeation method to
discriminate among CBZ formulations with and IVIVC developed with mice data [32].

When in vitro fractions dissolved versus time plots and in vivo fractions absorbed versus time
were compared, it is obvious that the time scales are different, i.e., dissolution is completed in less than
4 h while in vivo absorption took almost 20 h to be completed. In consequence, the direct correlation
of fractions absorbed versus fractions dissolved is not possible without the time scaling procedure.

3.3. In Vitro–In Vivo Data Modeling

To establish the ivivc it is necessary to establish, first of all, a Levy-plot
Table 3 in columns 1 to 4 summarizes the calculations to obtain the in vitro times that can be used

to construct the Levy plot represented in Figure 4.
Table 4 represents the in vitro original times scaled to in vivo times using the Levy plot. Once the

in vitro times have been scaled up to in vivo times, then the scaled dissolution profile, represented in
Figure 5, can be used to construct the Level A IVIVC.
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Table 3. Columns 1 to 4: Calculations for the Levy plot. Second and third column are the original
in vivo data. Fourth column, “t vitro” are obtained from the Weibull function used to fit the in vitro
profiles of each formulation using Equation (4) (see step 2 in Figure 1) and interpolation fraction
absorbed values, i.e., in the in vitro dissolution profile it takes 0.1 h to get 39.23% dissolved. Column
5 fractions dissolved estimated at the original in vivo sampling times. Column 3 and 5 were used to
represent the IVIVC. Columns 6 and 7 predicted fractions absorbed from the IVIVC linear relationship
and the back-calculated predicted plasma concentrations.

1 2 3 4 5 6 7

Formulation T Vivo (h) Fabs Vivo
T Vitro

Equivalent
to T Vivo (h)

Interpolated
Fdiss

Fabs Predicted
with IVIVC

Conc Predicted
(ng/mL)

Test 1 39.23 0.10 22.33 0.31 1829.6

Test 2 50.50 0.17 42.76 0.48 2813.7

Test 3 60.14 0.25 58.80 0.62 3564.5

Test 3.5 64.55 0.30 65.27 0.68 3858.3

Test 4 69.50 0.36 70.83 0.72 4104.3

Test 4.5 75.54 0.46 75.57 0.76 4307.9

Test 5 74.89 0.45 79.60 0.80 4474.5

Test 5.5 75.40 0.46 83.01 0.83 4608.8

Test 6 76.74 0.49 85.89 0.85 4715.3

Test 8 82.36 0.63 93.41 0.91 4938.1

Test 10 88.90 0.88 97.01 0.94 4960.6

Test 12 92.68 1.14 98.68 0.96 4887.2

Test 24 99.34 2.93 99.99 0.97 4096.8

Test 100.00 0.97 2785.3

Test 100.00 0.97 1893.4

Ref 1 24.90 0.04 25.96 0.34 2009.8

Ref 2 37.73 0.12 38.31 0.45 2590.2

Ref 3 53.43 0.34 47.14 0.52 2987.1

Ref 3.5 58.02 0.44 50.76 0.55 3143.6

Ref 4 60.96 0.53 53.99 0.58 3279.4

Ref 4.5 67.24 0.76 56.89 0.60 3397.9

Ref 5 65.22 0.67 59.52 0.63 3501.8

Ref 5.5 67.72 0.78 61.91 0.65 3593.2

Ref 6 68.49 0.82 64.10 0.67 3673.8

Ref 8 73.18 1.08 71.28 0.73 3911.7

Ref 10 77.45 1.40 76.62 0.77 4052.2

Ref 12 84.31 2.22 80.72 0.81 4127.4

Ref * 24 98.46 12.53 92.90 0.91 3964.7

98.58 0.96 2933.2

99.63 0.97 2038.4

* Indicated excluded value for the Levy plot.
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Table 4. Vitro times scaled to vivo times using the Levy plot.

Formulation Original t Vitro (hours) Scaled t Vitro to t Vivo (Hours)

Test 0.083 1.785

Test 0.167 2.359

Test 0.250 2.933

Test 0.500 4.655

Test 1.000 8.099

Test 2.000 14.988

Ref 0.083 1.785

Ref 0.167 2.359

Ref 0.250 2.933

Ref 0.500 4.655

Ref 1.000 8.099

Ref 2.000 14.988

The scaled profiles were again used to fit the Weibull model and obtain the scaled Weibull
parameters which are summarized in Table 5.

Table 5. Weibull parameters of the in vitro profile scaled up to the in vivo times.

Parameter Test Parameter Reference

α 3.958 α 3.327

β 1.143 β 0.684

With the new Weibull parameters, it is possible to estimate the fraction dissolved at any time.
Table 3 in column 5 shows the in vitro dissolved fractions estimated at the same equivalent in vivo
times with the new scaled Weibull parameters.

The data in Figure 6 represent the final two-step Level A IVIVC.Pharmaceutics 2020, 12, x FOR PEER REVIEW 12 of 22 
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The linear correlation depicted in Figure 6 presents a good determination coefficient (R2) and
it is clearly a single relationship for both formulations. Both aspects indicate in the first place that
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dissolution is the limiting step for the input of CBZ in the systemic circulation, and—in second
place—that the in vitro method, despite its simplicity, reproduced the in vivo dissolution.

3.4. Two-Step IVIVC Predictability

In order to check the predictability of the correlation, the theoretical fractions absorbed were
estimated from the fractions dissolved through the linear relationship (see Figure 6). The theoretical or
predicted Fabs were back-transformed in plasma concentrations represented in Figure 7 and Table 3
(column 7), and the prediction error of Cmax and AUC was estimated.

Pharmaceutics 2020, 12, x FOR PEER REVIEW 12 of 22 

 

 

Figure 6. Two-step IVIVC model. 

The linear correlation depicted in Figure 6 presents a good determination coefficient (R2) and it 
is clearly a single relationship for both formulations. Both aspects indicate in the first place that 
dissolution is the limiting step for the input of CBZ in the systemic circulation, and—in second 
place—that the in vitro method, despite its simplicity, reproduced the in vivo dissolution.  

3.4. Two-Step IVIVC Predictability 

In order to check the predictability of the correlation, the theoretical fractions absorbed were 
estimated from the fractions dissolved through the linear relationship (see Figure 6). The theoretical 
or predicted Fabs were back-transformed in plasma concentrations represented in Figure 7 and Table 
3 (column 7), and the prediction error of Cmax and AUC was estimated.  

 
Figure 7. Experimental and predicted plasma levels of both carbamazepine (CBZ) formulations with 
the two-step IVIVC Level A approach. 

Prediction errors of the two-step approach are summarized in Table 6. 

Table 6. Predictability analysis of the two-step IVIVC approach. 

Parameter Experimental Predicted % Error 
Cmax Test (ng/mL) 5135.86 4960.58 3.41 
Cmax Ref (ng/mL) 3995.05 4127.41 −3.31 

AUCt Test (ng/mL*h) 388,931.0 355,617.0 8.57 
AUCt Ref (ng/mL*h) 354,986.6 364,858.3 −2.78 

Figure 7. Experimental and predicted plasma levels of both carbamazepine (CBZ) formulations with
the two-step IVIVC Level A approach.

Prediction errors of the two-step approach are summarized in Table 6.

Table 6. Predictability analysis of the two-step IVIVC approach.

Parameter Experimental Predicted % Error

Cmax Test (ng/mL) 5135.86 4960.58 3.41

Cmax Ref (ng/mL) 3995.05 4127.41 −3.31

AUCt Test (ng/mL∗h) 388,931.0 355,617.0 8.57

AUCt Ref (ng/mL∗h) 354,986.6 364,858.3 −2.78

From a regulatory point of view, the prediction errors were within the accepted limits (up to 15%
for each formulation with an average of 10% for all formulations) [4,5].

In conclusion, the in vitro dissolution profiles can be used to predict plasma levels of CBZ from
its IR products.

3.5. IVIVC One-Step

In Figure 8 the experimental and predicted values in vitro and in vivo with the one-step approach
are displayed.

The prediction errors with the one-step IVIVC approach are summarized in Table 7.
Parameters of the model are summarized in Table 8.
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Figure 8. Experimental (symbols) and predicted (lines) in vitro fraction dissolved and plasma levels
from reference and test formulations with the one-step IVIVC Level A approach.

Table 7. Predictability analysis of the one-step IVIVC approach.

Parameter Experimental Predicted % Error

Cmax Test (ng/mL) 5135.86 5093.17 0.83

Cmax Ref (ng/mL) 3995.05 4053.67 −1.47

AUCt Test (ng/mL∗h) 388,931.0 374,575.0 3.69

AUCt Ref (ng/mL∗h) 354,986.6 368,207.0 −3.72

Table 8. Parameters of the model.

Parameter Estimate Standard Error

alfaT 0.455 0.722

betaT 0.555 1.269

scalfa 5.627 8.969

alfaR 0.717 1.138

betaR 0.542 1.240

scbeta 1.039 2.377

kel h−1 0.022 0.003

Vd mL 51,686.649 6498.458
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For the one-step procedure, the prediction errors were slightly lower for all the parameters, and it
is interesting to observe that the plasma profiles are better captured in the one-step procedure compared
with the two-step one (see predicted plasma profiles in Figure 7 versus Figure 8). Nevertheless, from the
standpoint of prediction errors, both approaches are adequate and allowed for the prediction of the
plasma levels from the dissolution profiles. In the EMA guidance [5], the recommended procedure
is the one-step IVIVC using a mechanistic model. Nevertheless, it is also advised that constructing,
as a first approach, the two-step calculations might give some insights into the mechanistic relationship
between in vitro and in vivo dissolution such as, for instance, the need for a time-scaling factor
detected with the Levy’s plot. FDA guidance [4] requests the two-step procedure, which might not
be possible to construct. For instance, for some complex relationships between in vitro and in vivo
dissolution/absorption when a preferential dissolution segment or absorption windows exist, a single
IVIVC linear two-step correlation might be challenging. In those complex situations, connecting the
in vitro dissolution with in vivo plasma profiles requires a mechanistic model defined with differential
equations [33,34].

3.6. Significance of the Results

CBZ is a non-ionizable molecule whose solubility does not change with pH [35]. Its permeability
is high in human intestines compared to metoprolol [36] and passive diffusion is the main absorption
mechanism due to its lipophilicity. In accordance with these characteristics, its dissolution process
is not affected by the transit to one intestinal segment to the next, and the dissolved amounts are
absorbed at a similar rate in the different intestinal segments. In consequence, the challenges for the
classical two-step IVIVC approach are minimal as long as the in vitro dissolution method reflects the
in vivo dissolution process [37]. In this work, similar predictive performance was achieved with both
mathematical approaches. On the other hand, the mechanistic model used in the one-step approach
only used a time scaling factor for the in vitro dissolution parameters, which can be directly convoluted
with the disposition CBZ parameters without the need of any other kinetic feature.

The differences between formulations in vitro and in vivo may be explained by the difference in
particle size distribution. As CBZ is a BCS class II drug, particle size as well as polymorphism are
key topics to be investigated in order to ensure the bioequivalence between prototypes and reference
products [38]. Both products have the same polymorphic form (form III) which was characterized
by X-Ray Diffraction (in-house data). The work performed by Sehić S. et al. [39] demonstrated that
commercial samples from the same polymorphic form III (anhydrous) presented particles with different
morphology and size distribution. Those differences clearly impacted the kinetics of conversion from
anhydrous to the dihydrate CBZ and the dissolution behavior of their formulations.

Moreover, in order to figure out the likely influence of excipients in the in vitro and in vivo
behavior of both formulations, a dissolution profile was carried out with crushed tablets of both
products in the media containing 1% of SLS (in-house data, not shown). The same difference with intact
tablets was observed in the dissolution profiles with crushed tablets, and in consequence, differences in
disintegration can be ruled out as a potential source of dissolution differences. Therefore, it is possible
to infer that API characteristics may play a significant role in the in vitro and in vivo behavior of the
CBZ formulations used in this study. On the other hand, it is not possible to completely rule out the
role of excipients, as they might influence, for instance, particle wettability. A previous clinical study,
using the same reference product and a test product manufactured with smaller particle size showed
also statistically significant Cmax differences in epileptic patients. [40].

The assayed pharmaceutical products used in this work were formulated with common and
non-problematic excipients (those affecting transit time or permeability) CBZ dissolution from these
products is driven mainly by CBZ particle size. In combination with the previously discussed
physicochemical characteristics, a simple unbuffered media (but with SLS at 1% to ease particle
wetting and ensure complete dissolution) might reproduce the in vivo dissolution. Even if the in vivo
dissolution environment is much more complex, most of the in vivo factors (as pH changes during
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transit, bile secretions presence) do not affect the in vivo dissolution of CBZ. Consequently, these factors
do not need to be incorporated in the in vitro dissolution model, which can be kept as simple as possible.

As this medium was able to distinguish between differences in API particle size, it could be a
highly relevant tool in Latin-American countries to ensure and check the quality of their oral CBZ IR
marketed products for which BE studies have not been requested by most health authorities [41].

In this work, it was shown that both approaches, two-step, recommended in FDA guidance,
and one-step, recommended in EMA guidelines, provided good in vivo predictability for CBZ, a BCS
class II drug.

This article reinforces the evidence that, for CBZ, the same dissolution medium can be used
during the product development as well as for quality control purposes. Some authors have suggested
approaches for establishing the link between the dissolution test and in vivo performance [42,43].
Therefore, this is a unique situation, as in general, quality control (QC) dissolution methods are of
application only to a particular pharmaceutical product to check the consistence of the manufacturing
process. QC methods do not have, in most cases, any biopredictive aim, while in the case of
CBZ products, it would be possible with the QC method to correlate possible deviations in the
manufacturing process (discriminatory power) and their in vivo impact (biopredictive relevance) for a
narrow therapeutic index drug, such as CBZ.

4. Conclusions

As proposed by previous studies, the dissolution method in apparatus USP II at 75 rpm with
900 mL of aqueous media containing 1% of SLS was successfully used to develop a Level A IVIVC
with two CBZ oral IR products which provides additional evidence that this medium can be classified
as a biopredictive dissolution tool for CBZ oral IR products with conventional excipients. On the
other hand, we confirmed the similar outcome of one-step versus two-step procedures for IVIVC in an
uncomplicated drug (constant solubility, no absorption window, no carrier mediated absorption or
saturated metabolic step).
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Appendix A

Berkeley Madonna Code

METHOD RK4

STARTTIME = 0.001
STOPTIME = 72
DT = 0.02
rename TIME = t

Init(QdissR) = 0; fraction dissolved Reference
Init(QcR) = 0; Plasma levels Reference

Init(QdissT) = 0; fraction dissolved Test
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Init(QcT) = 0; Plasma levels Test

;initial estimations of parameters Reference
alfaR = 0.787
betaR = 0.470
FmaxR = 100; Fixed to 100
alfaResc = slope*alfaR
betaResc = slope2*betaR

;initial estimations of parameters Test
alfaT = 0.418
betaT = 0.687
FmaxT = 100; Fixed to 100
alfaTesc = slope*alfaR
betaTesc = slope2*betaT

; dose in ng; 400 mg
Dose = 400000000
;kel and Vc fixed
;kel h−1

kel = 0.0159
;Vc in mL
Vc = 67,698.44

;initial estimations of scaling factor parameters
slope = 1
slope2 = 1

;Differential equations
QdissR’ = (betaR*FmaxR*(tˆ(betaR-1))*exp((-(tˆ(betaR)))/alfaR))/alfaR
QcR’ = ((Dose*betaResc*(FmaxR/100)*(tˆ(betaResc-1))*exp((-(tˆ(betaResc)))/alfaResc))/alfaResc)-
(kel*QcR)

QdissT’ = (betaT*FmaxT*(tˆ(betaT-1))*exp((-(tˆ(betaT)))/alfaT))/alfaT
QcT’ = ((Dose*betaTesc*(FmaxT/100)*(tˆ(betaTesc-1))*exp((-(tˆ(betaTesc)))/alfaTesc))/alfaTesc)-(kel*QcT)

;integrated plasma levels
CpR = QcR/Vc
CpT = QcT/Vc

ASCII code Phoenix Winnonlin

Model 1
remark ******************************************************
remark Developer: Marival Bermejo
remark Model Date: 21-July-2019
remark Model Version: 1.0
remark ******************************************************
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remark one-step ivivc for CBZ
remark-define model-specific commands
COMMANDS
NFUNCTIONS 4
NDERIVATIVES 4
NPARAMETERS 8
PNAMES ‘alfaT’,’betaT’,’scalfa’,’alfaR’,’betaR’,’scbeta’,’kel’,’Vd’
Ncons 2
END
remark-define temporary variables
TEMPORARY
Dose = con(1)
Remark Dose in ng 400000000
Fmax = con(2)
Remark Fmax fixed at 100
alfaT = P(1)
betaT = P(2)
scalfa = P(3)
alfaR = P(4)
betaR = P(5)
scbeta = P(6)
kel = P(7)
Vd = P(8)
t = x
ti = t + 0.0001
Remark time shift to avoid floating point error
END
remark-define differential equations starting values
START
Z(1) = 0
Z(2) = 0
Z(3) = 0
Z(4) = 0
END
remark-define differential equations
DIFFERENTIAL
alfaTvivo = scalfa*alfaT
alfaRvivo = scalfa*alfaR
betaTvivo = scbeta*betaT
betaRvivo = scbeta*betaR
DZ(1) = (betaT*Fmax*(ti**(betaT-1))*exp((-(ti**(betaT)))/alfaT))/alfaT
DZ(2) = (betaR*Fmax*(ti**(betaR-1))*exp((-(ti**(betaR)))/alfaR))/alfaR
DZ(3) = ((Dose*betaTvivo*(ti**(betaTvivo-1))*exp((-(ti**(betaTvivo)))/alfaTvivo))/alfaTvivo)-kel*z(3)
DZ(4) = ((Dose*betaRvivo*(ti**(betaRvivo-1))*exp((-(ti**(betaRvivo)))/alfaRvivo))/alfaRvivo)-kel*z(4)
END
remark-define algebraic functions
FUNCTION 1
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F = Z(1)
END
FUNCTION 2
F = Z(2)
END
FUNCTION 3
F = Z(3)/Vd
END
FUNCTION 4
F = Z(4)/Vd
END
remark-define any secondary parameters
remark-end of model
EOM
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In which LnYtest and LnYreference represents the average of the natural logarithms of individual
AUC or Cmax values of test and reference respectively. A difference of arithmetic averages in the
natural logarithm scale corresponds to the ratio of the geometric means in the numerical scale. Student t
value for a probability of type I error (alfa) of 0.05 and N-2 degrees of freedom where N is the number
of subjects in the BE trial. SE is the standard error, which is calculated from the ANOVA residual
variance (also called within subject) as:

SE =
√

2 ∗ residual variance/N

Within subject coefficient of variation (CVws) is then calculated (in the numerical scale) as

CVws =
√

eresidual variance − 1

The power of the test is calculated as 1-Beta, where Beta is the probability of a type II error (failing
to reject the null hypothesis (Inequivalence or nonequivalence) when the null hypothesis is false.
Note in BE analysis it is used a procedure called “reversed hypothesis” meaning the null hypothesis is
nonequivalence and the alternative hypothesis is Bioequivalence. Power estimation is explained in
detail in Chapter 5 of Chou SC and Liu J 2009 [44].
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